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ABSTRACT We characterized the draft genome of the potentially beneficial Bacillus
tropicus strain UPM-CREST01, which was isolated from the bulk soil at a paddy cultiva-
tion area in Kampung Gajah, Perak, Malaysia. The final draft assembly of 5,252,705 bp,
with a G1C content of 35.23%, was found to harbor 5,368 coding sequences, includ-
ing several plant-growth-promoting genes.

Members of the genus Bacillus are thought to possess a variety of positive charac-
teristics that benefit vegetation explicitly or implicitly via nutrient absorption or

general growth enhancement via the synthesis of plant growth hormones, including
resistance against infections and other abiotic stresses (1). Hence, species of the func-
tionally diverse genus Bacillus are among the most utilized microbes throughout the
agricultural biotechnology sector (2). Here, we report a draft genome sequence of
Bacillus tropicus strain UPM-CREST01, which was isolated from the bulk soil of a high-
yielding paddy plot in Kampung Gajah, Perak, Malaysia (4.1841°N, 100.9389°E).

The strain was isolated on nutrient agar following serial dilution of soil and incuba-
tion for 24 h at 37°C. The single colony selected was then grown for 24 h at 37°C in
Luria-Bertani broth until it reached an optical density of 0.8 at 600 nm (OD600) before
being subjected to genomic DNA extraction using the NucleoSpin tissue kit (Macherey-
Nagel). The concentration of the genomic DNA was determined using an Invitrogen
Qubit 4.0 fluorometer, and sequencing libraries were generated using the Nextera XT
DNA library preparation kit (Illumina) with 1 ng of input DNA, according to the manufac-
turer’s guidelines. Upon paired-end sequencing (2 � 150 bp) with the Illumina NovaSeq
platform, the reads were subjected to preprocessing using Trimmomatic v0.39
(SLIDINGWINDOW:4:30; MINLEN:80) (3). Trimming resulted in 2,685,616 reads, with a
mean length of 150 bases. A de novo assembly was then performed using Unicycler
v0.4.9 (4) and assessed with QUAST v5.0.2 (5). Default parameters were used for all soft-
ware, unless stated otherwise.

The assembly resulted in 51 contigs, with an N50 value of 519,917. The final length
of the assembled genome sequence was 5,252,705 bp, with a G1C content of 35.23%.
The final genome coverage was 63�. The Similar Genome Finder service available at
PATRIC v3.6.12 traced the contigs back to Bacillus tropicus strain SN1, an endophytic
isolate with biocontrol ability (6). An average nucleotide identity (ANI) analysis revealed
a high level of sequence similarity (99.87%) between the draft genome sequences of
the strains.

Using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (7), a total of 5,368
coding sequences (CDSs), 70 tRNAs, and 5 noncoding RNAs were identified in the ge-
nome of the UPM-CREST01 strain. In addition, the RAST tool kit (RASTtk) (8) successfully
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identified several key plant-growth-promoting genes in the genome, including genes
encoding auxin efflux carrier protein, cytokinin 9-b-glucosyltransferase, and alkaline
phosphatase, which boost plant growth and development and improve phosphate sol-
ubilization (9–12). The genome also harbors genus-specific siderophore biosynthesis
proteins such as bacillibactin and anthrachelin, which are essential for iron acquisition
in limiting environmental conditions. Siderophores are said to provide a biocontrol
effect due to the competitive advantage they provide the bacteria in chelating Fe effi-
ciently and reducing its availability to pathogenic microbes (13, 14). Therefore, this
strain has the potential to be an efficient and nontoxic biocontrol agent that can prop-
erly prevent the growth of pathogenic microbes in the ecosystem, while also meeting
the growing demand for viable ecology and sustainable agriculture (15). Subsequent
in vitro analysis of this strain could provide a better understanding of its beneficial roles
in paddy growth.

Data availability. The whole-genome shotgun project has been deposited in NCBI
under the accession number JAJAQE010000000. The associated BioProject, SRA, and
BioSample accession numbers are PRJNA763714, SRR15910132, and SAMN21447887,
respectively.
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