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This study is focused on modeling and simulations of hybrid nanofluid flow. Uranium dioxide 𝑈𝑂2
nanoparticles are hybrid with copper 𝐶𝑢, copper oxide 𝐶𝑢𝑂 and aluminum oxide 𝐴𝑙2𝑂3 while 
considering blood as a base fluid. The blood flow is initially modeled considering magnetic effect, 
non-linear thermal radiation and chemical reactions along with convective boundaries. Then for 
finding solution of the obtained highly nonlinear coupled system we propose a methodology in 
which q-homotopy analysis method is hybrid with Galerkin and least square Optimizers. Residual 
errors are also computed in this study to confirm the validity of results. Analysis reveals that rate 
of heat transfer in arteries increases up to 13.52 Percent with an increase in volume fraction of 
𝐶𝑢 while keeping volume fraction of 𝑈𝑂2 fixed to 1% in a base fluid (blood). This observation 
is in excellent agreement with experimental result. Furthermore, comparative graphical study of 
𝐶𝑢, 𝐶𝑢𝑂 and 𝐴𝑙2𝑂3 for increasing volume fraction is also performed keeping 𝑈𝑂2 volume fraction 
fixed. Investigation indicates that 𝐶𝑢 has the highest rate of heat transfer in blood when compared 
with 𝐶𝑢𝑂 and 𝐴𝑙2𝑂3. It is also observed that thermal radiation increases the heat transfer rate in 
the current study. Furthermore, chemical reaction decreases rate of mass transfer in hybrid blood 
nanoflow. This study will help medical practitioners to minimize the adverse effects of 𝑈𝑂2 by 
introducing hybrid nano particles in blood based fluids.

1. Introduction

Nanofluids have gathered much interest from researchers as they play a pivotal role in enhancing thermal transport in fluids by 
including suitable nano-scaled particles to a fluid. This will alter many physical properties. Primarily, the idea of adding particles of 
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Nomenclature

Parameters with units

𝑟, 𝜗, 𝑧 radial, axial and tangential coordinates 𝑡 temporal 
coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s)

𝑢, 𝑣,𝑤 velocity along 𝑟, 𝜗, 𝑧 axis . . . . . . . . . . . . . . . . . . (ms−1)

𝜈ℎ𝑛𝑓 kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . (m2s−1)

𝜎ℎ𝑛𝑓 electric conductivity. . . . . . . . . . . . . . . . . . . . . . (Sm−1)

𝐵2
0 magnetic field strength . . . . . . . . . . . . . . . . . . (Am−1)

𝜌ℎ𝑛𝑓 density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kgm−3)

(𝜌𝐶𝑝)ℎ𝑛𝑓 specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (J/kgK)

𝐷ℎ𝑛𝑓 thermal diffusivity. . . . . . . . . . . . . . . . . . . . . . . (m2s−1)

𝑘2
𝑟

chemical reaction rate . . . . . . . . . . . . . . . . . . . . (Ms−1)

�̃� activation energy. . . . . . . . . . . . . . . . . . . . . . . . . (JM−1)

𝑘 thermal conductivity . . . . . . . . . . . . . . . . . . . . (W/mK)

𝑇 temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (K)

𝐶 concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . (kgm−3)

𝑎1, 𝑎2 stretching rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s−1)

𝜔 angular frequency . . . . . . . . . . . . . . . . . . . . . . . . . . (s−1)

𝑏 positive constant . . . . . . . . . . . . . . . . . . . . . . . . . . . (s−1)

ℎ1, ℎ2 heat transfer coefficients

Dimensionless parameters

𝜂 independent variable

𝐹 ′,𝐺,𝐹 radial, tangential and axial velocities

𝜃,𝜙 temperature, concentration

𝐸𝑡 activation energy parameter

𝐴1,𝐴2 stretching parameters

℘𝑖, 𝑇𝑤 nanofluid parameters, temperature ratio

𝐵,𝑅∗ unsteady parameter, radiation parameter

𝑃𝑟,𝑆𝑐 Prandtl number, Schmidt number

𝑀,𝑊𝑠 magnetic parameter, suction parameter

𝔹1,𝔹2 Biot numbers

𝜎𝑡 chemical reaction rate

𝛿1,𝑅𝑒 temperature difference, Reynolds number

Subscripts

ℎ𝑛𝑓 hybrid nanofluid

𝑏𝑓 base fluid

𝑈𝑂2 uranium dioxide

𝐶𝑢,𝐶𝑢𝑂 copper, copper oxide

𝐴𝑙2𝑂3 aluminum oxide

micro-size to coolants was presented by Maxwell [1] in 1904 but it was not a success due to some set backs to the study. This idea 
caught attention again in 1995 when Choi [2] first introduced the term “nanofluid”. In general, nanofluid contains nanometer sized 
particles named as nanoparticles. Mostly carbides, oxides or metals are taken as nanoparticles and common base fluids are ethylene 
glycol, water, blood or oils. Afterwards, nanofluid caught the limelight for over the past two decades and researchers have introduced 
many combinations of these nanofluids to analyze and optimize the heat transfer and other physical phenomena analytically as well 
as experimentally. Turkyilmazoglu [3] studied heat transfer of a nanofluid on a rotating disk. Highest shear rate in this case was 
offered by silver nanoparticles. Magnetic effects on nanofluid heat transfer between two plates was investigated by Sheikholeslami et 
al. [4]. Huminic and Huminic [5] analyzed entropy generation in nanofluid in various kinds of thermal systems. Study on 𝐶𝑢𝑂-water 
nanofluids in microchannels was done by Li and Kleinstreuer [6]. Ghalandari et al. [7] simulated nanofluid flow to optimize root 
canal procedures and efficient removal of microorganisms. Sheikholeslami et al. [8] also scrutinized a two-phase model of nanofluids 
influenced by thermal radiations and magneto-hydrodynamic effects. Raza et al. [9] analyzed a water based Casson fluid model 
impacted by inclined magnetic forces. Qayyum et al. [10] presented a study on squeezing flow of a water-based nanofluid in three 
dimensions in a rotating channel. Alharbi et al. [11] studied the effects of single and multi-walled nanotubes on water and blood 
based nanofluids comparatively on an inclined surface with slip conditions. Flow of a second grade nanofluid with Catteno-Christov 
heat flux is simulated by Gangadhar et al. [12]. Zohra et al. [13] analyzed the Buongiorno model of Casson nanofluid with Navier 
slip boundaries flowing inside a stretchable channel. Many researchers scrutinized nanofluid flow problems with different geometries 
under various physical effects [14–21].

