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ABSTRACT: Bioinformatics approaches to examine gene-gene models provide a means to discover interactions between
multiple genes that underlie complex disease. Extensive computational demands and adjusting for multiple testing make
uncovering genetic interactions a challenge. Here, we address these issues using our knowledge-driven filtering method,
Biofilter, to identify putative single nucleotide polymorphism (SNP) interaction models for cataract susceptibility, thereby
reducing the number of models for analysis. Models were evaluated in 3,377 European Americans (1,185 controls, 2,192
cases) from the Marshfield Clinic, a study site of the Electronic Medical Records and Genomics (eMERGE) Network, using
logistic regression. All statistically significant models from the Marshfield Clinic were then evaluated in an independent
dataset of 4,311 individuals (742 controls, 3,569 cases), using independent samples from additional study sites in the
eMERGE Network: Mayo Clinic, Group Health/University of Washington, Vanderbilt University Medical Center, and
Geisinger Health System. Eighty-three SNP-SNP models replicated in the independent dataset at likelihood ratio test P <
0.05. Among the most significant replicating models was rs12597188 (intron of CDH1)–rs11564445 (intron of CTNNB1).
These genes are known to be involved in processes that include: cell-to-cell adhesion signaling, cell-cell junction organization,
and cell-cell communication. Further Biofilter analysis of all replicating models revealed a number of common functions
among the genes harboring the 83 replicating SNP-SNP models, which included signal transduction and PI3K-Akt signaling
pathway. These findings demonstrate the utility of Biofilter as a biology-driven method, applicable for any genome-wide
association study dataset.
Genet Epidemiol 39:376–384, 2015. Published 2015 Wiley Periodicals, Inc.∗
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Introduction

Robust computational methods to explore gene-gene interac-
tions are essential for elucidating the complex nature of com-
mon human traits. Genome-wide association study (GWAS)
[Hindorff et al., 2009] has been the traditional paradigm for
identifying main effects of genetic variants across the genome
for one or more phenotypes and has yielded insufficient ex-
planation about variation of common, complex traits [Eichler
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et al., 2010; Frazer et al., 2009; Maher, 2008; Manolio et al.,
2009; Zuk et al., 2012]. Genetic interaction analysis offers an
additional tool for exploring genetic association, and testing
models that allow for interactions between genetic variants
reflects the complex nature of biology [Cordell, 2009; Eichler
et al., 2010; Frazer et al., 2009; Maher, 2008; Zuk et al., 2012].
Gene products do not function in isolation; rather, they phys-
ically interact with other proteins, perform regulatory roles,
and operate dynamically in one or more pathway.

Bioinformatics methods have expanded in recent years
to include searches for genetic interactions, yet many
challenges remain in these analyses including extensive
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computational and time requirements as well as a high
penalty for correction of multiple comparisons when ex-
haustively testing pairwise combinations of all genome-wide
SNPs. One method for overcoming this challenge is to filter
the number of loci investigated, thus reducing the number
of tests. Two main strategies for filtering include: (1) limiting
the interaction analyses to only include one or more variants
that have demonstrated an association with the trait through
GWAS or candidate gene studies; and (2) filtering SNPs based
on biologically established gene-gene interactions [Sun et al.,
2014].

Knowledge-based filtering decreases the investigation
search space to biologically related gene pairs. Previous stud-
ies have shown success in applying prior knowledge to genetic
interaction analyses [Kim et al., 2014; Ma et al., 2012; Wang
et al., 2013]. Biofilter software [Bush et al., 2009; Pendergrass
et al., 2013a; Ritchie, 2011] was developed to decrease the
search space required for investigating genetic interactions
using knowledge across numerous biological databases and
has already been adopted for use in studies of complex dis-
eases and traits such as multiple sclerosis [Bush et al., 2011;
Ritchie, 2009], HIV pharmacogenetics [Grady et al., 2011],
HDL cholesterol [Turner et al., 2014a], and other lipid traits
(Holzinger et al., in preparation). Biofilter utilizes biologi-
cally validated knowledge of the relationships between sets
of genes to build pairwise SNP-SNP models from function-
ally linked gene-gene pairs. This process takes advantage of
biological knowledge of gene-gene relationships rather than
requiring loci to have demonstrated a main effect, allowing
for the detection of those variants that are only found to be as-
sociated with a given phenotype when acting in combination
with another locus. In this study, we provided Biofilter with
a set of genome-wide SNPs (�500,000). By accessing biolog-
ical knowledge available from open-access pathway, ontol-
ogy, protein interaction, and gene function online databases,
Biofilter identified 400 knowledge-driven gene-gene models
with approximately 260,000 SNP-SNP models correspond-
ing to the 400 gene pairs. This process reduced the search
space from the over 100 billion SNP-SNP models required
for an exhaustive pairwise analysis. Filtering based on knowl-
edge decreases the investigation to only gene pairs that have
established biological relationships with one another.

