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A B S T R A C T   

Submarine mud poses a risk to channel navigation safety. Traditional detection methods lack 
efficiency and accuracy. As a result, this paper proposed an enhanced shallow submarine mud 
detection algorithm, leveraging an improved YOLOv5s model to increase accuracy and effec
tiveness in identifying such hazards in marine channels. Firstly, the sub-bottom profiler was 
employed to assess the submarine channel of Lianyungang Port to acquire the image data of the 
shallow mud sound print. Concurrently, the analysis incorporated the characteristics of changes 
in sound intensity peaks to precisely identify the shallow mud’s location. Furthermore, the 
incorporation of C2F feature module into the backbone module enhances the gradient flow of the 
algorithm, augments the feature extraction information, and improves the algorithm’s detection 
performance. Subsequently, Efficient Multi-Scale Attention (EMA) mechanism is incorporated 
into the neck module, aiming to optimize the algorithm’s channel dimensions, minimize 
computational overhead, and enhance its detection efficiency. Finally, the study introduced 
Normalized Wasserstein Distance (NWD) loss function into bounding box regression loss function. 
This integration effectively addresses the issue of multi-scale defects, emphasizes the trans
formation of target planar position deviation, and improves the accuracy of the algorithm’s 
detection capabilities. The results indicate that the improved YOLOv5s-EF algorithm outperforms 
the original YOLOv5s algorithm and other widely used detection algorithms. It achieved a vali
dation set precision rate of 97.8%, recall rate of 97.6%, F1 value of 97.7%, mean Average Pre
cision (mAP)@0.5 of 98.2%, mAP@0.95 of 69.6%, and Frames Per Second (FPS) of 51.8. 
YOLOv5s-EF algorithm proposed in this study offers a novel technical approach for detecting 
mud in submarine channels, which is importance for ensuring the safe operation and maintenance 
of dredging in such channels.   

1. Introduction 

In recent years, the safety of submarine channels has become a matter of significant concern due to the ongoing development and 
utilization of marine resources. Sedimentary accretions of mud, comprising organic materials, minerals, and various particulates, 
frequently impede navigation within submarine channels [1]. These mud formations result from both natural processes, such as tidal 
movements and wave action, and anthropogenic influences, including maritime traffic and coastal activities. Such interactions 
facilitate the gradual deposition of mud on coastlines and seabeds, culminating in significant siltation phenomena [2,3]. The 
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accumulation of mud can result in a reduction of water depth within the submarine channel, thereby constraining the safe navigation 
of offshore ports and channels [4]. It may also lead to the inability of large ships to enter or depart from the port, thus causing traffic 
congestion, delays, and higher costs [5]. Furthermore, mud can also pose challenges to ship navigation, thereby elevating the potential 
for collisions and grounding [6]. Consequently, the investigation of algorithms for detecting mud in submarine channels holds sig
nificant practical importance and application value. This research not only has the potential to enhance the safety and dependability of 
harbor channels, but also to offer crucial insights and a foundation for decision-making in the realms of marine engineering, ship 
navigation, and channel planning. Addressing these navigational challenges effectively can play a pivotal role in bolstering coastal 
economies and promoting the sustainable utilization of marine resources. 

You Only Look Once (YOLO) detection algorithm has seen extensive application in underwater target detection [7,8], underwater 
object tracking [9], and various other domains, owing to the rapid advancements in computer vision technology and artificial in
telligence. The emergence of this technology enhances the accuracy and efficiency of underwater target detection and tracking, 
thereby introducing novel avenues for innovation and application across diverse industries. Zhang et al. [10] proposed a method for 
detecting underwater targets using a combination of MobileNetv2, YOLOv4 algorithm, and attentional feature fusion. This approach 
achieved both accuracy and speed in target detection within the marine environment. Kim et al. [11] employed a detection algorithm 
that relies on Darknet-53 and YOLOv3. The algorithm integrated the improved YOLOv3 with sub-bottom profiling to achieve intel
ligent classification detection of submarine sediments. Li et al. [12] utilized an improved YOLO-SC algorithm for submarine cable 
detection, demonstrating its effectiveness in accurately locating the submarine cable. Yang et al. [13] conducted a cascade algorithm 
that is based on UGC-YOLO network architecture. This approach utilized YOLOv3 convolutional neural network (CNN) as the foun
dational structure, leading to enhanced detection accuracy of underwater targets. Zhang et al. [14] proposed an improved algorithm 
for detecting underwater targets in YOLOv5. The algorithm incorporated a global attention mechanism and a multi-branch re-par
ameterization module, resulting in high accuracy in detecting underwater targets. These studies share certain similarities. Each 
employed YOLO algorithm suite for target detection, developed suitable datasets for algorithm training, and utilized CNNs for image 
feature extraction. Additionally, they enhancde the original algorithms using a variety of optimization methods. These studies illus
trate the potential of employing the improved YOLO algorithm for detecting underwater targets, thereby enhancing the performance 
and accuracy of such detection and creating new opportunities for innovation and development in various underwater target detection 
applications. 

YOLO detection algorithm is based on deep learning techniques and neural network modeling [15], necessitating a specific 
quantity of data for its functionality. However, with regard to the identification of shallow mud in submarine channels, the unique and 
complexity of the seabed environment has resulted in a scarcity of effective detection techniques and a deficiency of pertinent training 
data. Conventional techniques like precision level [16] and total station electronic rangefinder [17] are employed for fixed-point 
positioning measurements, offering high accuracy and convenience. However, these methods are primarily suitable for land slopes 
and are not suitable for submarine channel detection. Optical techniques, such as infrared rangefinders [18] and 3D laser scanners 
[19], have the capability to detect objects from a distance without physical contact. However, these methods are not appropriate for 
detecting submarine channels due to the rapid attenuation of light in seawater, resulting in diminished light energy and reduced 
accuracy. The rapid advancement of acoustic technology has led to the widespread utilization of sub-bottom profilers in the detection 
of submarine sediment. These profilers are employed in various applications including submarine geological classification [20–22], 
research on submarine disasters [23–25], and exploration of submarine pipelines [26,27]. This is due to their high accuracy, 
non-immersibility, real-time data display, portability, ease of operation, strong penetration, and relatively minimal attenuation in 
liquid [28,29]. 

