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Abstract: The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed
with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may
present peculiar immunogenic features influencing their homeostasis within the tumor microenvi-
ronment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant
issue and matter of investigation, especially considering the multiple emerging immunotherapy
strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic
redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings
and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated
preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies,
indirect evidence from clinical studies may be derived and new studies are ongoing. Here we
review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting
the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T
antitumor lymphocytes.

Keywords: cancer stem cells (CSCs); immunotherapy; adoptive immunotherapy; chimeric antigen
receptor (CAR)

1. Introduction

The term cancer stem cell (CSC) dates from about 25 years ago [1], with the evidence
of a small population of stem-like cancer cells. CSCs are indeed a subpopulation of
tumor cells considered responsible for tumorigenesis, metastasis and disease recurrence.
CSCs apparently share key biological features with normal stem cells, such as the multi-
differentiation ability and self-renewal capacity [2], but these properties are abnormally
activated in CSCs. The concept and definition itself of CSCs are somehow not univocally
defined [3]. In human cancers many attempts have been proposed to define CSCs through
either different surface antigen expression patterns [4,5], transcription factors [6], signaling
pathways or functional features [7–9]. Such “identity” issues are more prominent in
the field of solid tumors while appear less present for. With the deepening of tumor
biology research, multiple solid tumors have been found to be more clearly driven by CSCs
compared with others, such as breast cancer [5], glioblastoma [10], prostate cancer [11],
lung cancer [12], colorectal cancer, gastric cancer and liver cancer [13]. In other tumors,
such as melanoma, the existence of a CSC compartment has been advocated [14] but also
disputed by functional evidence supporting the high tumorigenicity of multiple melanoma
cells irrespectively of the supposed CSC markers [7]. Therefore, there is an urgent need to
identify reliable antigens to distinguish CSCs. At this aim, even antigens associated with
enrichment of CSCs may be effectively useful [15].
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CSCs represent one of the main obstacles in tumor treatment, because they can resist
most of standard therapies (e.g., chemotherapy, radiotherapy, and molecularly targeted
drugs) [16–19]. Cancer patients usually suffer from relapse and cancer recurrence may be
due to CSCs resistance, differentiation ability and capacity of initiating new tumors after
treatments [20,21].

CSCs may present multiple strategies to circumvent the immune attack, including
genetic and non-genetic alterations that allow reduced immune recognition, enhanced tol-
erance to cytotoxic effects of immunity and promotion of a protective immunosuppressive
tumor microenvironment (TME) [22]. The TME can evolve as the tumor progresses and
various components participate to create a hypoxic, inflammatory, and immunosuppressive
environment that facilitates tumor growth, progression and preservation of CSCs [23,24].
Multiple therapeutic approaches have been designed with the aim of killing CSCs and
altering the TME. Some of these strategies are under evaluation in preclinical and clinical
studies [25]. In recent years, cell-based immunotherapy has achieved promising outcomes
in treating various malignancies. Here we focus on immunogenic properties of CSCs in
solid tumors and review how CSCs may be targeted with immunological approaches based
on killer lymphocytes. The heterogeneity of CSCs is so complex that surface antigens asso-
ciated with enrichment of CSCs have been effectively useful also to target CSCs [3,26,27]
as it is likely that some CSC antigens may be expressed also in non-CSCs, providing
opportunities for enhanced immunotherapy [15,28].

We will discuss two distinct main strategies based on effector cells belonging to the
adaptive immune system or to innate immune response. Furthermore, we will describe
for each of them the successful preclinical and clinical outcomes, specifically focusing on
results reached with the genetic engineering strategy of chimeric antigen receptor (CAR).

2. Identification and Immunological Properties of CSCs

In order to prevent or significantly delay relapse, CSCs should be specifically targeted
and eliminated. CSCs may be identified based on immunological characteristics, on alter-
ations of stem cell signaling pathways and on specific CSC markers and tumor associated
antigens (TAA) [29].

2.1. Immunological Features

Several preclinical studies showed that CSCs are characterized by low immunogenic-
ity and their immunological features can dictate an immunosuppressive activity. Immune
evasion has been identified as an intrinsic property of CSCs, capable to modulate and
resist to the immune system. A first CSC strategy to circumvent the immune attack is
characterized by the low expression of both MHC molecules and antigen-processing ma-
chinery (APM), required for an efficient antigen presentation and necessary to stimulate
T-cell activation or proliferation [30]. In a glioblastoma (GBM) model, the expression of
MHC-I and -II, APM molecules and ligands of NKG2D (MHC class I–related chains A
and B (MICA/B), UL16 binding proteins (ULBPs)) have been reported down-regulated
or defective in CSCs [31]. This example highlights that a suboptimal immunogenicity by
CSCs results in low or impaired susceptibility to T cell mediated immune responses. This
represents a mechanism of immune evasion that is shared with normal stem cells. [31,32].
Further, ABCB5+ melanoma CSCs preferentially inhibited IL-2–dependent T-cell activa-
tion in a CD86-dependent manner and induced CD4+CD25+FoxP3+ regulatory T cells
(T-regs) [33]. Melanoma CSCs displayed lower levels of MHC-I (but not MHC-II) and
melanoma-associated antigens (e.g., MART-1, ML-IAP, NY-ESO-1, MAGE-A), while dis-
played higher levels of co-stimulatory molecules CD86 and PD-L1, responsible to their
immune-evasive capacity [33]. In other settings, the CSC associated antigen CD44 has been
positively associated with PD-L1 expression in lung adenocarcinoma [34]. Prostate CSCs
showed overexpression of immune-inhibitory factors (e.g., PDL2 and TGF-β) and low
expression of many HLA molecules [35]. A recent study demonstrated that the inefficient
response of prostate cancer to chemotherapy is mediated by CSC resistance to Docetaxel,
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with low expression of differentiation markers (PSA, CK18, CK19) and HLA-I antigens, but
overexpression of the Notch and Hedgehog signaling components [36]. These HLA-I defec-
tive prostate cancer cells are highly tumorigenic and their abundance correlates with tumor
aggressiveness and poor patient prognosis. An additional interesting mechanism has been
described in GBM and demonstrated how CSCs can induce apoptosis of both intratumor
naive and activated T cell through galectin-3 secretion, allowing CSC expansion [37]. CSCs
isolated from distinct solid tumors can not only evade immune attacks but also suppress
actively immune responses releasing cytokines and soluble immunosuppressive factors
(e.g., TGF-b, IL-10, IL-4 and IL-13) [38–40]. Immunosuppressive factors can recruit sup-
pressive immune cells such as Tregs and M2 type macrophages to the tumor, can affect the
TME components and subsequently remodel the TME to establish an immuno-suppressive
environment [22,38,41].