We applied this method to age-related cataract, which is
the leading cause of blindness worldwide [Black and Wood,
2005] and is responsible for approximately 60% of Medi-
care costs related to vision [Ellwein and Urato, 2002]. Sum-
mary prevalence estimates indicate that 17.2% of Ameri-
cans that are 40 years and older have cataract in either eye
and 5.1% have had pseudophakia/aphakia (previous cataract
surgery). Several loci have previously been found to be as-
sociated with age-related cataract, and it has been suggested
that as many as 40 genes may be involved [Hejtmancik and
Kantorow, 2004]. Our recent GWAS of age-related cataract
revealed novel loci associated with this trait using electronic
medical record (EMR) data [Ritchie et al., 2014]. Despite
the identification of numerous associated loci, the molecular
mechanisms that lead to age-related cataract remain unclear
[Asbell et al., 2005]. However, many genes that have been

implicated function together in pathways and interact with
one another [Asbell et al., 2005; Bao et al., 2012; Cho et al.,
2007; Chong et al., 2009; Martinez and de Iongh, 2010]. Inves-
tigation of SNP-SNP interactions for age-related cataract is
relevant, given the molecular complexity involved in lens de-
velopment and maintenance. A recent exploratory gene-gene
interaction analysis of age-related cataract implicated genetic
interactions in the genetic etiology of the complex trait [Pen-
dergrass et al., 2013b]. However, no replication in a separate
dataset was performed in those analyses for validation of
results. Here, we present findings of the first genetic interac-
tion study for age-related cataract with replication across two
separate studies.

Using PLATO software [Grady et al., 2010], we tested the
Biofilter-generated SNP-SNP models for association with
age-related cataracts in discovery and replication datasets
as part of the NHGRI-funded electronic MEdical Records
& GEnomics (eMERGE) Network [Crawford et al., 2014;
Gottesman et al., 2013; McCarty et al., 2011]. We identified
83 SNP-SNP models that replicated across the discovery and
replication datasets. The results discussed herein demonstrate
the utility of Biofilter as a robust method for elucidating the
genetic interactions underlying complex traits such as age-
related cataract.

Methods

Phenotypic Data

The eMERGE Network implemented an electronic pheno-
type algorithm to select cataract cases and controls [McCarty
et al., 2011]. Age-related cataract as a phenotype was se-
lected by Marshfield Personalized Medicine Research Project
(PMRP) as its primary phenotype. The algorithm, which
uses diagnostic (ICD-9) and procedure codes (CPT) as well
as natural language processing (NLP), was developed by the
Marshfield PMRP investigators [Peissig et al., 2012]. The
five participating study sites from eMERGE included in this
study are Marshfield PMRP [McCarty et al., 2008], Group
Health/University of Washington, Vanderbilt University [Ro-
den et al., 2008], Mayo Clinic from eMERGE I, and Geisinger
Health System from eMERGE II. In eMERGE I, each of the
participating studies applied electronic phenotyping algo-
rithms to identify cases and controls of a specific disease or
individuals with a specific phenotype based on their respec-
tive EMRs [McCarty et al., 2011]. DNA samples from individ-
uals selected for study were then genotyped for the original
phenotype of interest, and these same individuals were avail-
able for additional electronic phenotyping with new algo-
rithms including age-related cataract. No additional GWAS-
level genotyping was performed in eMERGE II; thus, addi-
tional eMERGE study sites joined the network with existing
GWAS data available on study participants linked to EMRs
which enabled additional electronic phenotyping [Gottes-
man et al., 2013].