In this study, the sub-bottom profiler is utilized to identify the submarine channel on the seabed and to gather shallow mud sound 
print image data from various locations and depths. The research focuses on the detection algorithm of shallow mud in submarine 
channels using sound print image data and the improved YOLOv5s-EF. The paper’s main contributions are outlined as follows: (1) To 
overcome the limitation of training data on shallow submarine channel mud, the study utilizes a sub-bottom profiler to collect sound 
print image data through field probing. It accurately identifies the specific location of shallow mud by analyzing the peaks of acoustic 
intensity oscillation, thereby establishing the data foundation for the subsequent investigation of the improved algorithm. (2) C2F 
feature extraction module is introduced to enhance the gradient flow of the algorithm by incorporating additional cross-branching 
layer links. This enhancement allows the algorithm to obtain more comprehensive feature information while maintaining a light
weight structure. (3) Efficient Multi-Scale Attention (EMA) is proposed to decrease the computational overhead by preserving channel 
information, restructuring certain channels into batch dimensions, and organizing the channel dimensions into multiple sub-features. 
This approach ensures that spatial semantic features are uniformly distributed within each feature group. (4) Using Normalized 
Wasserstein Distance (NWD) loss function and normalized Wasserstein to measure the distribution similarity can improve the target 
localization accuracy. This approach is effective for measuring small targets, significantly improving the detection performance of the 
algorithm. 

This study seeks to address the issue of identifying shallow mud in submarine channels. Conventional approaches are constrained 
by the submarine setting and the absence of pertinent training data, thereby impeding the effective detection of submarine mud. 
Consequently, a sub-bottom profiler is proposed to acquire acoustic image data with the improved YOLOv5s-EF algorithm for the 
purpose of mud detection. The algorithm offers several advantages and practical applications. Firstly, it performs traditional methods 
that rely on manual interpretation by detecting targets in images, thus improving detection efficiency. Secondly, unlike conventional 
methods prone to misjudgment or omission in complex image recognition, the improved YOLOv5s-EF algorithm, featuring automatic 
extraction and learning functions, has the potential to significantly enhance target identification and detection. Thirdly, the improved 
YOLOv5s-EF algorithm demonstrates broad applicability in practical scenarios. With additional training and algorithm optimization, it 
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can be utilized for tasks such as seabed target detection and seabed engineering anomaly detection. The remainder of the paper is 
structured as follows: Section 2 provides an overview of the field data detection process, YOLOv5s algorithm, and the structural system 
of the improved YOLOv5s-EF algorithm. Section 3 is dedicated to the evaluation and analysis of the performance of the improved 
YOLOv5s-EF algorithm, as well as each of the points of improvement. Section 4 discusses the detection effectiveness of the improved 
YOLOv5s-EF algorithm, along with its limitations and potential future developments. The study’s conclusions are presented in Section 
5. 

2. Materials and methods 

2.1. Detection data 

The study area focuses on the inner section in the outer channel of Lianyungang Port, Jiangsu Province, within the geographical 
coordinates of 34◦44′–34◦45′N latitude and 119◦27′–119◦32′E longitude (Fig. 1). The navigation survey of the area was conducted 
using SES-2000 parametric array sub-bottom profiler (Fig. 2). The detection process involved mounting the transducer on the side of 
the ship and connecting it to the host computer, which was positioned in the secure area of the waterproof cabin. Additionally, the 
attitude sensor was connected to the interface on the host computer panel, while GPS was affixed to the mounting bar. The 
arrangement placed the transducer and GPS at a distance of approximately 1.5 m apart. Simultaneously, the instrument parameters 
were configured according to the specifications (Table 1). Upon activation of the host computer, the signal transmitting unit initiated 
the transmission of acoustic signals to the seafloor through the transducer for the purpose of seabed geological structure detection. The 
acoustic signal will propagate at a specific velocity along the seabed and reflect upon encountering interfaces of various sediments. The 
signal receiving unit is responsible for receiving the reflected acoustic signals and storing them in a computer chip via the control 
system. Subsequently, the post-processing ISE software in the computer was opened and the data in the chip was imported into ISE. 
Finally, the acquired acoustic data are processed by ISE to form point, line and block sound print images with certain textures. A total of 
150 images were obtained in this study. 

The submarine channel environment exhibits specific characteristics and a high level of complexity. The acoustic signals detected 
and reflected at various depths and times exhibit significant variations, displaying different intensity characteristics and generating 
sound print images with diverse textures. Assessing the depth of the channel’s shallow mud solely with the naked eye can be chal
lenging at times. The sound print image captured by the sub-bottom profiler is derived from the sound intensity signal, which is crucial 
for interpreting the boundaries of submarine geological layers. The sound intensity varies at each interface of the submarine geological 
layers, contributing to their differentiation. The shallow layer of the seabed, which serves as the interface between seawater and 
submarine mud, exhibits a significant acoustic wave impedance effect. This phenomenon influences the sound intensity at the 
interface. To determine the location of the shallow mud in the submarine channel, the peak sound intensity of the vertical sequence 
was chosen as the reference point. This decision was informed by the results of previous simulation experiments in the area and field 
exploration studies [30–32]. Additionally, it involved integrating the sound intensity associated with the sound print image obtained 
from ISE, the post-processing software of the sub-bottom profiler. Fig. 3 shows the variation of the peak sound intensity of the shallow 
mud and the corresponding sound print location. As can be seen from the figure, the areas with large variations in peak sound intensity 
correspond to the locations where the shallow mud is located. The results indicate that the peak sound intensity can provide a more 
intuitive and efficient reflection of the coarseness and uniformity of the shallow mud in submarine channels. 