Extending the scope of nanofluids, hybrid nanofluids were formerly introduced by Suresh et al. [22] in 2012. The basic idea of 
hybrid nanofluid is to add two different nano-meter sized particles in a base-fluid in order to enhance the heat transfer properties of 
the newly developed hybrid nanofluid. Suresh et al. combined 𝐴𝑙2𝑂3 and 𝐶𝑢 nanocomposite in water and thoroughly investigated 
the hybrid nanofluid properties experimentally which were then compared with empirical results as well. It was deduced from 
the study that heat transfer rate was enhanced up to 13.5% as compared to water and was also greater than two-phase nanofluid 
𝐴𝑙2𝑂3-water. There results were in good agreement with empirical results of the study pointing out the significance and validity 
of empirical analysis on hybrid nanoflows. As much as these fluids are important in engineering, they also have vast implications 
in medical sciences. Many drugs are produced in form of hybrid nanofluids and in order to study the chemical reactive behavior 
on human body, blood is taken as test base-fluid. In case of normal circulation through arteries a sustainable temperature and 
blood transmission is required through human body. Thermal properties of blood are required to be enhanced in various physical 
conditions through hybridization of blood with various nanoparticles. According to the nature of nanofluids they are important in 
pollution purification purpose, pharmaceutical nanoliquids and drug delivery through arteries. Alghamdi et al. [23] analyzed hybrid 
nanofluid flow under magnetohydrodynamic effect. They studied blood based fluid with 𝐶𝑢 and 𝐶𝑢𝑂 nanoparticles between two 
permeable channels. There findings supported more effective thermal analysis in case of 𝐶𝑢-𝐶𝑢𝑂/blood fluid in comparison with 
𝐶𝑢/blood fluid. On similar pattern, Dinarvand et al. [24] investigated 𝐶𝑢-𝐶𝑢𝑂/blood hybrid nano-flow under mixed convection and 
MHD effect over a porous and stretching sheet. They used bvp4c built-in routine to solve the system of governing equations. This study 
showed that blade shape of both nanoparticles enhanced rate of heat transfer indefinitely. Shahazadi and Bilal [25] recently simulated 
bifurcated stenosed artery model to enhance drug delivery with help of hybrid nanofluid having blood as base-fluid. Permeability 
2

was considered in walls of stenosed artery with copper and copper oxide used as nanoparticles in blood for enhancing drug transport. 
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Abdelsalam et al. [26] empirically analyzed aneurysmal/stenosed segment of a diseased artery usinh hybrid blood nanofluid flow. It 
was observed that velocity of blood decreased the most incase of spherically shaped nanoparticles when compared with platelet, rods 
and bricks shaped nanoparticles in hybrid flow. Chahregh and Dinarvand [27] also studied blood-hybrid nanofluid but they used 
𝑇 𝑖𝑂2 and 𝐴𝑔 as nanoparticles passing through a porous channel. Both walls of channel were considered at different permeability 
which allowed the fluid flow with dilation and squeezing of the walls. The analysis that varying permeability caused asymmetry to 
the flow channel resulting in significant change on th blood flow. Alsharif et al. [28] enhanced a micro-pump performance with help 
of second grade hybrid nanofluid with copper and titanium nanoparticles. Shah et al. [29] optimized entropy in flow of a hybrid 
nanofluid on a curved surface. Alhowaity et al. [30] studied flow of a hybrid nanofluid passing over a moving sheet with non-Fourier 
energy transmission. Wang et al. [31] analyzed hybrid nanofluid flow passing through a porous medium with heat sink. Madhukesh 
et al. [32] performed simulations on a water based hybrid nanofluid passing on a curved stretching sheet with special effects of 
non-Fourier heat flux.

Human blood contains erythrocyte cells which adds the magnetic factor in blood flow through arterial walls. Iftikhar et al. [33]

studied peristaltic blood flow through an endoscopic non-uniform tube with gold nanoparticles. Cylindrical, spherical and blade 
shaped nanoparticles are considered comparatively. Gandhi et al. [34] optimized entropy of the 𝐴𝑢-𝐴𝑙2𝑂3/blood hybrid nanofluid 
with MHD effect, viscous dissipation and Joule heating. As a result, it was noted that entropy increased with increase in shape factor 
of both nanoparticles within the stenotic zone of the artery. Kumar et al. [35] investigated MHD blood flow in bifurcated arteries 
under impact of chemical reaction. MHD effect with blood flow has been studied by many authors in literature. Khalid et al. [36]

studied MHD blood flows with CNT nanoparticles passing through a porous channel. Peristaltic wave flow of blood was analyzed by 
Rashidi et al. [37] with effect of MHD. Rashidi et al. [38] also investigated MHD blood flow through Casson fluid model. Wang et 
al. [39] simulated shear thinning and thickening profiles of blood based hybrid Casson nanofluid under effect of a constant magnetic 
field. Elogail and Mekheimer [40] studied flow of blood passing through a microvessel that involved oxytactic microorganisms along 
with nanoparticles. Bingham nanofluid blood flow problem with MHD effect nd hom-het reactions is analyzed by Tanveer et al. [41]. 
Gangadhar et al. [42] presented a hydrothermal analysis on graphene and ferrous oxide hybrid nanofluid in a magnetized rotating 
cylinder. Bhatti and Abbas [43] modeled peristaltic blood flow problem with Jeffrey fluid under combined effect of slip parameters 
and MHD which is applicable in drug targeting during cancer. Blood flow through bifurcated arteries under effects of MHD and heat 
source is simulated by Prakash et al. [44].