Cell surface molecules expressed on CSCs can also dampen immune responses. In
breast cancer model, high levels of CD200 have been associated with the suppression of
Th1 responses, decreased neutrophil infiltration and increased IL-10 production induced by
the tumor [42,43]. PD-L1 is often over-expressed on tumor cells and PD-L1 up-regulation
on CSCs is probably tumor-type or localization-dependent. Hypoxia, for example, is one
of the triggers that can up-regulate PD-L1 with tumor glycolysis promoting function [44].
High expression of PD-L1 on CSCs has been reported on head and neck carcinoma [45], on
CD133+ colorectal [46] and gastric CSCs [47], but not on melanoma CSCs [33]. In a recent
study in squamous cell carcinoma, CD80 expressed on CSCs has shown higher affinity for
CTLA4 than for CD28 on CD8+ cytotoxic T cells, dampening the effectiveness of cytotoxic
T cells at attacking the tumor [48]. In GBM CSCs, immune-evasion can be due to high levels
of MHC I and low levels of CD86 and CD40, but not MHC II or CD80 [37]. A summary of
the main CSC features is reported in Figure 1.

2.2. Signaling Pathways’ Alterations in Cancer Stem Cells

Several pathways playing a role in normal stem cells are frequently deregulated
in CSCs: Myc, Notch, Hedgehog (Hh), Wnt, FGF/FGFR, EGF/EGFR, NF-κB, MAPK,
PTEN/PI3K, HER2, and JAK/STAT [6,49–51]. Notch, Wnt/β-catenin, and Hh pathways
are implicated in CSC regulation but are also responsible for immune cell behavior and
peripheral effector function [52–54]. Notch signaling has been correlated to peripheral
T-cell maturation into effector cells and cytokine production. Wnt/β-catenin pathway has
a role in the regulation of T-cell development/activation and in the development of CD8+
memory T-cell. Hh signaling pathway is responsible for normal tissue homeostasis and
development, including immune cell behavior and peripheral effector function [55–58].
As these pathways have multiple and physiological roles, targeting them is more chal-
lenging [59]. Furthermore, particular cells of the immune system play a complex role in
CSC development. M2 macrophages can produce the immunosuppressive factors milk-fat
globule EGF-8 (MFG-E8) and IL6. MFG-E8, in particular, promotes CSC resistance by
activating Sonic Hedgehog signals and Stat3 pathway [60]. Moreover, it has been proposed
that CSCs themselves can enter latency stage and escape natural killer (NK) cells killing
by expressing DKK1, a WNT pathway inhibitor mechanism that allows the downregula-
tion of the NK cell activation ligands [61]. Other pathways may govern immunological
immunoresistance of CSCs in different cancer types: c-Myc upregulates the expression of
the innate immune inhibitor CD47 and adaptive immune checkpoint molecule PD-L1 [62].
Loss of tumor suppressor PTEN leads to reduced expression of neoantigens responsible for
immunoreactivity [63]. In the metastatic uterine leiomyosarcoma model, loss of PTEN is
associated with resistance to anti-PD-1 checkpoint blockade therapy [63]. STAT3 signaling
is constitutively activated in GBM CSCs and may have an immunosuppressive role, as
inhibition of STAT3 can restore T-cell function [37]. Interesting recent data are linking the
immunoresistance of CSC to their acquisition of an autophagic state, promoted by the
stem-related gene NANOG through the hyperactivation of EGFR-AKT signaling [64].
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Figure 1. (A) Cellular components of the tumor microenvironment that shape tumor immunological landscape. The cel-
lular part consists of immune cells of hematopoietic origin and stromal cells of non-hematopoietic origin. The immune cell 
compartment comprises tumor-infiltrating lymphocytes of T, B, and natural killer (NK) cells and tumor-associated mye-
loid populations of dendritic cells, macrophages, and myeloid-derived suppressor cells (MDSC). The stromal compart-
ment consists of cancer-associated fibroblasts (CAF) and endothelial cells of blood and lymphatic vasculature. Cancer stem 
cells (CSCs) and immune components present in the tumor microenvironment exert the function of critical regulators of 
tumor growth. (B) Biological characteristics of CSCs. CSCs possess both self-renewal and multilineage differentiation abil-
ities, leading to the composition of intratumoral heterogeneity. CSCs have aberrant proliferation and are responsible for 
resistance to anticancer treatments, including conventional chemotherapy, radiation therapy and molecularly targeted 
therapy. (C) Functional characteristics of CSCs. CSCs may present multiple strategies to circumvent the immune attack, 
including genetic and non-genetic alterations that allow reduced immune recognition, enhanced tolerance to cytotoxic 
effects of immunity and promotion of a protective immunosuppressive tumor microenvironment. 
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Figure 1. (A) Cellular components of the tumor microenvironment that shape tumor immunological
landscape. The cellular part consists of immune cells of hematopoietic origin and stromal cells of
non-hematopoietic origin. The immune cell compartment comprises tumor-infiltrating lymphocytes
of T, B, and natural killer (NK) cells and tumor-associated myeloid populations of dendritic cells,
macrophages, and myeloid-derived suppressor cells (MDSC). The stromal compartment consists
of cancer-associated fibroblasts (CAF) and endothelial cells of blood and lymphatic vasculature.
Cancer stem cells (CSCs) and immune components present in the tumor microenvironment exert
the function of critical regulators of tumor growth. (B) Biological characteristics of CSCs. CSCs
possess both self-renewal and multilineage differentiation abilities, leading to the composition of
intratumoral heterogeneity. CSCs have aberrant proliferation and are responsible for resistance to
anticancer treatments, including conventional chemotherapy, radiation therapy and molecularly
targeted therapy. (C) Functional characteristics of CSCs. CSCs may present multiple strategies to
circumvent the immune attack, including genetic and non-genetic alterations that allow reduced im-
mune recognition, enhanced tolerance to cytotoxic effects of immunity and promotion of a protective
immunosuppressive tumor microenvironment.

