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Abstract

Background

The mechanisms explaining the co-existence of asthma, eczema and rhinitis (allergic multi-

morbidity) are largely unknown. We investigated the mechanisms underlying multimorbidity

between three main allergic diseases at a molecular level by identifying the proteins and cel-

lular processes that are common to them.

Methods

An in silico study based on computational analysis of the topology of the protein interaction

network was performed in order to characterize the molecular mechanisms of multimorbidity

of asthma, eczema and rhinitis. As a first step, proteins associated to either disease were

identified using data mining approaches, and their overlap was calculated. Secondly, a
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functional interaction network was built, allowing to identify cellular pathways involved in

allergic multimorbidity. Finally, a network-based algorithm generated a ranked list of newly

predicted multimorbidity-associated proteins.

Results

Asthma, eczema and rhinitis shared a larger number of associated proteins than expected

by chance, and their associated proteins exhibited a significant degree of interconnected-

ness in the interaction network. There were 15 pathways involved in the multimorbidity of

asthma, eczema and rhinitis, including IL4 signaling and GATA3-related pathways. A num-

ber of proteins potentially associated to these multimorbidity processes were also obtained.

Conclusions

These results strongly support the existence of an allergic multimorbidity cluster between

asthma, eczema and rhinitis, and suggest that type 2 signaling pathways represent a rele-

vant multimorbidity mechanism of allergic diseases. Furthermore, we identified new candi-

dates contributing to multimorbidity that may assist in identifying new targets for multimorbid

allergic diseases.

Introduction

During the last years, an increasing attention has been given to multimorbidity as the co-

occurrence of two or more medical conditions within a person more often than would be

expected by chance [1]. Asthma, eczema and rhinitis (so-called allergic diseases) are complex

diseases which tend to co-occur in the same subjects. Children, in particular, frequently pres-

ent concomitant or consecutive diseases [2,3], something that we refer to as allergic multimor-

bidity. The MeDALL (Mechanisms of the Development of Allergy) study [4], including both

canonical epidemiological methods [5] and unsupervised cluster analysis [6], has shown that

coexistence of asthma, eczema and rhinitis in the same child is more common than expected

by chance alone, supporting the existence of a multimorbidity cluster. Although IgE sensitiza-

tion is independently associated with excess multimorbidity of asthma, eczema and rhinitis, its

presence accounted only for 38% of multimorbidity [5], suggesting that both IgE and non-IgE

mechanisms are involved in the multimorbidity of these diseases [5,6].

Currently, the knowledge about the common mechanisms of allergic multimorbidity relies

on few candidate mechanisms. Multiple genes have been identified through linkage and

genome wide association studies (GWAS) that contribute to IgE sensitization as well as to

asthma, eczema, rhinitis as individual entities. For example, of the ten genome-wide significant

loci identified in a large meta-analysis of GWAS on allergic sensitization [7], five were signifi-

cantly associated with asthma in the GABRIEL consortium asthma meta-analysis [8], but only

two were associated with eczema [9]. One of these loci, the C11orf30-LRRC32 region may rep-

resent a common locus for allergic diseases through biological pathways involved in the regu-

lation of IgE, polysensitization, eosinophilic inflammation and co-morbid allergic diseases

[10]. Another common locus, STAT6, encodes a transcription factor expressed in B-cells,

where it binds to DNA regions stimulating IgE production after B cell activation. In addition

to IgE sensitization, many other mechanisms are likely to play a role in the allergic multimor-

bidity, including prevalent mutations (e.g. filaggrin) and rare genetic variants, structural
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variants associated to allergic diseases, and epigenetic mechanisms including DNA methyla-

tion and miRNA [11].

Despite the evidence of common mechanistic links between asthma, eczema and rhinitis,

how these different mechanisms jointly contribute to the allergic multimorbidity is still unclear

[10]. MeDALL has also made the hypothesis that allergic multimorbidity and polysensitization

are associated with type 2 pathways [11, 12]. Diseases are seldom a consequence of a malfunc-

tion or expression change of one single protein, but rather the perturbation of intricate cellular

networks, whose diversity and inter-dependence can also affect the activity of genes and pro-

teins functionally linked to other disease-causing genes [13]. Thus, network-based analysis of

biological networks, such as the metabolic network and the protein-protein interaction net-

work, can help to identify the mechanisms of multimorbidities [14–16].

Following our findings in MeDALL showing that asthma, eczema and rhinitis in children

constitute an allergic multimorbidity cluster suggesting common pathways [5, 6], we under-

took an in silico study consisting in a computational network-based analysis to identify com-

mon proteins among these diseases and their corresponding cellular processes.

Materials and methods

Proteins associated to the multimorbidity of asthma, eczema and rhinitis

Data sources. We built a set of disease-associated genes from the following databases:

Online Mendelian Inheritance in Man (OMIM) [17], ENSEMBL 77 Short Variations [18]

databases (via BioMart [19]) and the Comparative Toxicogenomics Database (CTD) [20].

OMIM and CTD provide highly reliable gene-disease associations characterized through vari-

ous experimental procedures and a process of expert curation of the literature. Since CTD con-

tains a hierarchical collection of diseases, we considered genes associated to any of our diseases

of interest and their descendants. Furthermore, only genes labeled as marker (i.e. experimen-

tally associated with a disease) in the CTD database were used. Ensembl Variation contains

curated information on disease-associated genetic variations from linkage data, genome-wide

association studies and other genomic sources. Because the use of GWAS-derived data as a

means for characterization of risk factors is debated [21–23], we wished to evaluate the influ-

ence that GWAS-derived data might have on our results. Thus, we repeated our analysis with a

set of disease-associated gene set that excludes data derived solely from GWAS studies (S1

Text). Because the aim of our study was to explore the mechanisms of the diseases in the

framework of the cellular network of protein interactions, the proteins encoded by the disease-

associated genes were obtained in UniProt nomenclature [24]. Thus, only gene products

known to exist at protein level (as defined by the UniProt database) were considered. Details

on the databases and on the characterization of the gene-disease associations can be found in

S1 Table and S2 Text.

Fraction of common proteins. The fraction of proteins associated to a pair of diseases

was calculated as a classical Jaccard index [25]:

fdis1dis2 ¼
jNdis1 \ Ndis2j

jNdis1 [ Ndis2j

where |Ndis1 \Ndis2| is the number of proteins common to disease 1 and disease 2, and is the

number |Ndis1 U Ndis2| of distinct proteins in disease 1 and disease 2. Similarly, the Jaccard

index for a triad of diseases was calculated as:

fdis1dis2 ¼
jNdis1 \ Ndis2 \ Ndis3j

jNdis1 [ Ndis2 [ Ndis3j
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where |Ndis1 \Ndis2 \ Ndis3| is the number of proteins common to disease 1, disease 2 and dis-

ease 3, and |Ndis1 U Ndis2 U Ndis3| is the number of distinct proteins in disease 1, disease 2 and

disease 3.

Validation models. We devised two models to test the significance for the observed num-

ber of proteins common to any combination of asthma, eczema and rhinitis. In the first one,

protein-disease associations were randomized from all proteins in the proteome (14,754) to

generate a null distribution [26, 27]. This model tested whether the fraction of common pro-

teins was higher than random expectation, and will be simply referred to as random model. We

generated 103 instances of this model, and the statistical significance was assessed by means of

a z-test. The second model tested if the observed fraction of common proteins was significantly

higher than expected for any pair or trio of randomly chosen diseases belonging to the Immune
System Diseases category of the CTD database. We generated 103 pairs and trios of these dis-

eases avoiding the grouping of diseases that are subtypes (or descendants, in CTD terminology)

of one another. The list of the selected immune system diseases and their associated proteins

can be found in S2 Table. The list of all random pairs and trios of immune system diseases is

available as S1 File. Because of the skewness in the distribution of the fraction of common pro-

teins in the random models, the statistical significance was assessed by means of a comparison

to the empirical distribution. All calculations in this study were performed with the R statistical

software [28].