Fig. 1. Survey region.  
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2.2. YOLOv5s 

Fig. 4 illustrates the architecture of YOLOv5s algorithm, which comprises four components: Input, Backbone, Neck, and Head [33, 
34]. The first segment represents Input, with the training image input size set at 640 × 640. The second component, Backbone, pri
marily handles the extraction of features from the input image. The third component, known as Neck, plays a key role in integrating 
multi-scale features from the feature map and transmitting these features to the detection layer. The fourth component is Head, 
primarily accountable for the ultimate regression detection. 

Fig. 2. Field Detection, (a) transducer, (b) monitor.  

Table 1 
SES-2000 instrument technology and setup parameters.  

Item Content Main indicators 

Performance index water depth range 1–400 m 
sediment penetration the deepest 40 m 
attitude compensation rise and sink 
wave beam angle 4◦

resolution 5 cm 
Signal transmitting unit basic frequency 100 kHz 

low frequency 15 kHz 
pulse width 0.07–1 ms 
pulse type CW, Ricker 
bandwidth 2–22 kHz 

Signal receiver unit basic frequency bottom tracking 
low frequency sub-bottom profile data 
adopt frequency 96 kHz 

Hardware construction host unit size 52 cm × 40 cm × 38 cm 
transducer unit size 30 cm × 26 cm × 7 cm 
control system internal computer 

Power supply voltage 100–240 V 
power <500W  

Fig. 3. Shallow mud vertical sequence of sound intensity and sound print.  
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YOLOv5s algorithm primarily utilizes 1 × 1 and 3 × 3 convolution kernels, and its convolutional structure comprises convolutional, 
Batch Normalization (BN), and Sigmoid Linear Unit (SILU) layers. Spatial Pyramid Pooling-Fast (SPPF) module utilizes three 5 × 5 
small-scale pooling kernels to achieve multi-scale fusion. Additionally, YOLOv5s employs upsampling to adjust the scale of the feature 
map from low resolution to high resolution, thereby enhancing the algorithm’s detection efficiency and generalization capability. 
Meanwhile, YOLOv5s utilizes adaptive anchor frame computation, allowing for better adaptation to targets with varying scales and 
aspect ratios through dynamic adjustments to the size and position of the anchor frame for different training samples. In addition, the 

Fig. 4. YOLOv5s algorithm structure.  

Fig. 5. Improved YOLOv5s-EF algorithm structure.  
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YOLOv5 algorithm includes data enhancement techniques such as random rotation, random cropping, random scaling, etc., which are 
added by diversifying the data during the training process to reduce the overfitting problem. 

2.3. Improved YOLOv5s-EF 

Fig. 5 depicts the structure of the improved YOLOv5s-EF algorithm. In this paper, the algorithm’s three components, namely 
Backbone module, Neck module, and bounding box regression loss function, were primarily enhanced and optimized. C2F module was 
initially introduced in the backbone module to substitute a portion of C3 module in the original algorithm. This modification extends 
the algorithm’s capability to acquire higher-resolution information, thereby enhancing the detection accuracy and generalization 
ability of the algorithm. Secondly, Neck module introduces EMA attention mechanism, which enables automatic learning and selective 
focus on important features of various scales within the image. This effectively enhances the accuracy and robustness of the detection 
algorithm. Finally, NWD loss function was incorporated into bounding box regression loss function, resulting in a reduction in the bias 
transformation sensitivity of the weak target position. Consequently, this integration improved the detection performance and effi
ciency of the algorithm. 

2.3.1. Backbone module improvements 
Given that C3 module in YOLOv5s has a tendency to capture larger targets and more global contextual information, it might face 

limitations in effectively capturing subtle features of smaller shallow mud targets within submarine channels. This challenge arises 
from the module’s relatively large receptive field, which may result in the loss of target details and a subsequent decrease in the 
accuracy of target detection. Therefore, this paper introduces the C2F module to the YOLOv5s algorithm [35,36]. The design of C2F 
module is derived from C3 module and integrates Efficient Long-Range Attention Network (ELAN) concept. This module has the 
capability to improve the algorithm for capturing detailed gradient flow information, thus improving the capacity to detect small 
targets. Furthermore, C2F module integrates fine-grained features from lower levels with semantic knowledge from higher levels via 
cross-branch connections, enabling the algorithm to possess feature representation capabilities encompassing high resolution and 
abundant semantic information. The comparison of C3 and C2F modules reveals that C2F module incorporates a greater number of 
skip layer connections in relation to DenseNet (Figs. 4 and 5). It eliminates the convolution operation in the branch and introduces an 
additional Split operation, thereby enhancing the richness of feature information and leading to a further reduction in the number of 
parameters and computations, which can somewhat reduce the overfitting problem. 

2.3.2. Neck module improvements 
The limited coverage of the shallow mud within the input submarine channel, occupying only a small portion, coupled with the 

predominance of background information, leads to the convolution process iterative accumulating background information. This 
accumulation results in the generation of a significant amount of redundant data, which might overshadow certain targets, thereby 
leading to diminished detection accuracy. Consequently, this paper proposes EMA multiscale attention [37,38]. The structure of EMA 
(Fig. 6) comprises three parallel paths designed to extract image feature information. One of the pathways involves a 3 × 3 branch that 
captures local cross-channel interactions by utilizing a 3 × 3 convolution to extend the feature space. The remaining two pathways 
consist of 1 × 1 branches that combine two channel-level attention mappings within each group through a basic multiplication 
operation, to generate different cross-channel interaction features between the two parallel routes. Therefore, EMA structure can be 
utilized to improved pixel-level attention during convolution operations without diminishing the channel dimensions. This is achieved 
by maintaining the batch dimensions, preserving information on each channel, and ensuring uniform distribution of spatial semantic 
features within each feature group. 