2.3. CSCs Markers and Tumor Associated Antigens (TAA)

Most CSC markers have been identified based on the knowledge of stem cells in
healthy tissues from which the tumors arise. Identification and isolation of putative
CSCs have been established based on functional assays (e.g., Aldefluor, tumorspheres and
organoids), side population (SP), staining of cell surface markers and fluorescence activated
cell sorting (FACS).
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The first CSCs were identified within breast cancer. These CSCs were characterized by
the expression of CD44 and low levels of CD24 [65].

Actually, a limited number of CSC markers have been reported, resulting promising
targets for CSC immunotherapy [3,38,66–69] (e.g., CD44, CD133, HER2 and Prostate Stem
Cell Antigen (PSCA)). It should also be considered that CSCs are characterized by plasticity
and capacity to change their phenotypical and functional appearance, somehow limiting
the relevance of precise individual markers. Additionally, most CSC markers, can be
referred to heterogeneous subsets of CSC populations, highlighting that combinations of
multiple markers may better contribute to a comprehensive CSC detection [13].

The CSC detection markers most commonly used across the variety of solid tumors
are the following: CD133, CD44, IL-6R, CD24, epithelial cell adhesion molecule (EpCAM),
leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), CD166 and CD29, alone
or in combination. Although for some of these markers is evident their stem cell function,
their targeting may impair anti-tumor immune response. CD44 is a CSC marker in breast,
prostate, colon, head and neck and pancreatic cancer [70], however CD44 also regulates
T helper type 1 (Th1) cell survival and memory function [71], IL17 and IFN-γ production
by T-cell [72]. IL-6 has been shown to enhance stemness markers (Oct-4, Notch, Lgr5)
in colon cancer [73] and promote the survival and tumorigenicity of CSCs in head and
neck carcinoma [74]. On the other side, IL-6R plays an important role in naive and central
memory T-cells, regulating their survival, proliferation and effector function and blocking
regulatory T-cell (Treg) function [75].

Additionally, a limited number of CSC markers are currently available but their
biological function needs to be fully characterized, such as CSPG4 in multiple cancer
types [76], EGFRvIII [77] and IL13Rα2 [78] in gliomas, and EpCAM in prostate cancer [79].

CSCs can express TAAs that potentially may be recognized by the immune system of
the host [66]. Four different TAA subgroups have been described in CSCs [38,57,80–82]:
(a) antigens (e.g., EGFRvIII, survivin, hTERT) highly expressed by the tumor but minimally
expressed by normal tissues; (b) cancer/testis (CT) antigens (e.g., MAGE-A3, MAGE-A4,
NY-ESO1) aberrantly present in tumor as they are normally expressed only by placenta
and testicular germ cells; (c) neoantigens deriving from somatic mutations giving rise to
new epitopes recognized by immune system; and (d) differentiation antigens (e.g., PSA
in prostate cancer and MART-1 in melanoma) specific for a given tissue and expressed by
both cancer and non-malignant cells.

We acknowledge that most of these TAA are not exclusively expressed by CSCs but
can be shared by non-CSC counterpart, providing opportunities to explore immunotherapy
strategies targeting the CSC niche and strategies with a target broader than the CSC
compartment.

In this review we will explore studies either directly based on CSC-specific markers
and based on CSC-shared TAAs.

3. Cellular Immunotherapy Targeting CSCs

Adoptive cell therapy is emerging as promising treatment for advanced cancers refrac-
tor to conventional treatments. Here we describe different killer lymphocyte populations,
belonging either to the adaptive immune system or the innate immune response, with
the potentiality to target CSCs in solid tumors. In the first group, we are summarizing
some preclinical and clinical studies based on CSC-primed T cells, while in the second we
are focusing on preclinical and clinical data regarding innate immune effectors (Natural
Killer (NK) cells, Cytokine Induced Killer (CIK) cells and γδ T cells). The immunotherapy
field was recently boosted with the emergence of chimeric antigen receptor (CAR) T cells
therapy [83]. Since their antigen-recognizing receptor is based on modified antibodies,
CARs can specifically target surface antigen, such as the CD19 co-receptor on B cells [84].
The success of CAR-T therapies in hematological malignancies has given rise to hope of
extending the use of this strategy to further cancer indications, including solid tumors,
especially considering the proportion of new cases of patients with solid tumors per year
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as compared with hematological tumors [85]. For each different type of antitumor killer
lymphocyte considerable for adoptive cell therapies, we will also report the initial data
available about their possible engineering with CARs.

Advances in immunotherapy and the development of CAR strategy have provided
a solid and successful approach to target membrane protein expressed by cancer cells.
CARs are synthetic receptors composed by an extracellular domain based on the single
chain variable fragment (scFv) derived from a tumor antigen-specific monoclonal antibody
(mAb) fused into TCR-derived signaling domain and with one or more costimulatory
domains [86,87]. Impressive therapeutic efficacy of CAR-mediated cell therapy has been
observed in a series of clinical trials, especially those for chronic lymphocytic leukemia and
acute lymphoblastic leukemia [88].