In medical sciences, the biological systems undergo many reactions biochemically and mediated through various enzymes in 
the body. Chemical reaction effects are significant in study of blood flow and scrutinized by researcher through both in-vivo and 
in-vitro analysis. Tripathi and Sharma [45] studied pulsatic flow of blood passing though an artery that was stenosed. Chemical 
reaction effects were also highlighted in this study. It was deduced that two-phase model of blood flow was more accurate when 
compared with single-phase blood flow model of the nanofluid. Roy and Beg [46] recently studied a blood flow problem with bulk 
reaction for both micropolar and Newtonian fluid. Closed form solutions are developed and hemodynamic properties of blood flow 
are investigated. Blood concentration was increased as reaction rate elevated. Ellahi et al. [47] studied peristaltic flow of blood 
with gold nanoparticles in presence of activation energy and chemical reaction. Basha and Sivaraj [48] studied blood nanofluid 
having gyrotactic microorganisms and chemical reactions with three different geometries. Okuyade et al. [49] analyzed blood flow 
in merging veins with chemical reactions influencing blood flow. Rasool and Zhang [50] studied Powell-Eyring nanofluid flow on a 
radiative riga plate with convective boundary conditions and chemical reaction. Entropy generation of a Casson nanofluid impacted 
by activation energy flowing on a non-linearly stretched surface was investigated by Shah et al. [51]. Khan et al. [52] performed 
second law analysis on a nanofluid impacted by Arrhenius activation energy.

In light of literature review stated above, the authors of this study noticed a research gap on unsteady hybrid blood nanofluid 
flow with two type of nanoparticles, uranium dioxide and copper/copper oxide/aluminum oxide and to enhance the heat and mass 
transfer effects. This study will be useful for medical practitioners to reduce the adverse effects of uranium on blood stream by 
introducing various nanoparticles on a blood based hybrid nanofluid. In this study, the blood flow through arteries is modeled 
with impact of chemical reaction, magnetohydrodynamic effect, non-linear thermal radiation and thermally convective boundaries. 
The developed flow problem is a mathematical depiction of blood flow through arterial walls. Moreover, skin friction, Nusselt and 
Sherwood number for current flow geometry are also investigated. In order to solve the obtained system of non-linear problems 
a new algorithm optimal q-homotopy analysis method is utilized [53–55]. Optimal values of convergence control parameters are 
calculated through least square and Galerkin’s method. Furthermore, average squared residual errors are computed for validation 
purpose. Conclusions are drawn through simulations of blood velocity, temperature, concentration, skin friction with arterial walls, 
heat and mass transfer for various volume fractions and different nanoparticles. Section 2 shows modeling of the flow problem, 
Section 3 depicts basic methodology of the used method, analysis on convergence of the problem is done in Section 4, discussion on 
obtained results is in Section 5 and finally conclusions of the current study are drawn in Section 6.

2. Model formulation

We consider flow problem of blood through arteries with various physical effect influencing the blood flow. In this regard, a 
hybrid nanofluid flow is modeled with axially symmetric flow in cylindrical coordinates (𝑟, 𝜗, 𝑧). Flow geometry of the test problem is 
shown in Fig. 1. The blood flow is influenced by MHD (with induced magnetic field 𝐵0 acting in perpendicular direction), non-linear 
thermal radiation, chemical reaction with activation energy and thermally convective boundary conditions. Governing equations of 
3

the flow problem are devised as follows:
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Fig. 1. Blood flow geometry.
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𝑢

𝑟
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2
0
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𝑣, (3)

𝑇𝑡 + 𝑢𝑇𝑟 +𝑤𝑇𝑧 =
𝑘ℎ𝑛𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓
∇2𝑇 + 1

(𝜌𝐶𝑝)ℎ𝑛𝑓
𝜕𝑞𝑟

𝜕𝑧
, (4)

𝐶𝑡 + 𝑢𝐶𝑟 +𝑤𝐶𝑧 =𝐷ℎ𝑛𝑓
𝜕2𝐶

𝜕𝑧2
− 𝑘2

𝑟
(𝐶 −𝐶2)

(
𝑇

𝑇2

)𝑚
𝑒

−�̃�
𝑘∗𝑇 , (5)

subject to the following boundary conditions

𝑢 =
𝑎1𝑟

1 − 𝑏𝑡
, 𝑣 = 𝑟𝜔

1 − 𝑏𝑡
, 𝑤 =

𝑊0
1 − 𝑏𝑡

− 𝑘𝑏𝑓
𝜕𝑇

𝜕𝑧
= ℎ1(𝑇1 − 𝑇 ), 𝐶 = 𝐶1 𝑎𝑡 𝑧 = 0

𝑢 =
𝑎2𝑟

1 − 𝑏𝑡
, 𝑣 = 0, −𝑘𝑏𝑓

𝜕𝑇

𝜕𝑧
= ℎ2(𝑇2 − 𝑇 ), 𝐶 = 𝐶2 𝑎𝑡 𝑧 = ℎ(𝑡) =

√
𝜈(1 − 𝑏𝑡)
𝜔

(6)

where velocity components in 𝑟, 𝜗 and 𝑧-direction are 𝑢, 𝑣 and 𝑤 respectively. T and C are the blood temperature and concentration. 
𝐵0 is the magnetic field applied in normal direction to 𝑧 = 0, 𝑘𝑟 is the chemical reaction rate, �̃� is the energy to activate chemical 
reaction, 𝑚 is a constant power and (𝑞𝑟)𝑧 the radiative non-linear heat flux is defined by Rosseland’s approximation [56] as:

𝑞𝑟 = −4�̃�
3�̃�

(𝑇 4)𝑧 = −16�̃�
3�̃�
𝑇 3(𝑇 )𝑧, (7)

here, �̃� is the Stefan-Boltzmann constant and �̃� is the coefficient of mean absorption. Stefan Boltzmann law states that all the 
objects possessing temperature greater than absolute zero emit radiations that are proportional to fourth power of their absolute 
temperature. Moreover, optically thick fluids are characterized through Rosseland’s approximation. The non-linear temperature term 
𝑇 4 is expanded through Taylor series expansion and by considering the temperature difference to be insignificant within the fluid 
flow. By using Eq. (7) in Eq. (4), temperature equation is finalized as follows:

𝑇𝑡 + 𝑢𝑇𝑟 +𝑤𝑇𝑧 =
𝑘ℎ𝑛𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓
∇2𝑇 + 1

(𝜌𝐶𝑝)ℎ𝑛𝑓
𝜕

𝜕𝑧

(
16�̃�
3�̃�
𝑇 3 𝜕𝑇

𝜕𝑧

)
. (8)

Basic characteristics of hybrid nanofluid are given in Table 1. Here, 𝜈ℎ𝑛𝑓 , 𝜌ℎ𝑛𝑓 , 𝜎ℎ𝑛𝑓 , 𝑘ℎ𝑛𝑓 , (𝜌𝐶𝑝)ℎ𝑛𝑓 , 𝐷ℎ𝑛𝑓 are viscosity, density, 
electrical conductivity, thermal conductivity, heat capacitance and thermal diffusivity of hybrid nanofluid. Moreover, ′𝑏𝑓 ′ corre-

sponds to base fluid blood properties, 𝑈𝑂2 and 𝐶𝑢∕𝐶𝑢𝑂∕𝐴𝑙2𝑂3 are nanoparticle properties.

Following similarity transforms are introduced [58,59]

𝑢 = 𝜔𝑟

1 − 𝑏𝑡
𝐹 ′(𝜂), 𝑣 = 𝜔𝑟

1 − 𝑏𝑡
𝐺(𝜂), 𝑤 = −2

√
𝜔𝜈𝑏𝑓

1 − 𝑏𝑡
𝐹 (𝜂),

𝜂 = 𝑧
√

𝜔

𝜈𝑏𝑓 (1 − 𝑏𝑡)
, 𝜃(𝜂) =

𝑇 − 𝑇2
𝑇1 − 𝑇2

, 𝜙(𝜂) =
𝐶 −𝐶2
𝐶1 −𝐶2

(9)
4

By employing Eq. (9) in Eqs. (1)-(8) we obtain following ordinary differential equations of the flow geometry
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Table 1

Thermophysical characteristics of hybrid nanofluid where 𝐶𝑢 can be replaced by 𝐶𝑢𝑂
and 𝐴𝑙2𝑂3 [57].

Properties Hybrid nanofluid

Volume fraction 𝜑ℎ𝑛𝑓 = 𝜑𝑈𝑂2
+𝜑𝐶𝑢

Kinematic viscosity 𝜈ℎ𝑛𝑓 = 𝜇ℎ𝑛𝑓

𝜌ℎ𝑛𝑓

Density 𝜌ℎ𝑛𝑓 = (1 −𝜑ℎ𝑛𝑓 )𝜌𝑏𝑓 +𝜑𝐶𝑢𝜌𝐶𝑢 +𝜑𝑈𝑂2
𝜌𝑈𝑂2

Dynamic viscosity 𝜇ℎ𝑛𝑓 = 𝜇𝑏𝑓

(1−𝜑𝐶𝑢 )5∕2 (1−𝜑𝑈𝑂2 )
5∕2

Heat capacity (𝜌𝐶𝑝)ℎ𝑛𝑓 = (1 −𝜑ℎ𝑛𝑓 )(𝜌𝐶𝑝)𝑏𝑓 +𝜑𝐶𝑢(𝜌𝐶𝑝)𝐶𝑢 +𝜑𝑈𝑂2
(𝜌𝐶𝑝)𝑈𝑂2

Thermal conductivity
𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
=

𝜑𝑘+2𝑘𝑏𝑓+2(𝜑𝐶𝑢𝑘𝐶𝑢+𝜑𝑈𝑂2 𝑘𝑈𝑂2 )−2𝜑ℎ𝑛𝑓 𝑘𝑏𝑓
𝜑𝑘+2𝑘𝑏𝑓−(𝜑𝐶𝑢𝑘𝐶𝑢+𝜑𝑈𝑂2 𝑘𝑈𝑂2 )+𝜑ℎ𝑛𝑓 𝑘𝑏𝑓

where 𝜑𝑘 =
𝜑𝐶𝑢𝑘𝐶𝑢+𝜑𝑈𝑂2 𝑘𝑈𝑂2

𝜑ℎ𝑛𝑓

Thermal diffusivity
𝐷ℎ𝑛𝑓

𝐷𝑏𝑓
= (1 −𝜑ℎ𝑛𝑓 )

Electrical conductivity
𝜎ℎ𝑛𝑓

𝜎𝑏𝑓
=

𝜑𝜎+2𝑘𝑏𝑓+2(𝜑𝐶𝑢𝜎𝐶𝑢+𝜑𝑈𝑂2 𝜎𝑈𝑂2 )−2𝜑ℎ𝑛𝑓 𝜎𝑏𝑓
𝜑𝜎+2𝑘𝑏𝑓−(𝜑𝐶𝑢𝜎𝐶𝑢+𝜑𝑈𝑂2 𝜎𝑈𝑂2 )+𝜑ℎ𝑛𝑓 𝜎𝑏𝑓

where 𝜑𝜎 =
𝜑𝐶𝑢𝜎𝐶𝑢+𝜑𝑈𝑂2 𝜎𝑈𝑂2

𝜑ℎ𝑛𝑓

Table 2

Thermophysical properties of base-fluid and various nanoparticles [58,60].