Furthermore, EMA structure utilizes a cross-spatial learning strategy with the goal of encoding global information and capturing 
remote dependencies to generate multi-scale feature representations for more comprehensive feature aggregation. This approach 
effectively facilitates the extraction and preservation of crucial feature information. In Fig. 6, the cross-space learning strategy employs 
two outputs: a 3 × 3 branch output and a 1 × 1 branch output. The global spatial information is encoded through a 2D global mean pool 
(Avg Pool), which converts the joint activation mechanism in the channel features into the corresponding dimensional shapes, thereby 
enhancing computational efficiency. Simultaneously, Softmax function is employed to apply a linear transformation to Avg Pool in the 
branch. The output feature maps within each branch are subsequently calculated as a pair of spatial attention weight values. The 

Fig. 6. EMA network structure.  
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calculation for 2D global pooling operation is presented in Eq. (1), where H, W, and C represent the height, width, and dimensions of 
the input feature maps, respectively. 

zc =
1

H × W
∑H

j

∑W

i
xc(i, j) (1)  

2.3.3. Boundary regression loss function improvements 
CIOU loss utilized in YOLOv5s focuses exclusively on the overlap area, center point distance, and aspect ratio of the boundary 

regression. However, it disregards the actual disparity between the width and height, their respective confidences, and the differential 
sensitivity to smaller targets. As a result, this study introduced NWD loss fucntion for bounding box regression [39–41]. NWD loss 
model represents bounding box as 2D Gaussian distributions, with the similarity between these distributions assessed using NWD. The 
benefit of using Wasserstein metric is its ability to gauge distribution similarity effectively, even in scenarios where there is minimal or 
no overlap between the distributions. Furthermore, for the purpose of providing a more detailed representation of the pixel weights 
within bounding box, NWD loss function characterizes bounding box as a 2D Gaussian distribution. In this model, the central pixel of 
bounding box carries the greatest weight, with the significance of the pixel diminishing towards the periphery. Specifically, for the 
horizontal bounding box R=(cx, cy, w, h), (cx, cy), w, and h represent the center coordinates, width, and height, respectively. The 
calculation of the internal ellipse is shown in Eq. (2), where (μx, μy) is the center coordinate of the ellipse while σx and σy are the length 
of the half axis along the x axis and the y axis. In this case, μx = cx, μy = cy, σx = w/2, and σy = h/2. 

(x − μx)
2

σ2
x

+

(
y − μy

)2

σ2
y

=1 (2) 

The probability density determination of the 2D Gaussian distribution is shown in Eq. (3), where x, μ, and Σ denote the coordinates 
(x, y), mean vector, and covariance matrix of Gaussian distribution, respectively. 

f(x|μ,Σ)=
exp
(

− 1
2(x − μ)TΣ− 1(x − μ)

)

2π|Σ|
1
2

(3) 

The second-order Wasserstein distance determination is shown in Eq. (4), where Na and Nb are Gaussian distributions modeled by 
A=(cxa, cya, ωa, ha) and B=(cxb, cyb, ωb, hb), respectively. 

W2
2(Na,Nb)=

⃦
⃦
⃦
⃦
⃦

([

cxa, cya,
ωa

2
,
ha

2

]T

,

[

cxb, cyb,
ωb

2
.
hb

2

]T
)⃦
⃦
⃦
⃦
⃦

2

2

(4) 

NWD determination is expressed in Eq. (5), where C is closely related to the data set. 

NWD (Na,Nb)= exp

⎛

⎝ −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

W2
2(Na,Nb)

√

C

⎞

⎠ (5) 

The loss function expression is given in Eq. (6), where N is the number of detection frames. 

Loss=
1

2N
∑N

i=1
(1 − NWDi) +

1
2N
∑N

i=1
(1 − IoUi) (6)  

3. Experiments 

3.1. Experimental conditions 

The study utilizes an Intel® Core™ i5-8265U CPU @ 1.80 GHz with 8 GB of RAM. The graphics card employed is an Intel® UHD 
Graphics 620, and the operating system utilized is Windows 10 Professional, 64-bit. The entire experiment relies on the pyCharm 
2020.1 x64 development environment and the encoder Python 3.8. During the experiment, the image data of the shallow mud sound 
print of the submarine channel was divided into a training set and a validation set at a ratio of 7:3. The training set consists of 105 
samples, while the validation set comprises 45 samples. The input image scale is 200 × 200, the batch size is 20, the training mo
mentum is 0.94, the initial learning rate is set to 0.01, the weight decay is 0.0005, the number of epochs is 200, and the model is trained 
using Stochastic Gradient Descent (SGD) as the optimization function for model training. 

3.2. Evaluation indicators 

To evaluate the performance of the improved YOLOv5s-EF algorithm, this study primarily employs Precision, Recall, F1 value, and 
mean Average Precision (mAP) as the evaluation metrics [42,43]. Precision is defined as the ratio of the true positive rate to the sum of 
the true positive rate and the false positive rate (Eq. (7)). Meanwhile, recall is defined as the ratio of the true positive rate to the sum of 
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the true positive rate and the false negative rate (Eq. (8)). In this equation, TP represents True Positive, FN represents False Negative, 
and FP represents False Positive. F1 value represents the harmonic mean of precision and recall (Eq. (9)). mAP is calculated by 
averaging average precision values for all categories (Eq. (10)). 