Network connectivity between asthma, eczema and rhinitis

Functional Interaction Network. In order to identify interactions between proteins asso-

ciated to asthma, eczema and rhinitis, we built the functional interaction network (FIN). The

FIN was obtained by combining data from: (1) the Reactome Functional Interaction Network

(v. 2013), which contains pairwise protein interactions of different nature such as protein-pro-

tein interactions, gene expression interaction, metabolic interactions and signal transduction

[29] (interactions annotated as predicted were discarded, as were those with score� 0.5, as

suggested by the authors); (2) the HIPPIE network, which integrates multiple experimental

protein-protein interaction datasets [30] (only HIPPIE interactions scoring > 0.73 were con-

sidered, as they are accounted as high confidence by the authors); and (3) the innateDB data-

base, which maintains a curated collection of protein-protein interaction data centered on

innate immunity proteins [31]. We selected only those interactions from innatedDB with

hpr < 20 and lpr< 20 [32, 33]. The FIN was graphically represented with the Cytoscape soft-

ware [34].

Connectivity assessment. In order to assess if proteins common to any combination for

asthma, eczema and rhinitis showed a larger connectivity in the FIN than expected by chance,

we used the topological overlap, a generalized metric designed to measure the connectivity

between two nodes in terms of the commonality of the nodes that they connect to [35, 36]. For

any pair of proteins in the FIN, the topological overlap ranges from 0 (meaning absence of

connectivity) to 1 (meaning maximal possible connectivity). The topological overlap (TO)

between proteins a and b is defined as:

TOa;b ¼
jNa \ Nbj

minðjNaj; jNbjÞ

where |Na \Nb| is the number of neighbors common to a and b (plus 1 if they are directly con-

nected), and min(|Na|, |Nb|) is the smaller of the |Na| and |Nb| degrees. TOa,b = 0 if there is no

connection between the a and b and if they do not share any neighbors. TOa,b = 1 if one set of

neighbors is a subset of the other (although a and b may not be directly connected). We
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calculated the mean TO for proteins: a) common to the diseases under study, and b) unique to

the diseases under study. An example of the calculation of the topological overlap can be

found in S1 and S2 Figs.

Validation models. To obtain the random expectation for the topological overlap, we

generated a null distribution based on 103 models where the disease-associated proteins were

randomly exchanged by other proteins in the FIN, while keeping constant the number of pro-

teins shared by the diseases and making sure that the exchanged proteins belonged in the same

connectivity bin, so as to approximately keep the connectivity. The connectivity bin for a node

of degree in the network d was calculated as round(ln(d)+1) [37]. This model tested whether

the observed connectivity was higher than random expectation. The second model tested if the

observed number of common proteins was significantly higher than expected for any pair or

trio of randomly chosen immune system diseases. We selected immune system diseases as

described in the previous section, adding the condition that at least one of their associated pro-

teins should be present in the FIN. We generated 103 instances of each model. The statistical

significance was tested as described in the previous section.

Cellular pathways shared between diseases

Information on the involvement of the proteins in cellular pathways was obtained from the

BioCarta database [38] and mapped onto the FIN. The number of cellular pathways with more

than 2 edges in the FIN was 273. We measured the fraction of edges rather than the fraction of

nodes (i.e. proteins) because we considered that edges better represented the influence of the

network connectivity. We calculated how similarly two diseases dis1 and dis2 perturbed a cel-

lular pathway p by means of a Jaccard index, which we called Functional Similarity (FSim):

FSimp
dis1dis2 ¼

jepdis1 \ epdis2j
jepdis1 [ epdis2j

where epdis1 is the number of edges associated to the pathway p and disease 1, and epdis2 is the

number of edges associated to the pathway p and disease 2. For three diseases, the Jaccard

Index was defined as:

FSimp
dis1dis2dis3 ¼

jepdis1 \ epdis2 \ epdis3j
jepdis1 [ epdis2 [ epdis3j

Where epdis3 is the number of edges associated to the pathway p and disease 3. An edge was

considered associated to a disease if at least one of its nodes was associated to it. In order to

avoid some pathways spanning throughout most of the FIN due to the presence of highly con-

nected nodes, we considered an edge as associated to a cellular pathway only if both nodes

were associated to it. The proteins associated to the cellular pathways used in this study,

together with their interconnections in the FIN, are provided in S3 Table. For each pathway,

this process gave us a distribution of observed Fsim values, which was tested against random

expectation (using the model described in the previous section) and against the distribution

obtained for random pairs/trios of randomly selected immune system diseases. Benjamini-

Hochberg correction was used to account for multiple testing [39].

Predicting multimorbidity-associated proteins

In the previous steps, we described the mechanisms of multimorbidity of asthma, eczema and

rhinitis based on known protein-disease associations. In this section, we wished to use the

information contained in the FIN to predict novel proteins potentially involved in the multi-

morbidity process. To do so, we employed the NetZcore algorithm of the GUILD package

Multimorbidity between asthma, eczema and rhinitis
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[40]. This algorithm requires an initial group of nodes, called seeds, to be weighted with a

score, which will be iteratively assigned to those nodes in the network depending on their con-

nectivity. We generated a scored list of potential disease-associated proteins for each disease

independently, using a seed score = 1 for known disease-associated proteins, and 0 otherwise.

In order to compute z-scores, 103 random networks were generated by randomly exchanging

edges between pairs of nodes [41].

The resulting lists of candidate proteins were compared to proteins suggested to be related

to multimorbidity in the literature. We used the text-mining tool Génie to extract gene names

from PubMed abstracts related to multimorbidity between the diseases included in this study

[42]. Génie relies on NCBIs curated associations between MedLine records and unambiguous

gene identifiers, and employs a Bayesian classifier to associate them to the user’s query terms,

outperforming similar text-mining tools (S2 Text for details). The complete set of keywords

that we used to retrieve multimorbidity-related proteins (and the Génie parameters for the

queries) can be found in S4 Table. The complete list of multimorbidity-associated proteins

returned by Génie can be found in S5 Table. Because PubMed abstracts may contain predicted

protein-disease associations, we excluded any abstract containing the words predicted or pre-
diction. We also checked that we were not excluding abstracts labelling genes as predictors or

mentioning genes with predictive value, which could have resulted in false negatives (S2 Text,

S6 Table). A Fisher’s Exact Test was used to test the statistical association between our predic-

tions and multimorbidity-related proteins obtained by Génie. Since scientific articles about

comorbid diseases may not actually employ the term “comorbidity” in the abstract, we carried

out a supplementary analysis were the words “comorbidity” and “comorbid” were not present

in the PubMed search (see S7 Table for the results).

Results

Proteins associated to the multimorbidity of asthma, eczema and rhinitis

We observed 196 proteins associated to asthma, 49 to eczema, and 40 to rhinitis. S8 Table con-

tains the list of all disease-associated proteins. S9 Table contains all disease-associated proteins

for associations excluding GWAS-derived data. The number of proteins unique to one disease

was 150 for asthma, 44 for eczema and 38 for rhinitis. The list of proteins common to any com-

bination of diseases can be found in Table 1. The three pairs of diseases and the triad shared

more proteins than could be expected by random chance (z-test; P< 0.01 in all cases; Fig 1; S3

Fig for absolute counts; S1 Text and S4 Fig for results excluding GWAS-derived data). Five

proteins (IL4, IL13, IL1RL1, IL18R1 and TSLP) were common to all three diseases (z-test; P<
0.01 in all cases). Furthermore, they also shared a significantly larger fraction of proteins than

observed for pairs and triads of randomly chosen immune system diseases (S5 Fig; empirical

distribution test; P< 0.01 in all cases).