Cataract cases and controls had to meet the following in-
clusion criteria: cases—aged 50 years and older at the time
of diagnosis or surgery, and controls—ages 50 years or older
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at the time of most recent eye exam and had an eye exam in
the previous 5 years. Controls had no diagnostic codes for
cataract or evidence of cataract surgery. Cases were identified
as “surgical” or “diagnosis-only.” Surgical cases had under-
gone a cataract extraction in at least one eye. Diagnosis-only
cases were required to have either cataract diagnoses on two
or more dates, or have one diagnosis date and one or more
mention of cataracts identified by NLP of electronic chart
notes or paper records converted to electronic using optical
character recognition [Peissig et al., 2012; Rasmussen et al.,
2012]. Validation of case/control status was conducted at
each site through manual abstraction of random samples of
patient charts.

All participants were collected at their respective eMERGE
site with appropriate patient protections and IRB protocols
in place.

Genotypic Data

Genome-wide genotyping was been performed on ap-
proximately 18,000 samples across the eMERGE I study
sites at the Broad Institute and at the Center for Inher-
ited Disease Research (CIDR) using the Illumina 660W-
Quad or 1M-Duo BeadChips. DNA samples from Marsh-
field Clinic, Group Health/University of Washington, Mayo
Clinic, and Vanderbilt University were genotyped using the
Illumina 660W-Quad array as previously described [Turner
et al., 2011b]. The eMERGE discovery dataset prequality con-
trol (QC) included 3,912 (1,356 controls, 2,556 cases) from
the Marshfield Clinic. The pre-QC replicating dataset in-
cluded 2,345 samples (110 controls, 2,193 cases) from Group
Health/University of Washington, 952 (346 controls, 606
cases) from Mayo Clinic, and 185 (80 controls, 105 cases)
from Vanderbilt University. Added to the replication dataset
were samples from eMERGE II by the Geisinger Health Sys-
tem, genotyped on Illumina Human Omni Express (875 pre-
QC samples: 221 controls, 654 cases). Due to incomplete
overlap of SNPs genotyped on the Illumina 660W Quad plat-
form and the Omni HumanExpress platform, we used im-
puted data for the Geisinger samples and genotype data for
all other sites. In eMERGE, genetic data are imputed to 1,000
genomes reference panel (March 2012 release) [Abecasis et al.,
2012]. Imputation for all eMERGE sites was performed on
datasets separated by site and platform [Verma, 2014] us-
ing IMPUTE2 software [Howie et al., 2009] on the phased
genotyped data (SHAPEIT2 was used for phasing) [Delaneau
et al., 2013]. For the purpose of this study, we used hard calls
derived from imputed data where the genotypes with a prob-
ability score >0.9 were reported in PLINK [Purcell et al., 2007]
binary files.

Data were cleaned using the eMERGE QC pipeline devel-
oped by the eMERGE Genomics Working Group [Zuvich
et al., 2011]. This process includes evaluation of sample and
marker call rate, sex mismatch, duplicate and HapMap con-
cordance, batch effects, Hardy-Weinberg equilibrium, sample
relatedness, and population stratification. For the discovery
dataset, QC thresholds included: marker call rate > 99%, sam-
ple call rate > 99%, and minor allele frequency (MAF) > 5%.

For the replication dataset, QC thresholds included: marker
call rate > 98%, sample call rate > 99%, and there was no MAF
threshold so as to allow for testing of the highest number of
quality variants in the replication analysis. After QC, 3,377
samples and 499,456 SNPs were used for discovery analysis,
and 4,311 samples and 1,930 SNPs were included for repli-
cation (Table 1). The SNPs included for replication analysis
were those found in significant models among the discovery
dataset only. The 3,377 samples from the Marshfield PMRP
included: 3,350 European Americans, one African American,
eight Hispanic Americans, and 18 samples of other descent.
The 4,211 samples in the replication dataset included: 2,330
samples from Group Health (2,143 European Americans, 81
African Americans, 11 Hispanic Americans, and 95 samples
of other descent), 923 samples from Mayo Clinic (894 Eu-
ropean Americans, seven African Americans, two Hispanic
Americans, and 20 samples of other descent), 183 samples
from Vanderbilt University (158 European Americans, 22
African Americans, and three samples of other descent),
and 875 samples from Geisinger Health System (866 Euro-
pean Americans, five African Americans, and four Hispanic
Americans). All genotype data and a detailed QC report for
each individual study site, as well as the merged eMERGE
dataset, can be found on dbGaP and the detailed eMERGE QC
pipeline can be found in Turner et al. [2011b] and Zuvich et al.
[2011].