Precision=
TP

TP + FP
(7)  

Recall=
TP

TP + FN
(8)  

F1=2 ×
Precision × Recall
(Precision + Recall)

(9)  

mAP=
1
c
∑c

j=1
APj (10)  

3.3. Experimental results 

3.3.1. Training results 
Fig. 7 depicts Precision-Confidence Curve (PCC) and Recall-Confidence Curve (RCC) during the training of the improved YOLOv5s- 

EF and YOLOv5s algorithms. The horizontal axis represents the confidence level, while the vertical axis represents the precision or 
recall rate. The shape and position of the curve may indicate the performance and stability of the detection algorithm. In Fig. 7(a), PCC 
curve generated by YOLOv5s algorithm exhibits an upward and leftward bend when the confidence level is below 0.18. When the 
confidence level exceeds 0.18, PCC curve derived from the improved YOLOv5s-EF demonstrates an upward and leftward bend. This 
scenario suggests that the original algorithm exhibits relatively high performance when the number of training epochs is limited. As 
the number of training epochs increases gradually, the improved algorithm demonstrates improved performance, resulting in higher 
detection accuracy compared to the original algorithm. In Fig. 7(b), Receiver Operating Characteristic (ROC) curve derived from the 
improved YOLOv5s-EF model demonstrates closer proximity to the upper right corner in comparison to YOLOv5s algorithm. This 
situation suggests that the improved algorithm outperforms the original algorithm and has the capacity to further enhance the al
gorithm’s detection accuracy while upholding a high recall rate. 

Fig. 8 illustrates bounding box regression loss curves for the training set and validation set during the training of the improved 
YOLOv5s-EF and YOLOv5s algorithms. Bounding box regression loss value of the improved YOLOv5s-EF algorithm is consistently 
lower than that of YOLOv5s algorithm throughout the training process. Specifically, the loss value of the training set stabilizes at 
approximately 0.004, while the loss value of the validation set stabilizes at around 0.01. Fig. 9 shows the precision and recall curves for 
both the training and validation sets during the training of the improved YOLOv5s-EF and YOLOv5s algorithms. At approximately 140 
training epochs (Fig. 9(a)), the precision rates of the improved YOLOv5s-EF and YOLOv5s algorithms are comparable. However, in the 
subsequent training epochs, the precision rate of the improved YOLOv5s-EF algorithm gradually surpasses that of YOLOv5s algorithm. 
In Fig. 9(b), YOLOv5s algorithm demonstrates a relatively high recall when the number of training epochs ranges from 1 to 40. 
Similarly, the improved YOLOv5s-EF and YOLOv5s algorithms yield comparable recall values when the number of training epochs falls 
between 50 and 140. Furthermore, in the subsequent training epochs, the recall achieved by the improved YOLOv5s-EF algorithm 
consistently surpasses that of YOLOv5s algorithm. The results suggest that the improved YOLOv5s-EF algorithm exhibits superior 
overall detection performance compared to YOLOv5s algorithm. 

3.3.2. Feature extraction visualization 
To explore the evolutionary process of depth feature extraction methods, the feature maps from the middle layer of both the 

improved YOLOv5s-EF and the original YOLOv5s algorithms were extracted and compared (Fig. 10). The first row presents the in
termediate feature map of the improved YOLOv5s-EF algorithm, while the second row presents the intermediate feature map of the 

Fig. 7. PCC and RCC training results, (a) PCC, (b) RCC.  
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original YOLOv5s algorithm. Fig. 10(b), (c), and 10(g) reveals that the shallow network of the two algorithms extracts features that 
closely resemble the input and encompass a greater amount of pixel information, including color, texture, edges, and other geometric 
features. This is primarily due to the fact that the shallow network places greater emphasis on detailed information, resulting in a 
relatively small general receptive field, rich extracted local information, and a relatively high resolution of the obtained feature map. 
The improved YOLOv5s-EF algorithm demonstrates a greater extraction of shallow feature information, as evidenced in Fig. 10(c) and 
(g). This results in a clearer depiction of the contour of shallow mud. Fig. 10(d)-10(f) and 10(h)-10(j) illustrate that withi an increase in 
the number of layers, the features and outputs extracted by both algorithms exhibit relatively close similarities, indicating a higher 
level of semantic information. This is attributed to the deep network’s enhanced capability to prioritize and extract semantic infor
mation. As the quantity of convolutions rises, the receptive field expands gradually, leading to a continuous increase in the overlapping 
area. Consequently, the extracted global information becomes more abundant, albeit at the cost of a relatively lower resolution in the 
resulting feature image. The semantic information extracted by the improved YOLOv5s-EF algorithm is more pronounced (Fig. 10(d)- 
10(f) and 10(h)-10(j)). This enhancement facilitates more accurate localization of shallow mud, thereby increasing the detection 

Fig. 8. Improved YOLOv5s-EF algorithm and YOLOv5s algorithm training bounding box regression loss curve, (a) training, (b) validation.  

Fig. 9. Improved YOLOv5s-EF algorithm and YOLOv5s algorithm training precision and recall curve, (a) precision, (b) recall.  

Fig. 10. Improved YOLOv5s-EF and YOLOv5s feature extraction visualization.  
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confidence of the improved algorithm compared to the original algorithm. 