Network connectivity between asthma, eczema and rhinitis

Functional Interaction Network (FIN) contained 9,847 proteins (nodes) involved in 154,164

functional interactions (edges), including 134 immune-related proteins. As not all the proteins

associated to the three diseases had highly reliable experimentally-characterized interactions,

the number of disease-associated proteins in the FIN was 163 for asthma, 43 for eczema and

32 for rhinitis. Fig 2 shows the portion of the FIN comprising proteins associated to the three

diseases and their first-order neighbors (i.e. nodes directly connected to them). Fig 3A, 3B and

3C show the subnetworks for proteins associated to each disease. These figures also provide a

visual representation of the pattern of interaction between disease-associate proteins in the

FIN, and about what parts of the network are shared between diseases. The complete FIN is

Multimorbidity between asthma, eczema and rhinitis
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Table 1. List of proteins associated to at least two diseases. The complete list of all disease-associated proteins can be found at S8 Table. Number of

proteins associated to asthma and eczema: 16; to asthma and rhinitis: 35; to eczema and rhinitis: 5. To all three diseases: 5.

Protein name (UniProt

accession)

gene name (HGNC) protein name location asthma eczema rhinitis

P05112 IL4 interleukin 4 5q31.1
p p p

P35225 IL13 interleukin 13 5q31.1
p p p

Q01638 IL1RL1 interleukin 1 receptor-like 1 2q12.1
p p p

Q13478 IL18R1 interleukin 18 receptor 1 2q12.1
p p p

Q969D9 TSLP thymic stromal lymphopoietin 5q22.1
p p p

O95760 IL33 interleukin 33 9p24.1
p p

P01584 IL1B interleukin 1 beta 2q14.1
p p

P05113 IL5 interleukin 5 5q31.1
p p

P13501 CCL5 chemokine (C-C motif) ligand 5 17q12
p p

P40425 PBX2 pre-B-cell leukemia homeobox 2 6p21.32
p p

P51671 CCL11 chemokine (C-C motif) ligand 11 17q12
p p

P51677 CCR3 chemokine (C-C motif) receptor 3 3p21.31
p p

Q8IZI9 IFNL3 interferon, lambda 3 19q13.2
p p

Q99466 NOTCH4 notch 4 6p21.32
p p

Q9Y496 KIF3A kinesin family member 3A 5q31.1
p p

Q9Y4H4 GPSM3 G-protein signaling modulator 3 6p21.32
p p

P01303 NPY neuropeptide Y 7p15.3
p p

P01906 HLA-DQA2 major histocompatibility complex, class II, DQ alpha

2

6p21.32
p p

P01909 HLA-DQA1 major histocompatibility complex, class II, DQ alpha

1

6p21.32
p p

P01912 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

P01920 HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 6p21.32
p p

P13760 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

P13761 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

P16109 SELP selectin P 1q24.2
p p

P20039 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

P21731 TBXA2R thromboxane A2 receptor 19p13.3
p p

P24394 IL4R interleukin 4 receptor 16p12.1
p p

P50135 HNMT histamine N-methyltransferase 2q22.1
p p

P84022 SMAD3 SMAD family member 3 15q22.33
p p

Q13093 PLA2G7 phospholipase A2 group VII 6p12.3
p p

Q15399 TLR1 toll-like receptor 1 4p14
p p

Q30134 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

Q30167 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

Q5Y7A7 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

Q8NI36 WDR36 WD repeat domain 36 5q22.1
p p

Q95IE3 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

Q96D42 HAVCR1 hepatitis A virus cellular receptor 1 5q33.3
p p

Q96QA5 GSDMA gasdermin A 17q21.1
p p

Q9GIY3 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

Q9HBE5 IL21R interleukin 21 receptor 16p12.1
p p

Q9HBL0 TNS1 tensin 1 2q35
p p

Q9NQ38 SPINK5 serine peptidase inhibitor, Kazal type 5 5q32
p p

Q9TQE0 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 6p21.32
p p

Q9UIL8 PHF11 PHD finger protein 11 13q14.2
p p

Q9UKT9 IKZF3 IKAROS family zinc finger 3 17q21.1
p p

Q9UKW4 VAV3 vav guanine nucleotide exchange factor 3 1p13.3
p p

https://doi.org/10.1371/journal.pone.0179125.t001
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available in S2 File. The number of edges between proteins unique to each disease was lower

than random chance for all pairs of diseases and for the triad (z-test; P< 0.01; S10 Table). We

observed that almost all edges belonging to rhinitis-associated proteins are shared with asthma

(only 5.4% of edges remain unique to rhinitis), a large overlap that is not seen in any other

combination of diseases.

We captured the network-based relationship between the diseases under study with the

topological overlap (TO). The TO between proteins common to any combination of diseases

was significantly larger than random expectation, and also significantly larger than expected

for random pairs/triads of immune-related diseases (z-test; P< 0.01 in both cases; Fig 4A and

4B). The same was true for proteins common to all three diseases (z-test; P< 0.01; Fig 4A and

4B). However, the TO between proteins unique to any combination of diseases, although sig-

nificantly larger than random expectation (z-test; P< 0.01), was not significantly larger than

that observed for random pairs/trios of immune-related diseases (Fig 4C and 4D). S6 Fig

shows that proteins unique to each disease are more interconnected than random expectation

Fig 1. Fraction of proteins associated to asthma, eczema and rhinitis. Blue dots indicate the observed

fraction of proteins. Orange scatter boxplots indicate random expectation. One asterisk: observed results are

significantly larger than random expectation (z-test; P < 0.05). Two asterisks: observed results are

significantly larger than random expectation (z-test; P < 0.01).

https://doi.org/10.1371/journal.pone.0179125.g001
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for asthma, eczema and rhinitis, multimorbidity notwithstanding. For results excluding

GWAS-derived data, see S1 Text and S7 Fig.

Cellular pathways shared between diseases

The origin of any disease can be traced to the perturbation of one or more cellular pathways.

One common feature amongst comorbid diseases is that they share a common functionality,

Fig 2. Functional Interaction Networks of asthma, eczema and rhinitis. Fraction of the Functional Interaction Networks comprising the proteins

associated to asthma, eczema, rhinitis and all proteins connected to them (i.e. their direct neighbors in the network). A node represents a protein. A link

between two nodes represents a functional connection between them. Isolated nodes represent proteins not directly connected neither to any other

disease-associated protein nor to any of its direct neighbors. (A) Large red nodes represent asthma-associated proteins. Red links represent functional

connections of these proteins. (B) Large yellow nodes represent eczema-associated proteins. Yellow links represent functional connections of these

proteins. (C) Large blue nodes represent rhinitis-associated proteins. Blue links represent functional connections of these proteins.

https://doi.org/10.1371/journal.pone.0179125.g002

Fig 3. Functional Interaction Networks of asthma, eczema and rhinitis. Fraction of the Functional Interaction Networks comprising the proteins

associated to asthma, eczema and rhinitis. A node represents a protein. The size of the node represents the number of disease associations: the large

nodes are associated to all diseases, the medium nodes are associated to two diseases, and the small nodes are associated to one disease. A link

between two nodes represents a functional connection between them. These networks are a subset of the networks shown in Fig 2, where the direct

neighbors have been removed. Isolated nodes at the bottom represent proteins not connected to any protein associated to asthma, eczema and rhinitis.