The choice of tumor antigens restrictively expressed on the surface of malignant cells
is important in CAR-mediated cell therapy to target cancer cells or even CSCs. CSCs
abnormally express stemness-associated genes, some of which play vital roles in embryonic
development. These genes may serve as potential targets, as they are expressed at high
levels on the membrane of tumor cells, especially CSCs, but are scarcely expressed in
normal tissues. Identification of CSC-specific TAA is crucial to target the novel CSC subset,
responsible for tumor maintenance and recurrence.

3.1. T Cell-Based Strategies Targeting CSC

Adoptive T cell therapy requires the generation and expansion of effector T cells
followed by their infusion back into patients. The efficient conventional targeting of CSCs
by T cells depends upon a sufficient level of HLA class-I molecule expression and intact
antigen presenting machinery in these cells. Two main strategies have been developed to
generate CSC-specific T cells: CSC-primed T cells and CAR-engineered T cells.

In the first case, T lymphocytes are generally stimulated and primed in vitro by
CSC lysate-pulsed or peptide-pulsed autologous dendritic cells (DCs). In a preclinical
study using ALDH1A1 peptide-pulsed autologous DCs, CSC-specific CD8+ T cells were
generated and transferred in xenograft mice of squamous cell carcinoma of the head and
neck (SCCHN). CSC-specific CD8+ T cells eliminated ALDH1A1bright CSCs, inhibited
tumor growth and metastases, and prolonged the survival in the treated cohort [89,90].
Similarly, in a colorectal cancer study CD8+ T cells, repeatedly stimulated with autologous
PHA-blasts pulsed with the ASB4 CSC specific peptide, were adoptively transferred in a
mouse model effectively preventing tumor growth [91]. In a lung cancer study, CSCsALDHhi

were isolated and their lysate-pulsed DCs used to stimulate CD8+ T cells. Subsequently,
these ALDHhigh-CD8+ T cells exhibited significant antitumor effects, resulting in inhibition
of tumor growth and extended survival [92]. In bone malignant fibrous histiocytoma
(MFH), a CTL clone was induced by mixed lymphocyte tumor cell culture using autologous
peripheral blood mononuclear cells and freshly isolated SP cells, consequently this clone
showed specific cytotoxicity against SP cells [92].

Problems in targeting CSCs with primed T cells are the immune escape of tumors
caused by antigen loss and that antigens recognized by CSC-primed T cells remain largely
unknown. Furthermore, CSCs are often poorly targeted by T cells because of a lower
MHC class I expression and a higher production of IL4 than the non-CSC counterpart, as
observed in colon CSCs [31,93].

CSCs can share TAAs expression with the non-CSC counterpart or can express TAAs
that are functionally linked to cancer stemness. These latter TAAs may result in more
clinically relevant successes [94–96]. Models encompassing T cells engineered with CARs
against the CSC antigens have been developed and studied in different solid tumor settings.
To date, a limited number of reports, mostly in animal models, have been published on CSC
targeting by CAR T cells. The pre-clinical and clinical trials as well as the most attractive
markers for targeting by CAR T cells are discussed below.

In preclinical models, CAR T cells have been designed to target CSC-associated anti-
gens, such as CD133 in glioblastoma [97], CSPG4 in multiple cancer types [79], EGFRvIII [80],
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IL13Rα2 [81] and EphA2 in gliomas [98,99], SSEA1 in medulloblastoma, glioblastoma and
neuroendocrine tumors [100], HER2 in osteosarcoma [101], GD2 and TEM8 in breast
tumor [102,103], EpCAM and PSCA in prostate cancer [82,104]. These studies have demon-
strated the antitumor effects of CAR T cells by targeting CSCs and suggest that CSC-specific
T lymphocytes can be generated, in vitro expanded and adoptive transferred into tumor-
bearing hosts to target CSCs in order to eradicate or to control tumor growth in vivo. A
further study using anti-EpCAM CAR T cells for local treatment of peritoneal carcino-
matosis in xenograft mice demonstrated the efficacy of this approach for the treatment of
gastrointestinal and gynecologic malignancies [105]. Numerous preclinical studies have
indicated other surface markers potentially useful to identify or target CSCs: CD90, ALDH,
CD47, CD44, CD24, microtubule-associated doublecortin-like kinase 1 (DCLK1) that are
expressed in multiple cancer types with a higher expression in CSCs compared to other
bulk tumor cells [82,97,106,107]. DCLK1 has been described as a CSC associated antigen in
colon, pancreatic [108–110] and even in Cholangiocarcinoma (CCA) tumors [111]. Recently,
preclinical findings supported promising results with adoptive immunotherapy based on
DCLK1-CAR T lymphocytes against colorectal cancer (CRC) [107].

In prostate cancer, preclinical studies with PSCA CAR T cells demonstrated that
PSCA is a promising target for immunotherapy of prostate cancer [112,113]. Bispecific
antibodies targeting PSCA/PSMA have been developed to increase “tumor-sensing” and
reduce potentially harmful reactivity against healthy tissues expressing either antigen
alone [114,115]. A limited number of clinical trials concerning CAR T cells targeting
antigens associated to CSCs are registered on the website www.clinicaltrials.gov (accessed
on 1 January 2021).