3.4. Comparison of experiments 

3.4.1. Ablation experiment 
To assess the effect of each improvement on YOLOv5s-EF algorithm, this study conducted ablation experiments. The experimental 

results (Table 2) illustrates that the improved algorithm 1 incorporates C2F module in Backbone to enhance precision, recall, F1 value, 
and mAP@0.5. This can be attributed to the fact that C2F module’s focus on the diversity of gradient flow, which surpasses that of C3 
module, hence enabling more effective extraction of image features. Furthermore, C2F module adapts the channel count for varying 
algorithm proportions, thereby enhancing the algorithm’s detection performance. The improved algorithm 2 incorporates EMA 
attention mechanism in Head to enhance precision, recall rate, F1 value, and mAP@0.5. This phenomenon can be attributed to the 
establishment of a multi-scale parallel sub-network by EMA module, which allows for the capture of both long and short dependencies. 
This enables each parallel sub-network to facilitate cross-channel interaction without reducing the number of channels, consequently 
enhancing the diversity and quality of feature fusion. As a result, this improves the capability of shallow mud detection and posi
tioning. The improved algorithm 3 incorporates NWD loss function into the boundary regression loss function to enhance precision, 
recall rate, F1 value, mAP@0.5, mAP@0.95, and Frames Per Second (FPS). This can be attributed to the capability of NWD loss to 
represent bounding box as a Gaussian distribution and utilize Wasserstein distance for a more precise assessment of the disparity 
between the anticipated and real bounding boxes. Therefore, this approach can diminish the sensitivity to minor adjustments in the 
target position, subsequently enhancing the computational speed and efficiency of the algorithm. Upon implementing the afore
mentioned three improvements to YOLOv5s algorithm simultaneously, the precision, recall, F1 value, mAP, and FPS of the trained 
YOLOv5s-EF algorithm have undergone significant improvement and optimization. This can be attributed to C2F module’s ability to 
acquire more comprehensive gradient flow information while maintaining a lightweight design. Additionally, EMA module can 
facilitate multi-scale fusion of the acquired gradient flow information, and NWD loss function is effective in reducing the sensitivity of 
weak target position offset transformations. The results indicate that the concurrent utilization of C2F, EMA, and NWD loss modules 
significantly enhances the overall performance of YOLOv5s, making them integral to the effective detection of shallow mud in sub
marine channels. 

3.4.2. Algorithm comparison 
The effectiveness of the improved YOLO5s-EF algorithm in the shallow mud of the submarine channel was verified by comparing it 

with existing Faster R–CNN [44], Mask R–CNN [45], YOLOv3 [46], YOLOv3-SPP [47], YOLOv7 [48], YOLOv7x [49], and other target 
detection algorithms. The results (Table 3) indicates that YOLO5s-EF algorithm achieved a detection precision of 97.8%, a recall of 
97.6%, an F1 value of 97.7%, an mAP@0.5 of 98.2%, and an FPS of 51.8 on the same validation set. In comparison to Faster R–CNN, 
Mask R–CNN, YOLOv3, YOLOv3-SPP, YOLOv7, YOLOv7x, and YOLOv5s algorithms, the precision has been improved by 9.5%, 6.6%, 
14.6%, 16.9%, 6.5%, 5.0%, and 9.9%, respectively. The FPS was 2.4 times, 2.9 times, 4.1 times, 4.3 times, 2.6 times, and 4.5 times 
faster than Faster R–CNN, Mask R–CNN, YOLOv3, YOLOv3-SPP, YOLOv7, and YOLOv7x algorithms, respectively. Compared to 
YOLOv5s, the FPS was only 1.5 slower, while the remaining recall, F1 value, and mAP@0.5 showed significant enhancements. This is 
mainly because compared with Faster R–CNN, and Mask R–CNN, the improved YOLO5s-EF algorithm adopts a single-phase detection 
method, which has a higher inference speed, and is able to complete the target detection and localization at one time, and the overall 
architecture is relatively simple, easy to understand and implement, and has a much better adaptability to smaller-sized targets. The 
improved YOLO5s-EF algorithm is distinguished by its adoption of a novel network structure featuring smaller convolution kernels and 
more efficient network modules, in contrast to YOLOv3 and YOLOv3-SPP. This modification serves to augment the algorithm’s ability 
to perceive targets of varying scales, while simultaneously reducing computational load and the number of algorithm parameters. 
Consequently, this leads to improved detection performance and inference speed. Compared to YOLOv7 and YOLOv7x, the improved 
YOLO5s-EF algorithm features a lightweight network structure, enabling swift iteration and deployment. The model is capable of 
maintaining high accuracy and exhibits extremely fast inference speed, making it well-suited for real-time application scenarios. The 
results indicate that the improved YOLO5s-EF algorithm demonstrates superior capability in detecting shallow mud within the sub
marine channel compared to other algorithms. 

3.4.3. Backbone modules 
To verify the effect of C2F module on the performance of YOLOv5s algorithm, this study compared C2F module with other 

algorithmic modules including C3, SAC [50], DCNv2 [51], DSC [52], and RFEM [53] to determine its improvement effect. Table 4 

Table 2 
Ablation experiment.  

Model C2F EMA NWD Precision/% Recall/% F1/% mAP@0.5/% mAP@0.95/% FPS 

YOLOv5s × × × 87.9 93.3 90.5 94.8 67.2 53.3 
✓ × × 90.7 (+2.8) 93.4 (+0.1) 92.1 (+1.6) 94.9 (+0.1) 66.2 (− 1.0) 52.6 
× ✓ × 95.7 (+7.8) 99.6 (+6.3) 97.6 (+7.1) 97.4 (+2.6) 64.7 (− 2.5) 51.5 
× × ✓ 89.8 (+1.9) 95.5 (+2.2) 92.5 (+2.0) 97.6 (+2.8) 69.5 (+2.3) 55.2 
✓ ✓ ✓ 97.8 (+9.9) 97.6 (+4.3) 97.7 (+7.2) 98.2 (+3.4) 69.6 (+2.4) 51.8  
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demonstrates that YOLOv5s algorithm, improved by the introduction of C2F module, exhibits superior performance. The precision was 
90.7%, with a recall of 93.4%, an F1 value of 92.1%, a mAP@0.5 of 94.9%, and an FPS of 52.6. In comparison to C3, SAC, DCNv2, DSC, 
and RFEM, the detection precision shows an increase of 2.8%, 3.3%, 6.3%, 3.5%, and 1.5%, respectively. Additionally, the remaining 
recall, F1 value, mAP@0.5, and FPS exhibit a certain degree of improvement. This can be attributed to C2F module’s multi-scale fusion 
of low-level and high-level features through a cross-stage connection method, which enables the algorithm to better capture subtle 
changes and edge feature information of the target. This results yields more detailed semantic information, enhanced target 
perception, and improved recognition and positioning capabilities, leading to higher detection accuracy. This performance surpasses 
that of C3, SAC, DCN, DSCv2, and RFEM modules. The results indicate that, when considering the shallow data of the submarine 
channel, the incorporation of C2F module is better suited for enhancing YOLOv5s algorithm compared to other modules. 