Biofilter

Biofilter [Bush et al., 2009; Pendergrass et al., 2013a]
was developed for high-throughput annotation, model
building, and filtering of genetic data through auto-
mated access to multiple biological databases. Biofilter soft-
ware is open source and freely available for noncom-
mercial research institutions. For more information, see:
http://ritchielab.psu.edu/ritchielab/software/.

Biofilter accesses several publicly available biological
knowledge databases through the external database com-
piler called the Library of Knowledge Integration (LOKI)
[Pendergrass et al., 2013a]. Data sources utilized by Biofil-
ter, and compiled through LOKI, include information about
biological networks, connections, and/or pathways for deter-
mining relationships between genes. Sources compiled within
LOKI include: the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [Ogata et al., 1999], Reactome [Matthews et al.,
2009], Gene Ontology (GO) [Ashburner et al., 2000], protein
families database [Punta et al., 2012], NetPath [Kandasamy
et al., 2010], Biological General Repository for Interaction
Databases (BioGrid) [Stark et al., 2011], and the Molecular
INTeraction Database (MINT) [Licata et al., 2012]. Addition-
ally, Biofilter maps SNPs to genes using knowledge from the
National Center for Biotechnology (NCBI) dbSNP [Sherry
et al., 2001] database.

Building SNP-SNP models with Biofilter for our analyses
involved several steps. First, QC-filtered SNPs were mapped
to genes using Biofilter with a 50 kb window upstream and
downstream of each gene to encompass potential regulatory
regions close to the genes. Gene-gene pairs were established
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Table 1. Study population characteristics

No. of cases No. of controls Total

eMERGE study site Male Female All Male Female All Male Female All

Discovery Marshfield 934 1,258 2,192 474 711 1,185 1,408 1,969 3,377
Replication Mayo, Group Health/University of Washington,

Vanderbilt, Geisinger
1,726 1,843 3,569 400 342 742 2,126 2,185 4,311

Total All 2,600 3,101 5,761 874 1,053 1,927 3,534 4,154 7,688

Sample sizes are given for cataract cases, controls, and total population for the discovery and replication datasets. Sample information for discovery and replication samples after
quality control.

Figure 1. Steps involved in generating Biofilter SNP-SNP models. (A) Biofilter accessed LOKI-compiled databases with information about
connections between genes (for the example shown here: connections within a pathway). (B) Biofilter-generated gene-gene models based on
connections between genes that were validated by five or more databases. (C) For each gene-gene model, pairwise SNP-SNP models were
created for each unique combination of loci across a gene pair.

by Biofilter using knowledge from the databases within LOKI
(Fig. 1A and B). It was required that a link between a gene-
gene pair be validated in five or more separate databases (im-
plication index � 5) within LOKI for a gene-gene model to be
considered for analysis. All gene-gene models were generated
because of their connections to one another, independent of
phenotype. Once gene-gene models were verified by five or
more databases, pairwise SNP-SNP combinations of all loci
within each gene-gene model were created (Fig. 1C) and out-
put for regression using PLATO software [Grady et al., 2010].
Because we allowed for a 50 kb gene boundary, it was possible
for a given SNP to map to more than one gene, and thus, to
be paired with SNPs within the same gene. Therefore, mod-
els containing two SNPs within the same gene were dropped
from our results.