Two distinct clinical trials using anti-EGFRVIII CAR T cells in patients with EGFRVIII+

recurrent GBM were not successful: no appreciable tumor regression and no objective
responses have been reported in any patients enrolled, probably for the high heterogeneity
of EGFRVIII expression and for the tumor immunosuppressive microenvironment [116,117].
Encouraging results are reported in other clinical studies. A case report on a patient with
advanced cholangiocarcinoma treated with anti-EGFR CAR T cells combined with anti-
CD133 CAR T cells indicated the feasibility of clinical cancer treatment with CSC-targeted
CAR T cells. EGFR-CAR T cells infusion showed partial response of 8.5 months and
extra 4.5 months upon receiving CD133-CAR T cells, with some degree of toxicity [118].
Local infusions of IL13Rα2-specific CAR T cells into a patient with recurrent GBM caused
regression of the primary and metastatic tumors for 7.5 months without toxic effects.
Subsequently, the patient develops tumor at several new locations, this might be due
to the lower expression of IL13Rα2 in the new sites [119]. A phase I trial tested CD133-
directed CAR T cells for advanced metastasis malignancies (HCC, pancreatic, and colorectal
cancers): this study reported outcomes between partial remission and stable disease with
controlled toxicity [120]. Utilizing well-characterized CSC markers, it is possible therefore
to use CAR T cells to eliminate CSCs in many cancers. CAR T cells alone or in combination
with standard therapies or checkpoint inhibitors are a promising strategy for the treatment
of many cancers. Currently, the majority of clinical trials based on CAR-T cell therapy
directed against CSCs are ongoing.

3.2. Innate Immune Effectors Targeting CSCs
3.2.1. NK Cells

Natural killer (NK) cells are large granular lymphocytes, constitute 5–15% of circulat-
ing lymphocytes, and represent the main effectors belonging to the innate immunity [121].
NK cells recognize tumor cells and infected cells, in a HLA independent manner without
prior sensitization [122] and release pre-formed granules known as perforin and granzyme
B, which can induce necrotic as well as apoptotic or programmed cell death in target
cells [123–125]. NK cells simultaneously express activating and inhibitory receptors that
encounter target cells by the subtle balance of transmitted signals for activation or inhibi-
tion [126]. NK cells mediate direct and antibody-dependent cellular cytotoxicity (ADCC)

www.clinicaltrials.gov
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against tumors and regulate the function of other cells through the secretion of cytokines
and chemokines [127].

Adoptive NK cell therapy has been explored with either autologous or allogenic NK
cells [128,129]. Ex vivo NK cell culture is demanding because of their limited life span and
expansion potential [130]. Established human NK cell lines (e.g., NK92, KHYG-1, NKL and
NKG) can also be explored as a valuable alternative to primary NK cells. NK92 cell line in
particular is approved by the US Food and Drug Administration (FDA) for phase I and II
clinical trials, allowing a “off-the-shelf” CAR.NK92 production [131,132]. NK92 can easily
be expanded to high numbers and maintained for therapeutic use in the presence of IL2,
while retaining consistent phenotypic and functional features [133].

Increasing data demonstrate that NK cells can selectively identify and lyse CSCs [134,135],
as they have low or no MHC-I molecules but up-regulate the ligands for NKG2D, DNAM1
and NKp30 NK-activating receptors [134,136,137]. Several studies highlighted NK cell ability
to recognize and kill poorly differentiated tumors [138–140] and that cytokine-activated
(IL2 and/or IL15-activated) NK cells were effective against human breast, colon, melanoma
and glioblastoma CSCs [141–143]. Studies on oral squamous carcinoma reported higher
levels of NK cell activating ligands on CSCs as compared to non-CSCs, resulting in their
higher sensitivities to NK cell killing [144]. In particular, Tallerico and colleagues observed
lower levels of MHC class I expression on colorectal cancer CSCs compared to non-CSCs.
They demonstrated that CSCs showed increased susceptibility to NK killing [145], linked
to upregulation of the activating natural cytotoxicity receptors, particularly NKp30 and
NKp44. Castriconi and colleagues demonstrated low or absent expression of MHC class
I molecules on GBM-derived CSCs and their high susceptibility to both allogeneic and
autologous NK cells in co-culture models after pre-treatment with IL-2 and IL-15 [141]. In
melanoma, Pietra and colleagues reported that both CSCs and non-CSCs showed sensitivity
to activated allogeneic NK cells, possibly mediated by the DNAM-1 ligands Nestin-2 and
PVR [146]. In breast cancer, Yin and colleagues reported that CSCs showed to be lysed by
IL-2 and IL-15 activated NK cells, and such cytotoxicity was likely mediated by the increased
expression of NKG2D ligands ULBP1, ULBP2 and MICA on CD44+CD24− CSCs [143]. On
the other side, CSCs can evade NK cell killing by shedding MICA and MICB and also by
recruiting immunosuppressive Treg cells [147,148]. In glioma, CD133+ brain CSCs do not
express either detectable MHC-I and NK cell activating ligands, escaping NK cell-mediated-
immune surveillance [149]. IFN-γ stimulated the expression of these molecules on CD133+
CSCs, restoring their sensitivity to NK cell-mediated lysis in vitro [149]. In a preclinical study
high-grade non-muscle invasive bladder cancer (NMIBC), NK cells from healthy donors, but
not from NMIBC patients, upon activation with IL-2 and IL-15, could kill both CSCs and bulk
tumor cells, promoting their differentiation and enhancing the efficacy of a possible combined
chemotherapy [150]. In oral squamous carcinoma, a preclinical study proposed a novel NK
ex vivo expansion and activation strategy, based on co-culture with osteoclasts to generate
“super-charged” NK cells endowed with higher secretion of IL12 and IL15, increasing killing
capability against CSCs [151].

Evasion mechanisms induced by TME can block NK cell mediated-CSC lysis through
an increase in IL6 and IL8 secretion and decrease in IFNγ secretion. NK cells can reach a
functional state, known as “split anergy”, characterized by a reduced NK cell cytotoxicity
maintaining cytokine and chemokine secretion. This NK functional state decrease NK
cytotoxic activity against CSCs but induce CSCs differentiation trough cytokine production,
especially IFNγ and TNFα [152]. This phenomenon was found to be associated with an
increase in MHC class I, PD-L1, and CD54 expressions and a reduction in CD44 levels on
tumor cells [153].

NK cells are a promising approach to target both CSCs and non-CSCs, leading to
prolonged therapeutic results. NK cells targeting of CSCs may initiate and amplify adaptive
T cell-mediated responses. Previous clinical trials using NK cells as monotherapy in solid
tumors obtained modest results, new trials point to a new application of NK cells in
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combination with traditional treatments in order to overcome the therapeutic resistance
which CSCs may contribute [147].