3.4.4. Attention mechanisms 
To assess the efficacy of EMA attention mechanism in enhancing YOLOv5s algorithm, this study compares EMA with various other 

widely used attention mechanisms, including SGE [54], SE [55], ECA [56], GAM [57], and SimAM [58]. Table 5 demonstrates that 
YOLOv5s algorithm, when augmented with EMA, exhibits superior detection capabilities. The precision was 95.7%, with a recall of 
99.6%, an F1 value of 97.6%, a mAP@0.5 of 97.4%, and an FPS of 51.5. In comparison to SGE, SE, ECA, GAM, and SimAM, the 
detection precision shows an increase of 8.5%, 0.6%, 1.6%, 3.1%, and 0.4%, respectively. Additionally, there are significant im
provements in the remaining recall, F1 value, mAP@0.5, and FPS. This can be attributed to the fact that EMA attention mechanism 
differs from SGE, SE, ECA, GAM, and SimAM by incorporating a cross-channel interaction mechanism. The method considers the 
dependencies among different channels, extracts crucial information, and enhances the expressive capacity and discriminative power 
of the feature information. Simultaneously, multi-scale features are employed in modeling to improve the algorithm’s ability to 
perceive and understand the target, thereby further enhancing the algorithm’s detection performance. The results indicate that 
incorporating EMA attention mechanism to improve YOLOv5s enables the algorithm to effectively concentrate on the multi-scale 
features of the target, leading to improved detection accuracy and robustness. 

3.4.5. Bounding box regression loss function 
To evaluate the effectiveness of NWD loss function in improving YOLOv5s algorithm’s performance, this study undertakes a 

detailed comparative analysis. It compares NWD loss function against several leading bounding box regression loss functions, namely 
CIoU loss, SIoU loss [59], EIoU loss [60], WIoU loss [61], and Focal loss [62]. In Table 6, YOLOv5s algorithm, when augmented with 
NWD loss, demonstrates the most favorable outcome. The precision was 89.8%, with a recall of 95.5%, an F1 value of 92.5%, a mAP@ 
0.5 of 97.6%, and an FPS of 55.2. Compared to CIoU loss, SIoU loss, EIoU loss, WIoU loss, and Focal loss, the detection precision shows 
an increase of 1.9%, 5.6%, 2.1%, 0.2%, and 5.2%, respectively. Additionally, there is a certain degree of improvement in the remaining 
recall, F1 value, mAP@0.5, and FPS. This can be attributed to the fact that, in comparison with CIoU loss, SIoU loss, EIoU loss, WIoU 
loss, and Focal loss, NWD loss function has the capability to mitigate the scale differences between various targets. It achieves this by 
employing NWD measurement method, thereby enhancing the robustness and stability of the algorithm. Meanwhile, NWD loss 
function exhibits insensitivity to variations in target scales, making it more appropriate for detection algorithms with high similarity 
among small targets. This function also contributes to enhancing the accuracy and rate of detection algorithms. The results indicate 
that the application of the proposed NWD loss function for bounding box regression improves the performance YOLOv5s algorithm for 
detecting shallow mud data from submarine channels. This enhancement is significant when compared to the outcomes achieved using 

Table 3 
Comparison of different algorithms.  

Model Precision/% Recall/% F1/% mAP@0.5/% FPS 

Faster R–CNN 88.3 91.1 89.6 89.9 21.7 
Mask R–CNN 91.2 92.4 91.8 93.5 17.6 
YOLOv3 83.2 97.8 89.9 95.1 12.5 
YOLOv3-SPP 80.9 95.6 87.7 88.6 12.1 
YOLOv7 91.3 88.9 90.1 95.8 19.8 
YOLOv7x 92.8 95.6 94.2 90.9 11.6 
YOLOv5s 87.9 93.3 90.5 94.8 53.3 
YOLO5s-EF 97.8 97.6 97.7 98.2 51.8  

Table 4 
Different backbone modules.  

Model Backbone modules Precision/% Recall/% F1/% mAP@0.5/% FPS 

YOLOv5s C3 87.9 93.3 90.5 94.8 53.3 
SAC 87.4 92.9 90.1 90.4 37.4 
DCNv2 84.4 86.7 85.5 90.7 49.5 
DSC 87.2 90.6 88.9 91.2 52.4 
RFEM 89.2 92.1 90.6 95.4 46.1 
C2F 90.7 93.4 92.1 94.9 52.6  
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other advanced bounding box regression loss functions. 