Physical Properties Blood 𝑈𝑂2 𝐶𝑢 𝐶𝑢𝑂 𝐴𝑙2𝑂3

𝜌 (kg/m3) 1053 10970 8933 6320 3970
𝐶𝑝 (J/gK) 3594 235 385 531.8 765
𝑘 (W/mK) 0.492 8.68 400 76.5 40
𝜎 (S/m) 0.8 0.029 5.96 × 107 2.7 × 10−8 35 × 106

𝐹 ′′′ + 2
℘3
𝐹𝐹 ′′ − 𝐹

′ 2

℘3
+

℘1
℘2℘3

𝑀𝐹 ′ − 𝐺2

℘3
− 𝐵

℘3

(
𝐹 ′ + 𝜂

2
𝐹 ′′

)
= 0, (10)

𝐺′′ −
℘1

℘2℘3
𝑀𝐺 − 𝐵

℘3

(
𝐺 + 𝜂

2
𝐺′

)
− 2

℘3
(𝐺𝐹 ′ − 𝐹𝐺′) = 0, (11)

1
𝑃𝑟

℘4
℘5
𝜃′′ + 𝑅∗

℘5𝑃𝑟

{
3(1 + 𝛿1𝜃)2𝛿1𝜃′ 2 + (1 + 𝛿1𝜃)3𝜃′′

}
−𝐵𝜂𝜃′ + 2𝐹𝜃′ = 0, (12)

𝜙′′ −
𝜎𝑡𝑆𝑐

℘6
𝜙(1 + 𝛿1𝜃)𝑚 exp

[
−𝐸𝑡

1 + 𝛿1𝜃

]
− 𝑆𝑐

℘6
𝐵𝜂𝜙+ 2𝑆𝑐

℘6
𝐹𝜙′ = 0, (13)

with transformed boundary conditions as below

𝐹 ′(0) =𝐴1, 𝐹 (0) =𝑊 𝑠, 𝐺(0) = 1, 𝜃′(0) = −𝔹1{1 − 𝜃(0)}, 𝜙(0) = 1, 𝑎𝑡 𝜂 = 0,

𝐹 ′(1) =𝐴2, 𝐺(1) = 0, 𝐹 (1) = 0, 𝜃′(1) = 𝔹2𝜃(1), 𝜙(1) = 0, 𝑎𝑡 𝜂 = 1.
(14)

The dimensionless quantities in Eqs. (10)-(14) are defined as follows

℘1 =
𝜎ℎ𝑛𝑓

𝜎𝑏𝑓
, ℘2 =

𝜌ℎ𝑛𝑓

𝜌𝑏𝑓
, ℘3 =

𝜈ℎ𝑛𝑓

𝜈𝑏𝑓
, ℘4 =

𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
, ℘5 =

(𝜌𝐶𝑝)ℎ𝑛𝑓
𝜌𝐶𝑝𝑏𝑓

,

℘6 =
𝐷ℎ𝑛𝑓

𝐷𝑓
, 𝐵 = 𝑏

𝜔
, 𝑃 𝑟 =

(𝜌𝐶𝑝)𝑏𝑓 𝜈𝑏𝑓
𝑘𝑏𝑓

, 𝑅∗ = −16�̃�
3�̃�𝑘𝑏𝑓

𝑇 3
2 , 𝑇𝑤 =

𝑇1
𝑇2

𝜎𝑡 =
𝑘2
𝑟
(1 − 𝑏𝑡)
𝜔

, 𝑆𝑐 =
𝜈𝑏𝑓

𝐷𝑏𝑓
, 𝐸𝑡 = −̃𝐸

𝑘∗𝑇2
, 𝔹1 =

ℎ1
𝑘𝑏𝑓

√
𝜈𝑏𝑓 (1 − 𝑏𝑡)

𝜔
, 𝐴1 =

𝑎1
𝜔
,

𝑀 =𝐵2
0
𝜎𝑏𝑓

𝜌𝑏𝑓𝜔
, 𝐴2 =

𝑎2
𝜔
, 𝑊 𝑠 =

−𝑊0
2√𝜔𝜈𝑏𝑓 , 𝔹2 =

ℎ2
𝑘𝑏𝑓

√
𝜈𝑏𝑓 (1 − 𝑏𝑡)

𝜔
, 𝛿1 = 𝑇𝑤 − 1,

here ℘𝑖 are the dimensionless nanofluid parameters, 𝐵 the unsteady parameter, 𝑃𝑟 the Prandtl number, 𝑅∗ the radiation parameter, 
𝑇𝑤 the temperature ratio, 𝜎𝑡 the chemical reaction rate, 𝑆𝑐 the Schmidt number, 𝐸𝑡 the activation energy parameter, 𝔹1, 𝔹2 are the 
Biot numbers, �̃�1 and �̃�2 the stretching parameters, 𝑀 the magnetic interaction parameter and 𝑊𝑠 the suction/injection parameter. 
The thermophysical properties of blood and nanoparticles 𝑈𝑂2, 𝐶𝑢, 𝐶𝑢𝑂 and 𝐴𝑙2𝑂3 at normal temperature of 25𝑜 C are adopted from 
5

standard literature [58,60] in Table 2.
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2.1. Skin friction

Due to presence of multiple nanoparticles in blood hybrid nanofluid, skin friction arises near artery walls. Let Υ𝑤𝑟 and Υ𝑤𝜙 denote 
radial and transversal skin friction on arterial walls depending on shear stresses in these directions, respectively. Shear stresses are 
defined as

Υ̃𝑤𝑟 = [𝜇𝑛𝑓 (𝑢𝑧 + 𝑢𝜙)]𝑧=0, Υ̃𝑤𝜙 =
[
𝜇𝑛𝑓

(
𝑣𝑧 +

1
𝑟
+𝑤𝜙

)]
𝑧=0
. (15)

Basic formulation of skin friction is then give as

𝐶𝑓 =

√
Υ2
𝑤𝑟

+Υ2
𝑤𝜙

𝜌𝑏𝑓 (𝜔𝑟)2
(16)

By using Eq. (9) and (15) in Eq. (16), following non-dimensional form of skin friction is obtained

𝑅𝑒
1
2 𝐶𝑓 =

√
𝐹 ′(0)2 +𝐺′(0)2

(1 −𝜑)2.5
,

where 𝑅𝑒 = 𝜔𝑟2

𝜈𝑏𝑓
is a local unsteady Reynold number.