Different promising strategies are based on antibody anti-CSC markers, such as CD44,
CD24, CD133 and ALDH-1 [154] and bispecific antibody concomitantly binding CD16
on NK cells and CD133 on colorectal CSCs, that significantly improved CSC targeting
ability by NK cells [155]. Finally, NK cells administration and concomitant inhibitory
killer immunoglobulin receptor (KIR)-blockade, with or without other cancer drugs, may
represent new opportunities for cancer patients [156]. CAR engineering of NK cells can
enhance their specific recognition and elimination of tumor cells, providing an opportunity
to generate NK-cell therapeutics of defined specificity. Numerous preclinical studies
demonstrated the successfully generation of CAR-NK cells [157,158]. Furthermore, several
groups improved CAR-NK activity including in the receptor construction one or more
signaling domains derived from CD244 (2B4), NKG2D, DAP10 or DAP12 [157,159,160].
CAR.NK cell therapy presents several advantages compared to CAR-T cells: a) reduced
on-target/off-tumor toxicity and low cytokine storm risk as they have limited in vivo
persistence b) CAR-NK cells, endowed with innate killing activity, can attack tumors with
heterogeneous expression of the CAR target antigen [161]. Preclinical study demonstrated
that CAR-NK cells targeting specific antigens linked to CSCs (e.g., GD2, EGFRvIII, ErbB2,
CD133, PSCA) displayed superior anti-tumor activity compared to parallel-unmodified
NK cells. CAR-NK cells against prostate stem cell antigen (PSCA) displayed in vitro anti-
tumor efficacy against PSCA+ CSCs, and GD2-CAR.NK showed cytotoxic activity against
neuroblastoma and Ewing sarcoma cells [162]. GD2-CAR.NK92 cells have been tested in
preclinical assays against neuroblastoma, melanoma, breast carcinoma and Ewing sarcoma,
demonstrating selective anti-tumor activity [160,162–164]. Different preclinical approaches
employ CAR-NK cells for GBM immunotherapy [165]. Stem-like GBM cells seem to be
more sensitive to natural cytotoxicity of NK cells, as CSCs showed increased expression of
ligands for activating NK cell receptors and down-regulated class I HLA ligands for NK cell
inhibitory receptors [166] Preclinical data with NK92 cells showed that ErbB2-CAR.NK92
cells lysed ErbB2-positive stem-like GBM cells growing as neurospheres quite rapidly.
EGFRvIII-CAR.NK92 inhibited tumor growth and extended survival of GBM xenograft.
Other studies highlighted that ErbB2-CAR.NK92 prolonged survival and induced reduction
of primary tumors and metastasis in breast cancer and GBM xenografts, while parallel-
unmodified NK92 cells were unable to inhibit tumor progression [159,167,168]. CD133-
CAR.NK92 have been explored in vitro against GBM and ovarian cancer in combination
with cisplatin, demonstrating efficient anti-tumor activity [169]. A phase I clinical trial
(CAR2BRAIN, protocol number NCT03383978) based on intracranial injection of ErbB2-
CAR.NK92 in patients with recurrent ErbB2+ GBM is currently ongoing [168,170,171].

3.2.2. CIK and NKT Cells

CIK cells are heterogeneous ex vivo lymphocytes featuring a mixed T- and NK cell
phenotype, generated and expanded in vitro from peripheral blood mononuclear cells
(PBMC) and endowed with MHC-independent antitumor activity [172–177]. CIK cells
can be easily and efficiently expanded with the timed addition of IFN-γ, antibody (Ab)
anti-CD3 and IL2 [178,179]. At the end of the expansion, the CD3+CD56+ cells represent
the subset with the most potent cytotoxic activity against multiple tumor types [180,181].
The cytotoxic activity is primarily mediated by the interaction between the activating
natural killer cell receptors of CIK cells, in particular NKG2D, and the corresponding stress-
inducible ligands, including MIC A/B and ULBPs [182–184]. The clinical activity and
safety profile of CIK cells was demonstrated in several clinical trials in both hematological
and solid settings [175,185–189].

Immunotherapy based on CIK cells may overcome limitations caused by tumor down-
regulation of MHC molecules on CSCs and may be advantageous over T cells endowed
with MHC-dependent activity. Further, CIK cells may be a valuable therapeutic strategy
applicable to all patients, regardless their HLA-haplotypes.
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Patient-derived CIK cells showed a potent killing ability against CSCs in preclinical
in vitro and in vivo studies against putative melanoma, sarcoma, hepatocellular carcinoma
(HCC) and nasopharyngeal carcinoma (NPC) CSCs [190], with possible relevant clinical
implications. In these studies, CIK cells were equally effective against both putative
CSCs and non-CSCs. In distinct studies putative CSCs were visualized with a promoter-
fluorescence reporter gene strategy, where cancer cells were transduced with a lentiviral
“CSC-detector” with GFP gene under control of the stem cell-specific Oct4 or Nanog
promoter [191–193]. Based on this methodology, CIK cells showed to be effective to
kill CSCs surviving to chemotherapy or targeted therapy either in in vitro and in vivo
preclinical studies.

In another investigation, CIK cells sensitized by EpCAM and CD44 peptide DCs were
effective in vitro against Prostate Cancer Stem like Cell (PCSC)-enriched prostate-spheroids
and in vivo against PCSC-enriched prostate-spheroid xenografts [194].

Recent evidences showed the success of CIK cell redirection by CAR strategy to
enhance CIK cell anti-tumor efficacy [26,195–199]. CAR.CIK are an appealing platform
for CAR engineering, as they may generate bipotential killers combining the specificity of
CAR with their intrinsic tumor killing capacity [200,201].