(A) Red nodes represent asthma-associated proteins. (B) Yellow nodes represent eczema-associated proteins. (C) Blue nodes represent rhinitis-

associated proteins.

https://doi.org/10.1371/journal.pone.0179125.g003
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because the disruption of a multi-protein pathway can give rise to a number of diseases even if

they do not have genes in common [43, 44]. We wished to identify individual pathways that

could be linked to the multimorbidity between asthma, eczema and rhinitis, assuming that cel-

lular pathways significantly perturbed by two or three of the diseases are more likely candidate

Fig 4. Mean topological overlap for proteins associated to asthma, eczema and rhinitis. (A) Blue dots

indicate the observed mean topological overlap (TO) for proteins common to asthma and eczema, asthma

and rhinitis, eczema and rhinitis, and common to all three. Orange scatter boxplots indicate random

expectation. (B) Blue dots indicate the observed mean TO for proteins common to the combinations of

diseases shown in the previous figure. Orange scatter boxplots indicate observed TO values for pairs/trios of

immune system diseases. (C) Blue dots indicate the observed mean TO between proteins unique to asthma

and unique to eczema, unique to asthma and unique to rhinitis, unique to eczema and unique to rhinitis, and

unique to each disease. Orange scatter boxplots indicate random expectation. (D) Blue dots indicate the

observed mean TO for proteins unique to the combinations of diseases shown in the previous figure. Orange

scatter boxplots indicate observed TO values for pairs/trios of immune system diseases. One asterisk:

observed results are significantly larger than random expectation (P < 0.05). Two asterisks: observed results

are significantly larger than random expectation (P < 0.01).

https://doi.org/10.1371/journal.pone.0179125.g004
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mechanisms for multimorbidity. Fifteen cellular pathways revealed a significant functional

similarity for distinct combinations of the three diseases (Table 2). The mechanisms of asthma

and eczema were found to be identical for three pathways: Regulation of hematopoiesis by cyto-
kines, GATA3 participate in activating the Th2 cytokine genes expression, and CCR3 signaling in
eosinophils. The mechanisms of asthma and rhinitis were identical for the IL4 signaling path-
way and the 4-1BB-dependent immune response pathways. Eczema and rhinitis did not show a

complete functional similarity for any pathway, being GATA3 participate in activating the
Th2 cytokine genes expression the pathway that both diseases share with the largest overlap

(Fsim = 0.67). Other pathways were shared by pairs of diseases at different (but significant)

degrees, of which two were exclusive of asthma and eczema: The role of eosinophils in the che-
mokine network of allergy, and Erythrocyte differentiation pathway. As for the triad of diseases,

no pathway showed a perfected overlap (Fsim = 1). This indicates that there is no pathway (or

part thereof) identically affected in all three diseases. However, two pathways show a signifi-

cant three-way overlap: IL4 signaling pathway and GATA3 participate in activating the Th2
cytokine genes expression. S11 Table contains the functional similarity scores obtained exclud-

ing GWAS-derived data, which are discussed in S1 Text. Furthermore, all these observations

were significantly larger than expected for pairs and trios of other immune-related diseases

(empirical distribution test; P< 0.01).

Predicting multimorbidity-associated proteins

The 30 top-scoring protein candidates that are common to more than one disease are shown

in Table 3. The complete list of candidates is shown in S12 Table (and in S13 Table for results

excluding GWAS-derived data; see S1 Text for discussion). Although no gold-standard set for

multimobidity-related proteins exists for the diseases under study, we observed a clear statisti-

cal association between our predictions and those extracted from biomedical literature by the

computational tool Génie, with a significant p-value in all cases (Fisher’s Exact test; P< 0.01;

Table 4).

Discussion

In this paper, we presented a strategy to measure multimorbidity between asthma, eczema and

rhinitis at cellular network level. Asthma, eczema and rhinitis share a larger number of associ-

ated proteins than expected by chance, and exhibit a significant degree of interconnectedness

in the functional interaction network. Computational analysis of the network identified 13 cel-

lular pathways as significantly overlapping between pairs of diseases, and thus potentially

involved in allergic multimorbidity and polysensitization mechanisms. Three of these path-

ways were remarkable because they overlapped in all three pairs of diseases as well as in the

three diseases simultaneously: IL2 activation, IL4 signaling pathway and GATA3 participate in
activating the Th2 cytokine genes expression. Furthermore, the network analysis allowed pre-

dicting many additional proteins as new candidates contributing to multimorbidity. This

study strongly supports the a priori MeDALL hypothesis proposing that in children asthma,

eczema and rhinitis co-occur as an allergic multimorbidity cluster [5, 6] and that both IgE and

non-IgE related pathways represent common mechanisms of the multimorbidity of allergic

diseases [11, 12].

Strengths and weaknesses

Our study has some important strengths. This is, to our knowledge, the first time that the mul-

timorbidity between asthma, eczema and rhinitis has been systematically explored with a

computational approach. Although there are other network-based studies of asthma,
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Table 2. Functional similarity between asthma, eczema and rhinitis. Numerical values show how similar is the use of a cellular pathway by pairs of trios

of diseases. Similarity = 1 means that the diseases affect the pathway in exactly the same way. Similarity = 0 is represented by blank cells. Two asterisks: sim-

ilarity is significantly larger than random expectation (z-test; P < 0.01). One asterisk: similarity is significantly larger than random expectation (z-test; P < 0.05).

All significant similarities were also significantly larger than observed for pairs and trios of immune system diseases (empirical distribution test; P < 0.01).

Cellular pathway Overlap score for:

asthma and

eczema

asthma and

rhinitis

eczema and

rhinitis

asthma, eczema and

rhinitis

Regulation of hematopoiesis by cytokines 1.00 **

CCR3 signaling in Eosinophils 1.00 **

The Role of Eosinophils in the Chemokine Network of Allergy 0.57 ** 0.14

IL 4 signaling pathway 0.53 ** 1.00 ** 0.53 ** 0.53 **

GATA3 participate in activating the Th2 cytokine genes

expression

1.00 ** 0.67 * 0.67 ** 0.67 **

Cytokine Network 0.50 * 0.33 0.50 ** 0.30 **

IL12 and Stat4 Dependent Signaling Pathway in Th1

Development

0.28 0.40 0.33 ** 0.23 **

Th1/Th2 Differentiation 0.25 0.48 0.42 ** 0.23 *

Erythrocyte Differentiation Pathway 0.50 *

The 4-1BB-dependent immune response 0.22 1.00 * 0.22 ** 0.22 **

Dendritic cells in regulating TH1 and TH2 Development 0.56 ** 0.25 0.33 ** 0.22 *

Role of Tob in T-cell activation 0.07 0.57 0.13 0.07

Antigen Dependent B Cell Activation 0.06 0.31 0.20 ** 0.06

Cytokines and Inflammatory Response 0.23 0.24 0.25 * 0.10

IL2 Receptor Beta Chain in T cell Activation 0.03 0.27 0.04 0.02

Selective expression of chemokine receptors during T-cell

polarization

0.41 0.58 0.37 ** 0.30 **

IL 5 Signaling Pathway 0.30 0.30 0.20 * 0.10

NFkB activation by Nontypeable Hemophilus influenzae 0.25 0.25

TGF beta signaling pathway 0.58

Adhesion and Diapedesis of Granulocytes 0.11 0.33

Cell Cycle: G1/S Check Point 0.42

Monocyte and its Surface Molecules 0.40

Antigen Processing and Presentation 0.33

Cells and Molecules involved in local acute inflammatory

response

0.29

Bystander B Cell Activation 0.27

Activation of Csk by cAMP-dependent Protein Kinase

Inhibits. . .