2.2. Nusselt number

In order to define rate of heat transfer through blood hybrid nanofluid flow, Nusselt number is utilized in this study. Nusselt 
number depends on thermal conductivity of the base fluid i.e. blood and an extra effect of thermal radiation which is also considered 
in current fluid model. General form of Nusselt number in this regard takes following defined form

𝑁𝑢 =
𝑟𝑞𝑟

𝑘𝑏𝑓 (𝑇1 − 𝑇2)
(17)

applying Eq. (9) in Eq. (17), dimensionless heat transfer rate is obtained as

𝑅𝑒
−1
2 𝑁𝑢 = −℘4𝜃

′(0).

2.3. Sherwood number

Mass transfer rate through the arteries in hybrid nanofluid flow is defined with help of Sherwood number that depends on mass 
diffusivity and concentration of the base-fluid (blood). We consider mass transfer ℚ𝑚 as

ℚ𝑚 = −𝐷ℎ𝑛𝑓
[
𝜕𝜙

𝜕𝑧

]
𝑧=0
. (18)

Hence general Sherwood number is now defined as

𝑆ℎ =
𝑟ℚ𝑚

𝐷𝑏𝑓 (𝐶1 −𝐶2)
, (19)

Eq. (19) after utilizing Eq. (18) and similarity transforms in Eq. (9) becomes

𝑅𝑒
−1
2 𝑆ℎ = −℘6𝜙

′(0).

3. Optimal q-homotopy analysis method

The proposed methodology is a hybrid of q-HAM with Galerkin’s and least square optimizers. In order to describe the proposed 
methodology on coupled non-linear systems, we first consider following system of four non linear ordinary differential equations

ℕ𝑖[𝜁𝑖(𝜂)] = 0, where 𝑖 = 1(1)4, (20)

here ℕ𝑖 are the non-linear operators, 𝜂 is the independent variable and 𝜁𝑖 are the unknown functions of 𝜂.
Algorithm of Optimal q-HAM is given in the following steps:

Step 1: Homotopy construction

Construct q-homotopy equations for Eq. (20) as
6

ℍ𝑖 ∶ (1 − 𝓁�̀�)𝕃𝑖[∅𝑖(𝜂; 𝑞) − 𝜁𝑖0(𝜂)] − 𝑞𝑐𝑖ℌ(𝜂)(ℕ𝑖[∅𝑖(𝜂; 𝑞)]) = 0, where 𝑖 = 1(1)4, (21)
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here 𝓁 ≥ 1, 𝑞 ∈
[
0, 1

𝓁

]
is the new embedding parameter, ℌ(𝜂) is a non-zero auxiliary function, 𝕃𝑖 and ℕ𝑖 are the linear and non 

linear operators, respectively. The unknown functions are represented as ∅𝑖(𝜂; 𝑞) with initial guess 𝜁𝑖0(𝜂) and convergence control 
parameters 𝑐𝑖.

It is noted that when 𝑞 = 0 then Eq. (21) gives initial guess whereas for 𝑞 = 1
𝓁

final solution is formed.

∅𝑖(𝜂; 0) = 𝜁𝑖0(𝜂), ∅𝑖
(
𝜂; 1

𝓁

)
= 𝜁𝑖(𝜂),

where in q-modified homotopy analysis method there is freedom of choice for selection of 𝜁𝑖0(𝜂), 𝕃𝑖 and ℌ.

Step 2: Taylor’s series expansion

Expand the unknown functions ∅𝑖(𝜂; 𝑞) in form of Taylor series as

∅𝑖(𝜂; 𝑞) = 𝜁𝑖0(𝜂) +
∞∑
𝑗=1
𝜁𝑗 (𝜂)𝑞𝑗 , where 𝑖 = 1(1)4, (22)

and 𝜁𝑗 are as follows

𝜁𝑗 (𝜂) =
1
𝑗!
𝜕𝑗∅𝑖(𝜂; 𝑞)
𝜕𝑞𝑗

.

We substitute Eq. (22) in Eq. (21).

Step 3: Initial guesses

We assume that 𝜁𝑖0(𝜂), 𝕃 and ℌ are chosen such that the series (22) converges at 𝑞 = 1
𝓁

and the system becomes

𝜁𝑖(𝜂) = ∅𝑖
(
𝜂; 1

𝓁

)
= 𝜁𝑖0(𝜂) +

∞∑
𝑗=1
𝜁𝑗 (𝜂)

( 1
𝓁

)𝑗
, where 𝑖 = 1(1)4,

Step 4: Deforming homotopy

Differentiating Eq. (21) 𝑗 times with respect to q. We then set 𝑞 = 0 and divide the final equations by 𝑗! to obtain jth-order deformation 
equation as

𝕃[𝜁𝑗 (𝜂) − 𝜘𝑗𝑢𝑗−1(𝜂)] − 𝑐𝑖ℌ(𝜂)ℜ𝑗 (𝑢𝑗−1(𝜂)) = 0, where 𝑖 = 1(1)4,

and ℜ𝑗 are defined as

ℜ𝑗 (𝑢𝑗−1(𝜂)) =
1

(𝑗 − 1)!
𝜕𝑗−1(ℕ[∅𝑖(𝜂; 𝑞)])

𝜕𝑞𝑗−1

|||||𝑞=0
such that 𝜘𝑗 = 0 if 𝑗 ≤ 1 and 𝜘𝑗 = 𝓁 otherwise. It is to be emphasized here that the series solution obtained now will be dependent on 
unknown 𝑐𝑖’s i.e the series solution at jth-order will be of form 𝜁𝑖(𝜂, 𝑐𝑖) where 𝑖 =1, 2, 3 and 4 for four set of equations.

Step 5: Optimization

Substitute the jth-order approximate solution 𝜁𝑖(𝜂, 𝑐𝑖) in original Eq. (21) to obtain residual error as

ℝ(𝜂, 𝑐𝑖) =ℕ(𝜁𝑖(𝜂, 𝑐𝑖)), 𝑖 = 1(1)4.