Statistical Analyses

Pairwise SNP-SNP model tests of association were per-
formed using logistic regression with PLATO assuming an
additive genetic model for 259,845 Biofilter-generated SNP-
SNP models in the Marshfield Clinic discovery dataset. To
determine the significance of the interaction term, we per-
formed a likelihood ratio test (LRT) between the full (Y = β0

+ β1SNP1 + β2SNP2 + β3SNP1×SNP2) and reduced (Y = β0 +

β1SNP1 + β2SNP2) models. We calculated principal compo-
nents (PCs) using program Eigenstrat [Price et al., 2006] to
identify any potential population substructure and adjusted
our analyses for the first three PCs, sex, and year of birth.

The independent replication dataset included samples
from Group Health/University of Washington, Vanderbilt
University, Mayo Clinic, and Geisinger Health System. We
targeted an initial set of 2,452 SNP-SNP models that passed
an LRT P-value threshold of P < 0.01 in the Marshfield dis-
covery dataset for replication. There were 2,149 unique SNPs
in the 2,452 discovery-significant SNP-SNP models. After ap-
plying a QC filter (marker call rate: 98%) in the replication
set, 1,930 SNPs remained, and thus, 2,092 SNP-SNP mod-
els (of the 2,452 discovery-significant models) were available
for testing in the replication dataset. All methods and ad-
justments used for the discovery dataset were applied for the
replication analyses in addition to adjusting for study site.
The pipeline used for the discovery and replication analysis is
shown in Figure 2. Permutation tests were performed for all
2,092 SNP-SNP models in the replication dataset. For permu-
tation, the phenotype was randomly shuffled 1,000 times and
an LRT P-value was calculated for each model per 1,000 per-
mutations. The permuted P-value for each SNP-SNP model
was determined as the fraction of times any permuted P-value
had a lower P-value than the LRT P-value derived from the
natural phenotype.

Results

In the discovery dataset, 2,452 SNP-SNP models were sig-
nificant with an LRT P-value < 0.01, and these were tested
in the independent replication dataset. Of these, 83 models
were significant in the replication dataset with an LRT P-value
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Figure 2. Flow chart of steps in the discovery and replication analyses.

< 0.05 (supplementary Table S1). Additionally, for all of the
83 models, the permuted P-value was � 0.05. There were 22
SNP-SNP models that replicated with an LRT P-value < 0.01
(Fig. 3).

Thirteen replicating models were significant with an LRT
P-value < 0.001 in the discovery sample and three models
with LRT P < 0.001 in the replication sample. Figure 4 shows
the replicating SNP-SNP models with the 10 lowest LRT P-
values for the discovery (Fig. 4A) and replication (Fig. 4B)
datasets.

The SNPs within the model with the lowest LRT P-value
in the discovery group were rs2303436 (a missense SNP in
DLAT) and rs9811074 (near PDHB; discovery LRT P = 2.9 ×
10–4, replication LRT P = 0.013; Fig. 4A). Other significant
models in the discovery group included intronic SNP
rs9320004 (KIAA1468) and rs527459 (542 bp 3′ of PIGO) as
well as rs10789856 (intron of DIXDC1) and rs9811074 (near
PDHB).

The replicating SNP-SNP model with the lowest LRT P-
value in the replication sample was rs1011173 (intron of
ACSBG1) and rs6037336 (near EBF4; discovery LRT P =

0.0031, replication LRT P = 3.9 × 10–4; Fig. 4B). Other
top SNP-SNP models were rs4333645 (near TMEM249) and
rs2025072 (intron of CPSF2) as well as rs12597188 and
rs11564445 in CDH1 and CTNNB1, respectively.

In order to identify common function across genes in
all replicating models, SNPs in every replicating SNP-SNP
model were mapped to their closest gene. Ninety unique
genes were identified as harboring SNPs in the 83 SNP-
SNP models. These 90 genes were subsequently annotated
with all group information (such as pathway) using Biofilter.
Groups linked to the largest number of genes included: signal
transduction (8 genes), adaptive immune system (12 genes),
pathways in cancer (12 genes), innate immune response
(11 genes), apoptosis (10 genes), DNA replication (10 genes),
extracellular vesicular exosome (9 genes), microRNAs in
cancer (9 genes), positive regulation of cell proliferation
(9 genes), proteoglycans in cancer (9 genes), PI3K-Akt sig-
naling pathway (8 genes), EGFR signaling pathway (8 genes),
focal adhesion (8 genes). Figure 5 shows two examples of
these common groups and the genes with which they were
annotated.