0.26

Lck and Fyn tyrosine kinases in initiation of TCR Activation 0.26

The Co-Stimulatory Signal During T-cell Activation 0.26

Signal transduction through IL1R 0.25

B Lymphocyte Cell Surface Molecules 0.23

IL10 Anti-inflammatory Signaling Pathway 0.10

Cystic Fibrosis Transmembrane Conductance Regulator And

Beta 2. . .

0.08

Pertussis toxin-insensitive CCR5 Signaling in Macrophage 0.07

Role of ERBB2 in Signal Transduction and Oncology 0.05

IL 6 signaling pathway 0.05

Ceramide Signaling Pathway 0.04

NO2-dependent IL 12 Pathway in NK cells 0.04

NFAT and Hypertrophy of the heart (Transcription in the

broken heart)

0.04

(Continued )
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underlying mechanisms of allergic multimorbidity were not considered [45, 46]. For our anal-

ysis, we integrated abundant curated evidence from different sources, and we relied on experi-

mentally validated protein-disease associations. Because our aim was to provide a synthesis of

current biological knowledge in a framework that can be readily interpreted by researchers, we

selected a set of well-described cellular pathways. However, we acknowledge that drawback of

our method may be that known tools to find biological plausible pathways may today under-

represent relevant tissues that are less accessible (e.g. lung tissue with resident cells like epithe-

lial cells) that have an important barrier and immunological function. For the construction of

the FIN we used not only protein-protein interaction but also other kinds of protein-protein

functional relationships (e.g. signaling, expression regulation, metabolic relationships) allow-

ing the identification of a wide range of mechanisms. Our network-based analysis revealed

information on protein interconnectivity and cellular pathways that could not have been

uncovered otherwise. Finally, because our approach is not explicitly disease-centered, it can

potentially be applied to any other groups of diseases.

On the other hand, our computational approach is subject to potential limitations, the main

of which is the completeness and noisiness of the FIN [14, 23, 26]. We chose to consider only

the most reliable interactions, which might have resulted in removing potentially true interac-

tions (false negatives). Also, despite selecting only high-confidence interactions, some false

interactions might have been included in this study (false positives). Furthermore, it is worth

mentioning that, for simplicity, our network is undirected and independent of differential

expression patterns or external factors (e.g. allergens). However, some studies have shown that

the current interaction databases do allow the systematic investigation of disease mechanisms

[23]. Although we applied the usual procedure of multiple testing correction in our statistical

analysis to avoid false positives (type I errors), some authors have argued against its use on

the grounds that these corrections inflate the number of false negatives (type II errors) [47].

Finally, it must be taken into account that our gene and protein selection is subject to some

restrictions. First, we selected only curated disease-protein associations from several databases,

so the quality of our dataset depends on their criteria as to establish what disease-protein asso-

ciations are the most reliable. Consequently, we chose three manually-curated databases

(CTD, OMIM and Ensembl Variation) that are widely employed in computational genotype-

phenotype association studies. Part of our associations were GWAS-derived, and there is a

debate on the use of this kind of data as a means for characterization of risk factors, based

mainly on concerns about its statistical processing and the fact that, without additional func-

tional information, it is often difficult in GWAS analysis to implicate a specific gene in a

genotype-phenotype association [48]. However, when integrated with other gene-disease

Table 2. (Continued)

Cellular pathway Overlap score for:

asthma and

eczema

asthma and

rhinitis

eczema and

rhinitis

asthma, eczema and

rhinitis

Signaling of Hepatocyte Growth Factor Receptor 0.03

TNFR1 Signaling Pathway 0.03

HIV-I Nef: negative effector of Fas and TNF 0.03

IL 2 signaling pathway 0.03

TNF/Stress Related Signaling 0.03

Keratinocyte Differentiation 0.03

MAPKinase Signaling Pathway 0.02

https://doi.org/10.1371/journal.pone.0179125.t002

Multimorbidity between asthma, eczema and rhinitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0179125 June 9, 2017 13 / 26

https://doi.org/10.1371/journal.pone.0179125.t002
https://doi.org/10.1371/journal.pone.0179125


association methods, and particularly when applied to pathway and network analysis, it has

been shown to increase statistical power and provide valid results. These results give us addi-

tional confidence on the soundness of our results. Second, we cannot exclude publication bias,

and the fact that the associations between proteins and diseases may be the result of differences

in the interest of researchers and funding sources. Third, as most of the studies captured in

this computational study have been conducted in affluent countries where atopy is more com-

mon, we should be cautious when inferring our findings to populations where atopy plays a

less relevant role in asthma, rhinitis and eczema. Finally, asthma in particular is considered an

umbrella term encompassing multiple endotypes, which were not studied independently.

Table 3. Potential disease-associated proteins predicted for asthma, eczema and rhinitis. NetZcore prediction scores are shown as z-scores. Proteins

are ranked according to their average z-score for all diseases. Empty cell: the protein was not predicted to be associated with the disease with z-score > 2.31

(corresponding to P < 0.01). Exp: the protein is experimentally known to be associated to the disease. This table only shows the 30 top-scoring proteins that

were found to be associated to more than one disease. The complete list is available in S12 Table.

Protein name (UniProt

accession)

gene name

(HGNC)

Protein name z-score

asthma

z-score

eczema

z-score

rhinitis

Q9Y496 KIF3A kinesin family member 3A exp exp 10.26

P24394 IL4R interleukin 4 receptor exp 4.21 exp

Q9HBE5 IL21R interleukin 21 receptor exp 3.95 exp

Q9UIL8 PHF11 PHD finger protein 11 exp 2.85 exp

P16278 GLB1 galactosidase beta 1 5.56 exp 6.03

O95715 CXCL14 chemokine (C-X-C motif) ligand 14 exp 10.85

P20036 HLA-DPA1 major histocompatibility complex, class II, DP

alpha 1

exp 7.93

P04440 HLA-DPB1 major histocompatibility complex, class II, DP

beta 1

exp 7.81

P13500 CCL2 chemokine (C-C motif) ligand 2 exp 7

P01903 HLA-DRA major histocompatibility complex, class II, DR

alpha

exp 6.96

Q29974 HLA-DRB1 major histocompatibility complex, class II, DR

beta 1

exp 6.68

P01911 HLA-DRB1 major histocompatibility complex, class II, DR

beta 1

exp 6.68

P14784 IL2RB interleukin 2 receptor subunit beta exp 2.79 2.35

P29460 IL12B interleukin 12B exp 4.3

P08887 IL6R interleukin 6 receptor exp 4.29

Q8TE73 DNAH5 dynein, axonemal, heavy chain 5 exp 3.57

P35625 TIMP3 TIMP metallopeptidase inhibitor 3 exp 2.46

P17693 HLA-G major histocompatibility complex, class I, G exp 2.37

Q9P0G3 KLK14 kallikrein related peptidase 14 12.9 3.78 18.27

Q9Y337 KLK5 kallikrein related peptidase 5 9.01 3.64 12.1

P14091 CTSE cathepsin E 11.16 13.22

P53634 CTSC cathepsin C 11.16 13.22

Q9UBX1 CTSF cathepsin F 11.16 13.22

Q99538 LGMN legumain 10.55 12.39

O00287 RFXAP regulatory factor X associated protein 10.46 12.36

P10619 CTSA cathepsin A 10.24 12.06

P43235 CTSK cathepsin K 9.86 11.47

P52732 KIF11 kinesin family member 11 9.64 11.55

O15066 KIF3B kinesin family member 3B 9.61 11.51

O14782 KIF3C kinesin family member 3C 9.4 11.28

https://doi.org/10.1371/journal.pone.0179125.t003
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In the foreseeable future, improvements in the quality and coverage of protein interactions

will allow for more accurate network-based studies. Although we selected proteins experimen-

tally associated to the diseases under study, the shared proteins and mechanisms are in silico
observations that will need experimental validation. However, some of the described mecha-

nisms are consistent with the literature as described below.