Various methods can be utilized to find optimal value of convergence control parameters, here we use least square and Galerkin’s 
method.

In method of least square we write

𝔊(𝜂, 𝑐𝑖) =

𝑑

∫
𝑐

ℝ2(𝜂, 𝑐1)𝑑𝜂.

In order to minimize 𝔊(𝜂, 𝑐𝑖) we use

𝜕𝔊
𝜕𝑐𝑖

= 0, 𝑖 = 1, 2, 3, 4.

In case of Galerkin’s method, following system is solved for optimized values of 𝑐𝑖 ’s

𝑑

∫
𝑐

ℝ
𝜕𝜁𝑖

𝜕𝑐𝑖
𝑑𝜂 = 0, 𝑖 = 1, 2, 3, 4.

Approximate values of 𝑐𝑖 ’s are determined by choosing c and d from problem domain. By plugging back the obtained optimal 
parameters 𝑐𝑖’s in jth-order approximate solutions, more optimized solutions 𝜁𝑖(𝜂) are obtained. The solution mechanism is further 
7

presented in block diagram form in Fig. 2.
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Fig. 2. Block diagram of optimal q-HAM.

4. Convergence analysis

In this section convergence of the solution obtained through optimal q-homotopy analysis method is discussed. For solution 
purpose of Eq. (10) along with boundary conditions in Eq. (14) we choose the linear operators as

𝕃𝐹 = 𝐹 ′′′(𝜂), 𝕃𝐺 =𝐺′′(𝜂), 𝕃𝜃 = 𝜃′′(𝜂), 𝕃𝜙 = 𝜙′′(𝜂),

with initial guess

𝐹 (0) =𝑊 𝑠+𝐴1𝜂 +
𝐴2 −𝐴1

2
𝜂2, 𝐺(0) = 1 − 𝜂

𝜃(0) =
𝔹1𝔹2 −𝔹1 −𝔹1𝔹2𝜂

𝔹2 −𝔹1 +𝔹1𝔹2
, 𝜙(0) = 1 − 𝜂

We now use the optimal q-homotopy analysis method as described in Section 3, where subscript 1, 2, 3 and 4 will correspond to 
𝐹 , 𝐺, 𝜃, and 𝜙, respectively.

The optimal values of convergence control parameters are obtained as

𝑐𝐹 = −0.867619, 𝑐𝐺 = 1.27101, 𝑐𝜃 = −5.31998 × 10−6, 𝑐𝜙 = −1.43105.

Plot of averaged squared residual errors is also depicted in Fig. 3 till 35𝑡ℎ order of approximation. It is noted that with in-

crease in order, squared residual errors decreased substantially. Moreover, squared residuals at various orders are also shown for 
𝐹 (𝜂), 𝐺(𝜂), 𝜃(𝜂), and 𝜙(𝜂) separately in Table 3.

5. Results and discussion

This section is focused on graphical analysis of blood hybrid nanofluid flow through arteries. Axial, radial and tangential profiles 
of velocity are studied for a comprehensive analysis of blood velocity. In Figs. 4(a), 4(b) and 5(a) it is observed that axial, radial and 
tangential velocity decreases with increasing volume fraction of uranium dioxide when copper volume fraction remains constant. 
Higher density of uranium dioxide in comparison with other nanoparticles (see Table 2) results in velocity drag which causes 
decrease in velocity with increasing 𝜑𝑈𝑂2

. Whereas, it is also worth mentioning that with addition of higher volume fraction of 
copper 𝜑𝐶𝑢 = 0.38, velocity profile decreases when compared with lower volume fraction i.e. 𝜑𝐶𝑢 = 0.30. In Fig. 5(b) and 5(c), 
temperature of blood hybrid nanofluid decreases while concentration increases with increase in 𝜑𝑈𝑂2

when 𝜑𝐶𝑢 is kept constant. 
8

As thermal conductivity of 𝑈𝑂2 is least as seen in Table 2, hence it causes temperature drop in the hybrid nanofluid. We further 
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Fig. 3. Plot of squared residual error against order of approximation.

Table 3

Errors at various orders of approximations when 𝑀 = 1.3, 𝐵 = 2.9, 𝑅∗ = 0.2, 𝑃𝑟 =
12, 𝛿1 = 0.1, 𝜎𝑡 = 0.2, 𝑆𝑐 = 1.3, 𝐸𝑡 = 0.8, 𝐴1 = 1.1, 𝐴2 = 1.2, 𝑊 𝑠 = 1.3, 𝔹1 = 0.9, 𝔹1 =
0.1 and �̃� = 1.5.

Order of approx. 𝐹 (𝜂) 𝐺(𝜂) 𝜃(𝜂) 𝜙(𝜂)

4 0.0193619 0.0695947 1.789 × 103 0.259179
8 0.00030931 0.00012437 0.107269 0.00474783
16 6.28 × 10−8 2.17 × 10−9 1.96 × 10−9 8.91 × 10−7

18 7.20 × 10−9 1.54 × 10−10 2.66 × 10−11 9.53 × 10−8

22 9.35 × 10−11 6.28 × 10−13 4.21 × 10−15 9.58 × 10−10

28 1.32 × 10−13 4.86 × 10−16 9.19 × 10−21 1.70 × 10−12

32 1.64 × 10−15 7.32 × 10−18 1.44 × 10−22 2.07 × 10−14

34 1.82 × 10−16 7.88 × 10−19 3.18 × 10−23 2.99 × 10−15

Fig. 4. Axial and radial velocity for different volume fractions of Cu.

check the temperature and concentration of blood flow when volume fraction of 𝐶𝑢 is increased. It is observed that for higher 𝜑𝐶𝑢
temperature decreased and in contrast concentration of blood increased.