Finally, we used the Tissue-specific Gene Expression and
Regulation (TiGER) database [Liu et al., 2008; Yu et al.,
2006] to determine how many of the genes in our models
are expressed in the eye. Though cataracts develop in the lens
specifically, no comprehensive analysis of gene expression in
the lens has been published, to the authors’ knowledge, so
we focused on gene expression in the eye. We found that,
of the identified 90 genes, 61 (�68%) are expressed in the
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Figure 3. All replicating SNP-SNP models with LRT P < 0.01 in both the replication and discovery datasets. SNP-SNP models are shown above
with the –log10 of the P-value in the track directly beneath (discovery values are in blue and replication values are in red). Visualization was
performed using Synthesis View software [Pendergrass et al., 2010].

Figure 4. Ten most significant replicating SNP-SNP models, ranked by significance level in the discovery (A) and replication (B) samples. For
both figures, the SNP-SNP models and their nearest genes are listed to the left. The track to the right of each displays the –log10 of the P-value for
the discovery (blue) and replication (red) groups. Figures were made using Synthesis View.

human eye. This is a far greater percentage than the fraction
of all genes that are expressed in the eye (289) out of all the
genes that were analyzed for the compilation of the database
(�20,000), which is �1%. Thus, we see a greater proportion
of genes expressed in the eye represented in our final set of
genes.

Discussion

In this first replication study of gene-gene interactions as-
sociated with age-related cataract, we found 83 SNP-SNP
models that replicated across two independent datasets with
an LRT P-value less than 0.01 in the discovery sample and
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Figure 5. Common groups relating to genes in replicating SNP-SNP models. Figures display two of the most common groups (yellow) and the
genes that Biofilter annotated with that group (blue): (A) signal transduction and (B) PI3K-Akt signaling pathway. Solid lines indicate group-gene
connection, dotted line indicates gene-gene connection from the interaction analysis. Plots were generated using Cytoscape software [Saito et al.,
2012].

0.05 in the replication sample. Many of the replicating SNP-
SNP models were in or near genes expressed in the eye and/or
relating to lens development and maintenance as well as the
development of cataracts, as further described below.

The anterior surface of the lens is made up of a single layer
of epithelial cells that divide and differentiate throughout life
into fiber cells, which make up the largest part of the lens
[Goodenough, 1992]. As differentiation occurs, fiber cells
experience unique loss of the nucleus and other organelles
in addition to high expression of crystallin proteins, both of
which are essential for transparency of the lens as well as a
high refractory index [Benedek, 1971]. Because the lens is
an avascular tissue and fiber cells lack organelles, cell-to-cell
junctions, both among-fiber cells as well as between-fiber
cells and lens epithelial cells, are crucial for cell maintenance
and survival including nutrient delivery and metabolic waste
removal [Donaldson et al., 2001]. Both gap junctions and
adherens junctions are present in lens cells [Cooper et al.,
2008]. Studies have shown that mutations in genes encoding
gap junction connexin (Cx) proteins have led to cataracts in
mice [Gong et al., 1997; White et al., 1998] and are associated
with cataract development in humans [Wei et al., 2004; White
and Paul, 1999]. Adherens junctions and their components,
classical cadherins and interacting β-catenin, play a crucial
part in lens development and maintenance as well [Cooper
et al., 2008; Martinez and de Iongh, 2010; Pontoriero et al.,
2009].

Among the replicating model with the lowest LRT P-
value in the replication dataset were two intronic SNPs,
rs12597188 and rs11564445 which are in cadherin 1, type 1, E-
cadherin (CDH1), and catenin (cadherin-associated protein)
beta 1 (CTNNB1), respectively (Fig. 3B). CDH1 encodes E-
cadherin, a calcium-dependent glycoprotein that maintains
epithelial cell-cell adhesion at adherens junctions [Perez-