Proteins associated to the multimorbidity of asthma, eczema and rhinitis

We found that the number of disease-associated proteins shared by asthma, eczema and rhini-

tis could neither be explained by random chance nor by the fact that all diseases are related to

the immune system. IL4, IL13, IL1RL1, IL18R1 and TSLP were the only proteins common to

the three diseases, and thus are important candidates to explain allergic multimorbidity and

polysensitization. IL4, IL13 and TSLP are cytokines that have been proposed to have a role in

multimorbidity in non-atopic [49, 50] and atopic diseases [51]. It is known that both IL4 and

IL13 are involved type 2 responses, in IgE production in asthma, rhinitis [52] and in eczema

[53], as well as in the cellular inflammation of the three diseases [54] as well as in the regulation

of the epithelial barrier function in the skin [55], the airways [56], and type 2 responses [57].

L1RL1 is part of the IL33 receptor complex, which drives TH2 inflammation. It has been asso-

ciated to asthma [58], and also plays an important role in intermittent allergic rhinitis [59].

IL33 has been long associated with asthma but also with allergic rhinitis in murine models

[60]. Furthermore, The associated region on chromosome 2q12 contains the family of IL1-re-

ceptor genes, IL1RL1 (IL1 receptor-like 1), IL18R1 (IL18 receptor 1), and IL18RAP (IL18 recep-

tor accessory protein). Members of this family are abundantly expressed in the skin, and

IL1RL1 is involved in Th2 responses and is important for the pathogenesis of eczema [61, 62].

TSLP is an epithelial IL7-like cytokine activating Th2 responses [63], and is responsible for a

pattern of inflammation suggestive of multimorbidity between asthma and chronic obstructive

pulmonary disease [64], and between different types of dermatitis [65]. IL4, IL13, IL1RL1,

IL18R1 and TSLP are also the only proteins found to be common to eczema and rhinitis.

Proteins associated to asthma and eczema are all related to immunity (IL1ß, IL5, IL33, C-C

motif chemokine 5, eotaxin). IL18 is also involved in the cell biology of the inflammasome

[66]. IL33 is a crucial regulator of mast cell functions [67] and may be of great importance to

understand multimorbidity and polysensitization as it as it modulates the expression of

human β-defensin 2 in human primary keratinocytes, and may influence the susceptibility to

bacterial superinfection in acute atopic dermatitis [68].

Amongst the proteins common to asthma and rhinitis,there is a number of members of the

HLA-DRB and HLD-DQ families, which have major roles in T-cell activation. HLA plays a role

in the development of the IgE response to the allergens, but genetic regulation appears to differ

in mono- and polysensitized patients. Associations between HLA haplotypes or HLA-DQ/DR

Table 4. Statistical association between predicted multimorbidity-associated proteins and literature

predictions. Literature predictions were automatically extracted from PubMed abstracts using the Génie

data mining tool. Statistical association was calculated by means of a Fisher’s Exact Test. Confidence inter-

vals are shown in parentheses.

association

odds ratio P

Literature predictions for asthma and eczema 14.09, 95% CI [6.69, 27.47] 7.22�10−10

Literature predictions for asthma and rhinitis 10.22, 95% CI [3.78, 23.73] 1.61�10−5

Literature predictions for eczema and rhinitis 3.78, 95% CI [1.93, 6.81] 0.00011

Literature predictions for asthma, eczema and rhinitis 6.32, 95% CI [1.90, 16.58] 0.0019

https://doi.org/10.1371/journal.pone.0179125.t004
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molecules and allergen sensitivity were confirmed only in patients either with low total serum

IgE levels or monosensitized [69–71]. The presence of hepatitis A virus cellular receptor 1

(HAVCR1) is intriguing, although it may protect against atopy when hepatitis A virus infection

rates were high [72]. We also found histamine N-methyltransferase (HNMT), a key protein in

histidine metabolism, involved in the airways epithelium in asthma and rhinitis [73]. Finally,

exclusion of disease-protein associations derived solely from GWAS studies did not noticeably

alter our observations (S1 Text).

Network connectivity between asthma, eczema and rhinitis

Previous studies have concluded that biological network-level links between diseases contrib-

ute to the likelihood of individuals developing simultaneous conditions [74]. Visual inspection

of Figs 2 and 3 suggests the existence of a region in the functional network is shared by all

three diseases. We observed that the connectivity between proteins common to the diseases

(measured as the average topological overlap) was significantly larger than random expecta-

tion. Although the type 2 response appears to be an important mechanism of multimorbidity

and polysensitization, we also observed that the connectivity between proteins shared by

asthma, eczema and rhinitis could not be explained solely by the fact that they all are immune-

related diseases. Since network connectivity has been largely used as a measure of modularity

(and, thus, of mutual functional influence) between proteins [75], these observations imply the

existence of a core mechanism specific to the three diseases under study. On the other hand,

proteins unique to each disease did not seem to contribute specifically to multimorbidity

through their interactions with proteins unique to the other diseases (their modularity was not

significantly larger than that of pairs/trios of other immune-related diseases). The analysis of

the modularity between proteins unique to each disease suggested the existence of (at least)

partial dissociated mechanisms unique to each disease, which would be responsible for their

distinct patterns of occurrence and isolated symptomatology. This is supported by the fact that

the number of edges between proteins unique to each disease was lower than random chance

for all pairs of diseases and for the triad. Also, it has to be noted that, in terms of network func-

tionality, rhinitis shares most of its mechanisms with asthma (a commonality that was not

obvious when comparing nodes alone). This relationship has been observed elsewhere [11,

76].

Cellular pathways shared between diseases

The presence of type 2-related pathways amongst the top-scoring pathways affected by the

three diseases supports the influence of the type 2 gene cluster in multimorbidity between

asthma and eczema [77]. The pathway GATA3 participates in activating the Th2 cytokine genes
expression show the highest overlap for the three diseases. Transcription factor GATA3 is

highly expressed in peripheral blood ILC2s cells during inflammatory responses, and is essen-

tial for interleukin-4 expression [78]. Recently, therapeutic targeting GATA3 has proven bene-

ficial in attenuating asthmatic responses [79]. ILC2, a type of innate lymphoid cells producing

cytokines such as IL9, and IL13, plays an important role in eosinophilic asthma [80] in

response to respiratory infections [81], and is over-expressed in eczema lesions and in allergic

rhinitis subjects [82, 83]. The three diseases also show a significantly high similarity in the use

of the pathway IL 4 signaling pathway suggesting the existence a core mechanism around

ILC2s and IL4 that connects the mechanisms of the three diseases. It is also noteworthy the

presence of two eosinophil-related pathways shared solely by asthma and eczema: CCR3 signal-
ing in Eosinophils and The role of eosinophils in the chemokine network of allergy. Furthermore,

the similarity that we observed in the use of cellular pathways by asthma, eczema and rhinitis
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could not be explained by their immune-related nature alone, despite the fact that some

response mechanisms are shared among immune-related diseases [46]. This suggests that

these mechanisms are specific for multimorbidity between the three diseases under study.