4. Discussion 

Fig. 11 shows the shallow mud truth box, the improved YOLOv5s-EF detection results and the original YOLOv5s detection results. 
The first row presents the shallow mud truth box, the second row presents the improved YOLOv5-EF algorithm detection results, and 
the third row presents the original YOLOv5s algorithm detection results. From Fig. 11(g), (h), 11(m), and 11(n) it can be seen that the 
improved YOLOv5s-EF algorithm has a significant improvement in detection confidence and accuracy compared to the original 
YOLOv5s algorithm. Fig. 11(i), (j), 11(o), and 11(p) show that the original YOLO5s algorithm has omissions in detecting relatively 
complex shallow mud. Conversely, the improved YOLOv5s-EF algorithm improves the overall detection ability of shallow mud. In 
Fig. 11(k), (l), 11(q), and 11(r), the original YOLOv5s algorithm produces multiple detection results at the same position, whereas the 
improved YOLOv5s-EF algorithm yields only one detection result at this position. This modification mitigates detection confusion and 
enhances detection confidence. Additionally, the improved YOLOv5s-EF algorithm indicates exceptional overall confidence and 
effectiveness in detecting shallow mud within submarine channels compared to the original YOLOv5s algorithm. YOLOv5s-EF algo
rithm has been enhanced with the introduction of C2F, EMA, and NWD loss, resulting in improved efficiency in training and feature 

Table 5 
Different attention mechanisms.  

Model Attention mechanisms Precision/% Recall/% F1/% mAP@0.5/% FPS 

YOLOv5s SGE 87.2 90.9 89.1 93.1 47.4 
SE 95.1 95.6 95.3 96.0 49.1 
ECA 94.1 93.3 93.7 98.0 50.2 
GAM 92.6 97.8 95.1 93.5 30.2 
SimAM 95.3 97.8 96.5 94.0 49.8 
EMA 95.7 99.6 97.6 97.4 51.5  

Table 6 
Loss functions for different bounding box regressions.  

Model Bounding Box loss function Precision/% Recall/% F1/% mAP@0.5/% FPS 

YOLOv5s CIoU Loss 87.9 93.3 90.5 94.8 53.3 
SIoU Loss 84.2 94.9 89.2 89.3 52.4 
EIoU Loss 87.7 85.2 86.4 95.6 45.8 
WIoU Loss 89.6 95.8 92.6 95.3 49.2 
Focal Loss 84.6 85.3 84.9 85.8 51.8 
NWD Loss 89.8 95.5 92.5 97.6 55.2  

Fig. 11. Shallow mud truth box (first row) and detection results (second row YOLOv5s-EF, third row YOLOv5s).  
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extraction. The C3 module is replaced with C2F module, allowing the algorithm to effectively utilize correlation information between 
channels. This is achieved through the integration of channel contexts from multiple branches, which improves target differentiation 
and identification, consequently enhancing both detection speed and accuracy. Furthermore, the incorporation of EMA multi-scale 
attention significantly mitigate training oscillations and fluctuations, thereby enhancing the robustness of the algorithm. This 
approach simultaneously improves the algorithm’s resistance to noisy data interference and mitigates the addresses overfitting, further 
enhancing detection accuracy and stability. NWD loss function for bounding box regression has been incorporated into CIOU loss 
function for bounding box regression. This approach has the potential to decrease the error in bounding box regression, enhance the 
algorithm’s detection performance for small targets and targets with high aspect ratios, and improve the robustness and accuracy of the 
algorithm. The proposed approaches in this paper demonstrate the effectiveness of YOLOv5s-EF algorithm as a submarine mud 
detection method. This algorithm not only sustains high efficiency but also improves algorithmic accuracy and stability. Furthermore, 
it offers new insights and avenues for intelligent detection in the domain of submarine channel mud. 

However, the shallow mud detection algorithm still exhibits certain limitations. The study has identified the following issues based 
on data analysis: Firstly, the utilization of peak sound intensity values from the sub-bottom profiler for identifying shallow mud lo
cations, while intuitive and efficient, is compromised by unstable submarine geological signals that can lead to data loss, thereby 
obstructing precise localization. In the future, a combination of side scan sonar, multi-beam, drilling sampling, and other methods 
should be employed to enhance the submarine mud measurement to enhance the accuracy of submarine mud location delineation. 
Secondly, the sound print data acquired from the sub-bottom profiler can effectively indicate the presence of shallow mud within the 
submarine channel. The submarine channel is situated in a complex environment, making it vulnerable to noise interference caused by 
natural and human factors such as waves, tides, and passing ships. This interference can lead to a decrease in image quality and impact 
the recognition process. Future advancements are expected to leverage filters and image improvement algorithms to reduce noise, 
consequently enhancing image quality and precision. Furthermore, while the improved YOLOv5s-EF algorithm demonstrates 
enhanced detection capabilities, it also exhibits certain limitations. The algorithm is susceptible to both missed detection and false 
detection when it encounters complex scenes, dense targets, or a large number of overlapping targets. For future study, the algorithm 
should focus on optimizing and upgrading the algorithm by adopting cutting-edge enhancement strategies to improve the detection 
performance and efficiency. 

5. Conclusion 

This paper introduced YOLOv5s-EF algorithm, an advanced version of YOLOv5s, designed specifically to detect shallow mud within 
submarine channels. A sub-bottom profiler was initially employed to identify the submarine channel in the study area through 
surveying. The resulting sound print image data was subsequently utilized to visually depict the shallow mud of the submarine 
channel. Furthermore, substituting the local C3 module in YOLOv5s with C2F module could enable the extraction of more complex and 
abstract feature information. Simultaneously, the incorporation of EMA multi-scale attention into Neck module improved the algo
rithm’s ability to detect targets across different scales. Additionally, integrating NWD loss function enhanced the optimization of 
bounding box positioning and elevated the performance of the detection algorithm. The shallow mud sound print image data of the 
submarine channel was ultimately input into the improved YOLOv5s-EF algorithm for training. The results indicated that the proposed 
YOLOv5s-EF algorithm improved upon YOLOv5s in terms of in precision, recall, F1 value, and mAP evaluation indices. Moreover, it 
exhibits promising effectiveness and feasibility for the detection of shallow mud in submarine channels. In summary, this research 
holds importance for achieving real-time dynamic detection, dredging, and maintenance activities related to submarine channel mud, 
contributing significantly to the advancement of maritime navigation safety and operational efficiency. 
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