In recent years, preclinical studies reported first evidences of enhanced CAR.CIK
activity in high grade soft tissue sarcoma (STS) thanks to the expression of a CAR specific
for CD44v6 antigen or CSPG4 [26,27], and in NPC thanks to a CAR specific for 5T4
antigen [202]. These CAR.CIK cells could efficiently eliminate tumor cells and also stem
cell-like cells in vitro, as these tumor antigens are shared with CSCs and involved in
tumor initiating process, EMT and clinical aggressiveness. In addition, a first evidence
showed in vitro the anti-tumor efficacy of CIK cells expressing a CAR specific for CSPG4
antigen in high grade STS [27]. It has been widely described that CSPG4 has a key role in
several oncogenic pathways required for malignant progression and metastatization and
is overexpressed by tumor cells and CSCs [203]. Overall CAR-CIK cells have gradually
become a realistic new option of cancer immunotherapy and are studying in vitro and
in vivo as a potential effective platform against a wide variety of cancers. Further preclinical
and clinical investigation are needed to evaluate the potential of targeting putative CSCs
with CIK cells, also in synergism with other therapeutic strategies.

Natural killer T (NKT) lymphocytes respond rapidly to a wide variety of glycolipids
and stress-related proteins and share properties of both T and NK cells, such as CD56,
CD16 expression and granzyme and perforin productions [204,205]. In contrast to CIK
cells, they are already present in small percentage in blood circulation; NKT cells express
an invariant αβTCR that recognizes antigens presented by MHC class I CD1d molecule, as
glycolipids. NKT cells are involved in anti-tumor immunity acting as recruiter of adaptive
immune cells trough their rapid cytokine secretion [206]. Due to their restriction to the
monomorphic HLA-like molecule CD1d, but not to HLA, NKT CAR cells show potential
for enabling off-the-shelf cancer immunotherapy, even if dedicated clinical trials have not
yet been reported. NKT cells may be isolated from patients or allogenic donor and are most
commonly expanded with the glycolipid α-GalCer, transduced to express a tumor-specific
CAR and reinfused in cancer patients with a favourable safety profile based on absence of
alloreactivity and limited in vivo persistence [207,208].

Few preclinical studies reporting the cytotoxic activity of NKT cells against CSCs are
based on redirection with CARs. In neuroblastoma and B cell lymphoma, GD2-CAR.NKT
cells efficiently localized at tumor site, reduced tumor growth and prolonged survival of
xenograft models, targeting also GD2+ CSCs [208]. CSPG4-CAR.NKT cells displayed similar
efficient cytotoxicity compared to conventional CAR.T cells redirected by CSPG4-CAR [209].

Currently, an ongoing phase I clinical trial is exploring efficacy and persistence of
autologous GD2-CAR.NKT cells in neuroblastoma patients (GINAKIT, NCT03294954).
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3.2.3. γδ T Cells

γδ T lymphocytes are unconventional non-MHC-restricted T cells, characterized by
an invariant γδTCR. They represent 1–5% of circulating lymphocytes and are a significant
subset of resident T cells in lymphoid organs, epidermis, gastrointestinal mucosa, and
reproductive system [210]. The Vγ9Vδ2 phenotype is the most represented of peripheral
blood γδ T lymphocytes, while δ1 e δ3 are mostly tissue-located [211–213]. Γδ T cells
recognize stress inducible molecules and are characterized by their ability to recognize
early metabolic changes, recognizing non-peptide metabolites like phosphoantigens or
aminobisphosphoantigens and the cholesterol precursor isopentyl pyrophosphate, that
differentiate healthy cells from transforming ones [214]. γδ T cell protection against cancer
occurs mainly by the production of pro-inflammatory cytokines such as IFNγ, TNFα, and
IL-17 and through their cytotoxic activity [215].

In preclinical studies, Vγ9/Vδ2 T cells efficiently killed CSCs derived from colon
cancer [216], ovarian cancer [217], and neuroblastoma [218] but were less effective against
prostatic CSCs [219] and breast cancer [220]. CSCs derived by breast cancer showed to
be hypo-responsive to γδ T-cell targeting. Breast CSCs are characterized by increased
levels of PD-L1, anti-apoptotic MCL-1 and MICA shedding compared with non-stem
counterpart. In vitro either PD-1 blockade or treatment with MCL-1 degrader or proteolytic
cleavage inhibitor (ADAMi, GW280264X) were able to restore breast CSCs sensitivity
to γδ T-cell cytotoxicity [220]. In breast cancer, γδ T cells could kill CSCs, expressing
relatively low levels of MHC-I and CD54, following pre-treatment with γδ T-cell agonist
zoledronate. Zoledronate exposure increased γδ T cells proliferation rate, TNFα and
IFNγ secretion, granzymes production, expression of CD69 molecule and tissue-homing
chemokine receptors CCR5 and CXCR3, while decreased lymphoid-homing chemokine
receptors CCR7 and CXCR5 [216,218]. Zoledronate-activated γδ T-cells enhanced the
killing activity of CD8+ T cells through the IFN-γ-mediated upregulation of MHC-I and
ICAM-1 molecules [217]. Combination therapy with γδ T cells and zoledronate is feasible
in patients with different advanced solid tumors [221].

However, clinical trials stimulating γδ T cells or even transferring γδ T cells with or
without activating stimuli into cancer patients show very low efficiency and very limited
success [222–224]. This might be due to the lack of knowledge regarding the specificity and
diversity of these cells. In breast cancer, synergism between CD8+ T cells and γδ T cells
has been described in the eradication of tumor cells including CSCs: γδ T cells induced
upregulation of MHC class I and CD54/ICAM-1 on CSCs, enhancing their susceptibility to
CD8+ T cells [225]. γδ T cells are expected to be associated with the same level of safety
reported for CAR-NK cells [157] and may represent an intriguing T cell subset to exploit
CAR redirection as a possible strategy to target CSCs.

An overview of the main cellular immunotherapy clinical trials directed against
CSC-relevant targets is reported in Table 1.
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Table 1. Adoptive immunotherapy trials involving CSC-relevant targets.