Moreno et al., 2003], and CTNNB1 encodes β-catenin, which
acts as an anchor protein for E-cadherin so as to maintain a
connection to intracellular actin. In addition to its role in ad-
herens junction formation, β-catenin also has known signal-
ing functions [Martinez and de Iongh, 2010]. β-catenin has
been shown to translocate to the nucleus and activate tran-
scription in complex with lymphoid enhancer-binding/T-
cell factor in response to Wnt signaling [Nusse, 2005]. The
Wnt/β-catenin pathway is known for regulating cell pro-
liferation, differentiation, as well as migration [Logan and
Nusse, 2004]. Normal Wnt/β-catenin signaling is thought to
be essential in the formation and maintenance of the lens
epithelium [Martinez and de Iongh, 2010]. The pathway’s
response to transforming growth factor beta (TGFβ) induc-
tion has been implicated in epithelial-mesenchymal transi-
tion (EMT) [Bao et al., 2012; Guarino et al., 2009], an event
that has been shown to lead to posterior capsular opacifica-
tion, also known as secondary cataracts, in humans [Apple
et al., 1992; Awasthi et al., 2009]. This process includes loss
of cell polarity and cell-cell adhesion, which involves down-
regulation of E-cadherin, transcriptional reprograming, and
migration.

Another pathway involved in induction of EMT by TGFβ

is the phosphatidylinositol-3-kinase (PI3K)/Akt pathway,
which has demonstrated importance in downregulation of
connexin-43 [Yao et al., 2008]. We found eight genes that
harbor the replicating SNP-SNP models that were annotated
with the PI3K/Akt pathway group (Fig. 5B). These results re-
inforce previous findings on the importance of typical func-
tion of E-cadherin, β-catenin, and the PI3K/Akt pathway in
lens maintenance.

Additional growth factors are crucial for lens develop-
ment and maintenance. The aqueous humor provides lens
cells with growth factors including FGF, IGF, PDGF, and
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epidermal growth factor (EGF), and these are important for
lens structure and polarity [Martinez and de Iongh, 2010].
Further, it is thought that these factors regulate cell prolif-
eration via the MAPK/Erk and PI3K/Akt pathways. “Signal
Transduction” was among the two most common groups,
with 15 genes relating to it (Fig. 5A). Signal transduction
can be considered a somewhat generic group into which a
large number of proteins fall. Nonetheless, the genes found
to relate to this group in our study are involved in specific
transduction events known to be related to cataract. Gene-
gene models found to relate to signal transduction here were
NOTCH1, which has demonstrated involvement in lens de-
velopment [Rowan et al., 2008] and NOTCH4 as well as EGF
and EGFR. The intronic SNPs of EGF and EGFR, rs3796947
and rs6954351, respectively, were among the five most signifi-
cant replicating models in the discovery dataset. EGF encodes
a mitogenic factor that acts by binding to the EGFR, encoded
by EGFR. EGF and EGFR are part of both the MAPK/Erk
and PI3K/Akt signaling pathways. Both factors are impor-
tant for epithelial cell proliferation, and previous findings
have demonstrated that EGFR RNAi treatment suppresses
proliferation of lens epithelial cells following cataract surgery
in rats [Huang et al., 2011].

Some limitations to our method may have decreased our
ability to identify additional genetic interactions predictive of
age-related cataract. The current application of Biofilter fo-
cuses on building models from protein-coding gene regions.
Future additions to the software, including incorporation of
regulatory regions, will allow identification of loci that fall
outside of the 50 kb gene window that may still be involved
in the expression of a trait. The challenge of genetic hetero-
geneity has yet to be addressed with this method as well. If
there are multiple disease loci spread across subsets of cases,
we would have had little power to detect them. Methods for
binning variants in genes and/or pathways may increase our
ability to identify more genetic interactions. Additionally,
the current approach considered genetic variation without
allowing for interactions with the environment. Incorporat-
ing exposure data with this approach will further elucidate
the complex underpinnings of age-related cataract.

The results described in this study are consistent with pre-
vious findings relating to lens cell maintenance and structure
as well as cataract development. Use of Biofilter decreased the
search space to identify and replicate putative SNP-SNP com-
binations. These results demonstrate the role of genetic inter-
actions in the development of complex phenotypes like age-
related cataract. Other genetic epidemiology studies would
benefit from the annotation, filtering, and model-building
functions of Biofilter.
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