Predicting multimorbidity-associated proteins

We also used the network connectivity measures to predict proteins that could be associated

with multimorbidity. Amongst the top-scoring proteins predicted to play a role in a three-way

multimorbidity between asthma, eczema and rhinitis we identified interleukin receptors IL4R,

IL21R and IL2RB. Both IL4R and IL21R are strongly related to the immune response, and are

already known to be associated to asthma and rhinitis. IL2RB is currently associated to asthma

and predicted to be associated also to eczema and rhinitis. All these receptors bind relevant

cytokines regulating lymphocytic activity. Kallikrein-5 and kallikrein-14 (KLK5, KLK14) are

two other proteins predicted to play a role in a three-way multimorbidity. Both proteins belong

to a family of highly specific serine-proteinases whose deregulation is linked to several allergic

diseases [84]. Recently, one kallikrein gene family member (KLKB1) was found to regulate sol-

uble cleaved urokinase plasminogen activator receptor [85]. KLKB1 cleaves UPAR and negates

soluble cleaved UPAR effects on primary human bronchial epithelial cells. Interestingly, scu-
PAR is encoded by UPAR, a gene found by positional cloning in asthma families [85]. Other

proteins predicted to be related to multimorbidity are KIF3A, already known to be associated

to asthma, eczema and the atopic march [86], and predicted to be implicated also in rhinitis.

Interestingly, seven KIF3A SNPs were actually reported to be associated with rhinitis in one

study that was not incorporated to the databases used in this study [87], thus supporting the

reliability of the prediction method. Lastly, PHF11, a transcriptional activator of the Th1 effec-

tors interleukin-2 (IL2) and interferon-γ (IFNG), is predicted to be associated to eczema. The

highest-scoring candidate protein for comorbidity between asthma and eczema were C-X-C

motif chemokine 14 (CXCL14), a known mediator in inflammatory processes, and myeloblas-

tin (PRTN3), a matrix-degrading proteinase also related to asthma [88], and chemokine ligand

CCL2, known to be upregulated by IL31, which in turn is one of the main inducers of skin pru-

ritus in eczema [89]. As candidates for comorbidity between asthma and rhinitis, we identified

in the top-scoring position several members of the class II MHC, owing probably to the num-

ber of proteins of the same family which are already known to be associated to both diseases.

Also, we identified several members of the cathepsin family of proteases, known to be involved

in many inflammatory processes, amongst them airway inflammation.

It has to be noted, though, that the identification of an association between a protein and a

disease depends on the variable criteria used in different databases. It is thus possible that

some of the predicted proteins in our study are reported as actually associated to the diseases

according to some other databases or studies. Furthermore, the association test performed

(Table 4) excluded predicted proteins from PubMed abstracts (see Methods). This minimized

the number of false positives when comparing these literature-based protein sets to our

predictions. However, because we used a keyword-based search, it is possible that some false

positives may have been produced because of the diverse wording employed in abstracts. Also,

excluding the words predicted and prediction (see Methods) might have introduced some false

negatives by removing genes

Applying systems medicine to the understanding of allergic diseases

Asthma, eczema and rhinitis are salient examples of complex multimorbid allergic diseases. In

the recent years, the importance of applying systems medicine approaches to unravel the com-

plexity of chronic diseases has been highlighted [23, 46]. A central notion of this approach is
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that diseases are seldom a consequence of a malfunction or expression change of one single

protein, but rather the perturbation of intricate cellular networks [13]. The MeDALL study

was purposely designed to apply systems medicine approach to understanding the complexity

of allergic diseases. With the present computational analysis of the mechanisms of asthma,

eczema and rhinitis, we provided a valuable example of how systems medicine can contribute

to the understanding of multimorbidity.

Conclusions

• Asthma, eczema and rhinitis share a larger number of proteins than expected by chance, as

well as a significantly higher degree of interconnectedness in the functional interaction net-

work. The fact that these observations cannot be explained solely by their immune-related

nature imply that other interrelated mechanisms are common to the three diseases.

• Type 2 response appears to be an important mechanism of multimorbidity, consistent with

our previous finding that multimorbidity and polysensitization are closely associated. How-

ever, the presence of non-type-2 cellular pathways and the connectivity between proteins

shared by asthma, eczema and rhinitis could not be explained solely by the association of the

three diseases to the immune system. This suggests that multimordity results from a wider

range of interrelated cellular mechanisms.

• Computational analysis of the network identified 15 cellular pathways potentially involved

in allergic multimorbidity mechanisms. Two of these pathways were remarkable because

they overlapped in all three diseases: IL4 signaling pathway and GATA3 participate in activat-
ing the Th2 cytokine genes expression.

• Network analysis suggested additional proteins as new candidates contributing to multimor-

bidity. Those proteins were kallikreins, cathepsins and members of the class II MHC, among

others. These results are of importance as they can lead to the assessment of new targets for

multimorbid allergic diseases.

• The study results strongly agrees with previous MeDALL findings showing that in children

asthma, eczema and rhinitis co-occur as an allergic multimorbidity cluster likely due to com-

mon mechanisms.

Supporting information

S1 Text. Computational analysis of multimorbidity between asthma, eczema and rhinitis

(excluding GWAS-derived association data).

(PDF)

S2 Text. Extended methods.

(PDF)

S1 Fig. Example of the calculation of the topological overlap for proteins associated to two

diseases. (A) Disease A (orange ellipse) is associated to 6 proteins: p1, p2, p3, p4, p5, p6. Disease

B (blue ellipse) is associated to 6 proteins: p4, p5, p6, p7, p8, p9. Three proteins are common to

both diseases (p4, p5, p6; shown in the intersection of both diseases, in blue with orange bor-

der). (B) Mapping of the disease-associated proteins on to a dummy network. As in the

previous figure, common proteins (p4, p5, p6) are shown in blue with orange border. (C) Cal-

culation of the average topological overlap (TO) between the common proteins. (D)
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Calculation of the average topological overlap between the proteins unique to each disease.

(PNG)

S2 Fig. Example of the calculation of the topological overlap for proteins associated to

three diseases. (A) Disease A (orange ellipse) is associated to 7 proteins: p1, p2, p3, p4, p5, p6,

p7. Disease B (blue ellipse) is associated to 7 proteins: p4, p5, p6, p7, p8, p9, p10. Disease C (pur-

ple ellipse) is associated to 5 proteins: p4, p5, p6, p7, p11. Proteins common to all diseases are

p6 and p7 (shown as a blue circles with double purple-orange border). Proteins common solely

to diseases A and B are p4 and p5 (shown as blue circles with orange border). There are no pro-

teins common solely to diseases A and C, neither to diseases B and C. (B) Mapping of the dis-

ease-associated proteins on to a dummy network. (C) Calculation of the average topological

overlap (TO) between the common proteins. (D) Calculation of the average topological over-

lap between the proteins unique to each disease.

(PNG)

S3 Fig. Number of proteins associated to asthma, eczema and rhinitis. Blue dots indicate the

observed fraction of proteins. Orange scatter boxplots indicate random expectation. One aster-

isk: observed results are significantly larger than random expectation (z-test; P< 0.05). Two

asterisks: observed results are significantly larger than random expectation (z-test; P< 0.01).