Biological Agent Strategy Combination Disease Target NCT Identifier Status Phase

NK-cell based therapy HER2-CAR.NK-92
(CAR2BRAIN) / Recurrent Glioblastoma NCT03383978 Recruiting 1

NKT-cell based therapy GD2-CAR.NKT
(GINAKIT)

Cyclophosphamide
Fludarabine Neuroblastoma NCT03294954 Recruiting 1

T-cell based therapy

IL13Rα2-CAR.T / Refractory Malignant
Glioma NCT02208362 Recruiting 1

CD133-CAR.T /

Liver Cancer
Pancreatic Cancer
Colorectal Cancer

Brain Tumors
Ovarian Cancer
Breast Cancer

NCT02541370 Completed 1–2

EGFRvIII-CAR.T
Aldesleukin

Cyclophosphamide
Fludarabine

Malignant Glioma
Glioblastoma
Gliosarcoma

NCT01454596 Completed 1–2

EGFRvIII-CAR.T / Recurrent Glioma NCT02209376 Terminated 1

EGFR-CAR.T plus
CD133-CAR.T / Cholangiocarcinoma / Case Report /

MUC1-CAR.T PD-1 KO / Advanced Esophageal
Cancer NCT03706326 Recruiting 1–2

EGFR/IL-12-CAR.T / Metastatic Colorectal
Cancer NCT03542799 Not Yet Recruiting 1

MESO-CAR.T / Refractory Relapsed
Ovarian Cancer NCT03916679 Recruiting 1–2

MESO-19-CAR.T / Metastatic Pancreatic
Cancer NCT02465983 Completed 1

EpCAM-CAR.T / Recurrent Breast Cancer NCT02915445 Recruiting 1

LeY-CAR.T / Advanced Cancer NCT03851146 Recruiting 1

MOV19.BBz-CAR.T / Recurrent High-grade
Serous Ovarian Cancer NCT03585764 Recruiting 1

PSCA-CAR.T
Cyclophosphamide

Fludarabine
Fludarabine Phosfate

Castration-Resistant
Prostate Carcinoma
Metastatic Prostate

Carcinoma
Stage IV Prostate Cancer

NCT03873805 Recruiting 1
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4. Conclusions and Challenging Perspective

Biological and immunological characterization of CSCs as long as definition of their
interaction with immune cells in the TME are crucial to set up more efficacious strategies
and innovative anticancer therapies. New emerging methodologies, as single cell molecular
analysis, may provide new insights in understanding the relationship among immune
characters, stromal, cancer cells and CSCs in the TME and elucidate their heterogeneous
contribution in tumor progression [226,227].

Important challenges need to be faced to develop new and more effective immunother-
apy strategies capable to involve CSCs. The first is represented by the heterogeneity in CSC
populations. Distinct CSC subpopulations expressing different phenotypic markers have
been reported inside the same cancer type [3]. This means that a specific immunological
treatment could eliminate only a subset of CSC. Furthermore, CSCs may escape from
antigen-dependent immunotherapies by lacking or decreasing the target density on their
surfaces. In addition, the majority of the reported CSC markers and TAAs are not CSC-
exclusive, and therefore identification of CSC-specific antigens is critical for the success of
antigen-dependent immunotherapies, avoiding potential toxicities and achieving treatment
specificity. For instance, in CAR based immunotherapies, one of the major difficulty is the
possible development of on-target/off-tumor toxicity caused by CAR cell killing activity
against normal cells [106].

The second important challenge is tumor cell plasticity. CSCs constantly evolve as well
as tumor evolves and progresses, further CSCs evolve upon treatment. Tumor plasticity
represents a huge hurdle in the development of durable targeted cancer therapies, as
eradication of existing CSC populations might be followed by their regeneration, under
treatment pressure, from non-CSC counterpart within the tumor [3]. Promising results
may derive from MHC-unrestricted approaches (e.g., NK and CIK cells), as they kill
without HLA restrictions and might recognize ligands whose expression is induced by
heterogeneous stimuli as stress, chemotherapies and other agents, overcoming issues
arising from tumor plasticity and heterogeneity.

Another challenge is the CSC low immunogenicity and negative immunomodulating
effects. CSCs are mainly resistant to conventional cancer therapies, as they can escape
from antitumor immunity through lower expression of antigens and HLA recognized by
immune cells.

Lower immunogenicity of CSCs may be enhanced by inhibiting negative immunoreg-
ulatory pathways and by upregulating HLA I and APM components through combination
therapies with IFNs, chemotherapy, radiotherapy, and/or epigenetic treatments [38]. A new
intriguing possibility is represented by epigenetic therapies combined with immunother-
apy, as epigenetic drugs modulate the expression of immune-related genes either on tumor
cells and on tumor-associated immune cells [228].

All the reported CSC features may have contributed to the disappointing outcomes
of current adoptive immunotherapies in solid tumors. Strategies that combine conven-
tional anti-tumor therapies and CSC-specific immunotherapies would be desirable to
eradicate cancer.

In the future, CAR effector cells specific to CSCs combined with chemotherapy, ra-
diotherapy or immune checkpoint inhibitors will hopefully be more effective, helping to
achieve better outcomes as compared to monotherapies.

Immunotherapy strategies based on NK and CIK cells have the advantage over other
types of autologous T cell therapies, including CAR T cells, of an intrinsic tumor-killing
ability by recognizing HLA-independent inducible stress ligands [229]. These properties
extend their therapeutic value to numerous types of solid tumors. Applying CARs or
bispecific antibodies to NK and CIK cells, we could hopefully add specificity to their tumor
killing capabilities [155,198,199,230,231].

In near future, rigorous evaluation of the different cell therapy strategies alone or
in combination with other treatments (e.g., chemotherapy and/or radiotherapy) is ad-
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visable to provide insights into the optimization and development of novel anti-cancer
immunotherapy protocols capable of involving CSCs.
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