Skin friction, rate of heat transfer and mass transfer are shown in Figs. 6(a), 6(b) and 6(c) for increasing effect of 𝜑𝑈𝑂2
on blood 

at x-axis. Skin friction is observed under influence of increasing magnetic parameter 𝑀 , rate of heat transfer against increasing 
radiation parameter 𝑅∗ and mass transfer with increasing effect of activation energy parameter 𝐸𝑡. In this sense most important 
parameters are considered to influence 𝐶𝑓 , 𝑁𝑢 and 𝑆ℎ for brief analysis of results. Firstly, we analyze how increase in 𝜑𝑈𝑂2

on x-axis 
effects the skin friction, heat and mass transfer. As 𝜑𝑈𝑂2

increases, skin friction and mass transfer of blood decreases whereas heat 
transfer increases. Secondly, effect of 𝑀, 𝑅∗ and 𝐸𝑡 are noted. It is observed here that 𝑀 and 𝐸𝑡 decreased the effect of higher 𝜑𝑈𝑂2
while 𝑅∗ increases the effect on Nusselt number. And finally, volume fraction of copper is increased from 0.10 to 0.15. Skin friction 
and heat transfer are enhanced with addition of more copper in hybrid blood nanofluid and mass transfer rate is reduced with higher 
9

𝜑𝐶𝑢.
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Fig. 5. Tangential velocity, temperature and concentration for different volume fractions of Cu.

Table 4

Percentage rate of change in physical quantities when 𝜑𝑈𝑂2
= 0.01.

Property 𝜑𝐶𝑢 = 0.1 𝜑𝐶𝑢 = 0.15 Current Experimental [22]

Skin friction 6.01488 7.16676 19.15% -

Heat transfer 1.97435 2.2412 13.52% 13.56%

Mass transfer 1.3769 1.3269 -3.63% -

Figs. 7(a), 7(b), 8(a), 8(b), 9(a) and 9(b) depict comparative effects of different nanoparticles, that is 𝐶𝑢, 𝐶𝑢𝑂 and 𝐴𝑙2𝑂3 on 
velocity, temperature, concentration, skin friction, mass and heat transfer of blood. 𝐶𝑢𝑂 shows least axial, radial and tangential 
velocity when compared with 𝐶𝑢𝑂 and 𝐴𝑙2𝑂3. Temperature of blood hybrid nanofluid is least in case of 𝐶𝑢 and highest in case of 
𝐴𝑙2𝑂3. Moreover, skin friction of blood with arterial wall is maximum when 𝐶𝑢 nanoparticles are used while minimum skin friction 
is observed in case of 𝐴𝑙2𝑂3. Similarly, heat transfer rate through blood is most enhanced in case of 𝐶𝑢 nanoparticles and minimum 
when 𝐴𝑙2𝑂3 nanoparticles are added along with 𝑈𝑂2. As 𝐶𝑢 nanoparticles offers highest thermal conductivity in comparison with 
other nanoparticles hence it results in more heat transfer.

In order to sum up the analysis as a whole, the percentage change of skin friction, heat and mass transfer is calculated numerically 
and compared with experimental results in Table 4. It is observed that skin friction of blood with arterial walls was increased by 
19.15% when copper volume fraction increased from 0.1 to 0.15. Similarly, rate of heat transfer through blood flow increased 
by 13.52% and mass transfer through arteries was decreased by 3.63%. Furthermore, the percentage increase of heat transfer 
numerically is in agreement with experimental results.

6. Conclusion

Main focus of current study is numerical and experimental analysis of hybrid blood-nanofluid. This study paves a way for medical 
sciences to characterize and optimize blood flow through arteries both theoretically and experimentally. A mathematical model is 
devised to depict rheological blood flow through arterial walls. Skin friction with walls that occur due to nanoparticles addition is also 
taken into account. Heat and mass transfer of blood through arterial walls is studied and compared with experimental data. In order 
to solve the modeled unsteady non-linear flow problem a new technique is employed that combines q-homotopy analysis method 
10

with Galerkin’s and least square optimizers. The computed average squared residual errors justify the validity of proposed scheme. 
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Fig. 6. Skin friction, heat transfer and mass transfer for different volume fractions of Cu.

Fig. 7. Axial and radial velocity for different nanoparticles.

Velocity, temperature and concentration of blood flowing through arteries is computed for various values of volume fraction 𝜑𝐶𝑢
with increasing volume fraction 𝜑𝑈𝑂2

. Different nanoparticles like copper, copper oxide and aluminum oxide are also compared with 
elevated levels of uranium dioxide volume fraction 𝜑𝑈𝑂2

in blood. Increase in volume fraction of uranium dioxide 𝜑𝑈𝑂2
decreases 

radial, axial, tangential velocity and temperature of blood whereas concentration increases in contrast. Moreover, aluminum oxide 
nanoparticles resulted in highest velocity (axial, radial) and blood hybrid nanofluid temperature when compared with copper and 
copper oxide. As higher volume fraction of copper was added, the effects of increasing 𝜑𝑈𝑂2

on velocity (radial, axial and tangential) 
and temperature are reduced. On contrary, higher volume fraction of copper increased the effect of 𝜑𝑈𝑂2

on blood concentration. 
Skin friction of blood with arterial walls and heat transfer through blood increased with higher levels of copper nanoparticles in 
hybrid nanofluid while mass transfer decreased in comparison. Highest tangential velocity, skin friction with arterial walls and heat 
transfer is caused by addition of copper nanoparticles with uranium dioxide in blood. With increase in volume fraction of copper 
nanoparticles in uranium effected blood, skin friction increased by 19.15%, heat transfer elevated by 13.52% and mass transfer was 
11

decreased by 3.63%. The findings of this study are consistent with experimental data as well. The current investigation can be further 



Heliyon 9 (2023) e16578M. Qayyum, S. Afzal, S.T. Saeed et al.

Fig. 8. Tangential velocity and temperature for different nanoparticles.

Fig. 9. Skin friction and Nusselt number for different nanoparticles.

extended in future for oil based nanofluids in order to enhance the fuel efficiency and optimize the entropy generation by taking into 
account the heat and mass transfer effects.
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