(PNG)

S4 Fig. Fraction of proteins associated to asthma, eczema and rhinitis (GWAS-derived

data excluded). Blue dots indicate the observed fraction of proteins. (A) Orange scatter box-

plots indicate random expectation. One asterisk: observed results are significantly larger than

random expectation (z-test; P< 0.05). Two asterisks: observed results are significantly larger

than random expectation (z-test; P < 0.01). (B) Orange scatter boxplots indicate fraction of

associated proteins for pairs/trios of immune system diseases. One asterisk: observed results

are significantly larger than random expectation (empirical distribution test; P< 0.05). Two

asterisks: observed results are significantly larger than random expectation (empirical distribu-

tion test; P< 0.01).

(PNG)

S5 Fig. Fraction of proteins associated to asthma, eczema and rhinitis. Blue dots indicate

the observed fraction of proteins. Orange scatter boxplots indicate fraction of associated pro-

teins for pairs/trios of immune system diseases. One asterisk: observed results are significantly

larger than random expectation (empirical distribution test; P< 0.05). Two asterisks: observed

results are significantly larger than random expectation (empirical distribution test; P< 0.01).

(PNG)

S6 Fig. Mean topological overlap between proteins associated to a single disease only. Blue

dots indicate the observed mean topological overlap (TO) between proteins uniquely associ-

ated to either asthma, eczema or rhinitis. Orange scatter boxplots indicate random expectation.

One asterisk: observed results are significantly larger than random expectation (P< 0.05).

Two asterisks: observed results are significantly larger than random expectation (P< 0.01).

(PNG)

S7 Fig. Mean topological overlap for proteins associated to asthma, eczema and rhinitis

(GWAS-derived data excluded). (A) Blue dots indicate the observed mean topological overlap

(TO) for proteins common to combinations of asthma, eczema and rhinitis. Orange scatter

boxplots indicate random expectation. (B) Blue dots indicate the observed mean TO for pro-

teins common to combinations of asthma, eczema and rhinitis. Orange scatter boxplots indi-

cate observed TO values for pairs/trios of immune system diseases. (C) Blue dots indicate
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the observed mean TO for proteins unique to combinations of asthma, eczema and rhinitis.

Orange scatter boxplots indicate random expectation. (D) Blue dots indicate the observed

mean TO for proteins unique to combinations of asthma, eczema and rhinitis. Orange scatter

boxplots indicate observed TO values for pairs/trios of immune system diseases. One asterisk:

observed results are significantly larger than random expectation (P< 0.05). Two asterisks:

observed results are significantly larger than random expectation (P< 0.01).

(PNG)

S1 File. Random pairs and trios of immune system diseases. Tab-delimited text file. Diseases

were extracted from the CTD database (see Methods in the main paper).

(GZ)

S2 File. Functional Interaction Network. This network was generated by combining data

from the HIPPIE, Reactome and InnateDB databases (see Methods in the main paper).

(GZ)

S1 Table. Source of disease-protein associations. OMIM: On-line Mendelian Inheritance in

Man; CTD: Comparative Toxicogenomics Database; EV84: Ensembl Variation 84.

(PDF)

S2 Table. Diseases in the immune system diseases category in CTD database. Disease-associ-

ated proteins (provided as UniProt accessions), are separated by a semicolon. The network col-

umn indicates whether the disease has at least one associated protein present in then FIN (1)

or not (0).

(XLS)

S3 Table. Pathways in BioCarta database. Pathway-associated proteins (provided as UniProt

accessions) and interactions between pathway-associated proteins are separated by a semicolon.

(XLS)

S4 Table. Parameters used in the Génie tool. The Génie tool (http://cbdm-01.zdv.uni-mainz.

de/~jfontain/cms/) was used to extract gene names present in PubMed abstracts related to a

topic of interest, as defined by a PubMed query.

(DOC)

S5 Table. Multimorbidity-associated genes obtained via the Génie data mining tool. Col-

umns are as follows: Query: PubMed query used; Rank: position (rank) of the gene (ordered

by ascending FDR); GeneID: gene name; n: number of PubMed abstracts manually associated

to the gene; n_pos: number of PubMed abstracts that Génie has selected at P< 0.01; FDR:

False Discovery Rate; Top 10 PMIDs: top 10 PMIDs for each gene, together with the associated

p-value. More information at http://cbdm-01.zdv.uni-mainz.de/~jfontain/cms/.

(XLS)

S6 Table. Parameters used in the Génie tool (predicted genes excluded). The Génie tool was

used to extract gene names present in PubMed abstracts related to a topic of interest, as

defined by a PubMed query. Unlike S4 Table, this table does not exclude the terms predicted
nor prediction, and includes the terms predictive or predictor.
(DOC)

S7 Table. Statistical association between predicted multimorbidity-associated proteins

and literature predictions. Literature predictions were automatically extracted from PubMed

abstracts using the Génie data mining tool. The terms used to query PubMed database were

those shown in S4 Table minus the word “comorbidity”. Statistical association was calculated
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by means of a Fisher’s Exact Test. Confidence intervals are shown in parentheses.

(DOC)

S8 Table. Complete list of all proteins associated to asthma, eczema and rhinitis. Gene

names are provided as common (HGNC) gene names and protein names as UniProt accessions.

(XLS)

S9 Table. Complete list of all proteins associated to asthma, eczema and rhinitis (GWAS-

derived data excluded). Gene names are provided as common (HGNC) gene names and pro-

tein names as UniProt accessions.

(XLS)

S10 Table. Fraction of edges associated to asthma, eczema and rhinitis. Mean random

expectation in shown between parenthesis. The fraction of common edges was calculated

using the Jaccard index (see Methods in the main paper). The fraction of common edges is sta-

tistically larger than random expectation in all four cases (p-value < 0.01). The fraction of

unique edges is statistically lower than random expectation in all four cases (p-value < 0.01).

The number of edges associated to asthma: 8560; number of edges associated to eczema: 2584;

number of edges associated to rhinitis: 2898.

(DOC)

S11 Table. Functional similarity between asthma, eczema and rhinitis (GWAS-derived

data excluded). Numerical values show how similar is the use of a cellular pathway by pairs of

trios of diseases. Similarity = 1 means that the diseases affect the pathway in exactly the same

way. Similarity = 0 is represented by blank cells. Dark blue cells: similarity is significantly

larger than random expectation (z-test; P< 0.01). Light blue cells: similarity is significantly

larger than random expectation (z-test; P< 0.05). All significant similarities were also signifi-

cantly larger than observed for pairs and trios of immune system diseases (empirical distribu-

tion test; P< 0.01).

(XLS)

S12 Table. Complete list of predicted disease-associated proteins. Gene names are provided

as common gene names and protein names as UniProt accessions. NetZcore prediction scores

are shown as z-scores. Proteins are ranked according to their average z-score for all diseases.

Empty cell: the protein was not predicted to be associated with the disease with z-score> 2.31

(corresponding to P< 0.01). Exp: the protein is experimentally known to be associated to the

disease. Proteins predicted (or experimentally known) to be associated to more than one dis-

ease are candidates to multimorbidity.

(XLS)

S13 Table. Complete list of predicted disease-associated proteins (GWAS-derived data

excluded). Gene names are provided as common gene names and protein names as UniProt

accessions. NetZcore prediction scores are shown as z-scores. Proteins are ranked according to

their average z-score for all diseases. Empty cell: the protein was not predicted to be associated

with the disease with z-score> 2.31 (corresponding to P< 0.01). Exp: the protein is experi-

mentally known to be associated to the disease. Proteins predicted (or experimentally known)

to be associated to more than one disease are candidates to multimorbidity.

(XLS)
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