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UAV swarm anticollision system is very important to improve the flight safety of the whole swarm formation, while the existing
system design methods are still insufficient in realizing autonomous and cooperative anticollision. Based on the cognitive game
theory, an intelligent decision-making and control method for UAV swarm anticollision is designed. Firstly, by using the idea of
swarm intelligence, basic flight behaviors of UAV swarm are defined as five basic flight rules, such as cohesion, following, self-
guidance, dispersion, and alliance. Further, the cognitive security domain of UAV swarm is constructed by setting the overall
anticollision rules of the swarm and the anticollision rules of individual members. On this basis, the anticollision problem of UAV
swarm is transformed into a game problem involving two parties, and the solution method of decision and control strategy set is
proposed. Finally, the stability of anticollision decision and control method is proved through eigenvalue theory. +e simulation
results show that the method proposed in this paper can effectively realize the autonomous cooperative anticollision of UAV
swarm and also has good algorithm real-time solution ability while ensuring flight safety.

1. Introduction

+e operational mission requirements such as cooperative
reconnaissance, cooperative tracking, and cooperative strike
faced by UAV autonomous cooperation determine that its
operational use mode is multi-aircraft swarm system [1, 2].
+e application of swarm enables UAV to cover a wide area
in less time in reconnaissance, search, and rescue tasks,
which greatly improves the use efficiency of UAV. However,
the increase in the number and density of space UAVs has
also brought great challenges to flight safety at the same time
[3, 4]. Autonomous flight and evasion control of swarm
system has become an urgent problem to be solved.

For a swarm system, there are currently two main
control methods: leader follower [5–7] and behavior control
[8–10]. +e idea of the leader follower method is to intro-
duce a leader and use the distributed control method to
control other followers in the swarm, so that the state (such
as speed) of all followers gradually follows the leader and
finally achieves consistency. In reference [7], considering
system noise and time delay, the coordination problem of

second-order definite topology multi-agent system with
leader is studied by using control theory. Behavior control
mainly draws lessons from the idea of swarm intelligence,
designs the motion behavior of swarm system based on
evolutionary mechanism, and has adaptive ability through
certain evolution and development. Among them, literature
[8] established a two-dimensional in-plane swarming al-
gorithm based on the UAV model of constant speed and
inclined turning. +e algorithm includes two basic rules:
alliance and cohesion. A great contribution of this paper is to
prove that the weight of the rules will determine the flight
behavior of the swarm.

At present, the commonly used swarm system avoidance
control methods mainly include geometric vectors [11, 12],
artificial potentials [13–15], and model predictive control
(MPC) [16–18]. Geometric vector method often has no
speed limit on the internal members of the swarm system,
which is not allowed by UAV, so it is mainly used in the
control of ground robot. +e artificial potential field method
regards the motion of UAV as the result of the interaction of
attraction and repulsion, but this method is easy to fall into
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local minimum. One of the main advantages of model
predictive control is that it can effectively solve the problems
of constraints or high dimension of the system, but the
amount of system calculation increases significantly with the
increase of the number of swarmmembers, which is difficult
to meet the real-time requirements [19].

In order to overcome the shortcomings of the above
methods, inspired by the idea of swarm intelligence in
reference [8], this paper studies the UAV swarm flight and
evasion control method based on rules. Firstly, the basic
flight rules of UAV members in the swarm are defined to
control the normal level flight of the swarm. On this basis,
the evasion action is regarded as another flight rule of the
swarm. By setting the corresponding rule weight coefficient,
two mechanisms of the whole and members are established
for swarm evasion guidance and control. Simulation results
show that the proposed method can effectively realize swarm
flight and evasion, and has good real-time performance.

2. Basic Flight Behavior Rules of Swarm

In order to control the normal flight and formation re-
construction of the swarm system, using the idea of swarm
intelligence for reference, the basic flight rules of UAV
members in the swarm system are abstracted as cohesion,
following, self-guidance, dispersion, and alliance.

2.1. Swarm Intelligence. Swarm intelligence is a computing
technology based on the behavior law of biological groups.
+ere are two main algorithms in this theoretical research
field: ant colony algorithm [20] (ACA) and particle swarm
optimization [21] (PSO). In the field of computer science
and application research, ant colony algorithm is a proba-
bility theory method to solve mathematical problems. It uses
graph theory to find optimization and optimal path. Dr.
Kennedy and Dr. Eberhart first proposed the particle swarm
optimization algorithm in 1995, inspired by the social be-
haviors such as predation of birds and fish. PSO algorithm is
similar to genetic algorithm in evolutionary computation,
but different from genetic algorithm, it has no evolutionary
mechanism such as crossover and mutation.

At present, because ant colony algorithm and particle
swarm optimization algorithm have many advantages, they
are widely used in research and application fields. At the
same time, swarm intelligence method [22] is also gradually
rising. Based on the traditional swarm intelligence algo-
rithm, this method aims to realize the distributed intelligent
cooperative control of multirobots, multiagents, and mul-
tiaircraft platforms. Swarm intelligence algorithm regards
each agent/member in the swarm system as an individual in
the biological system. Individuals with the same or similar
characteristics form a new swarm. +e interaction between
swarm individuals or swarms adopts the influence mecha-
nism of traditional swarm intelligence algorithm. In this
way, the swarm intelligent algorithm will have the charac-
teristics of simple algorithm, easy to meet real time, high
degree of intelligence, and good robustness.

2.2. Basic Flight Rules for Internal Members of the Swarm
System. +e geometric parameters of single and two UAV
members in the swarm system are shown in Figures 1 and 2
respectively.

According to the six degree-of-freedom motion equa-
tions of UAV [23], the partial velocities of each member in
the swarm system in the three axes in the geographic co-
ordinate system are _x, _y, _z, respectively:

_x � V cos θ cos ψ, (1)

_y � V cos θ sin ψ, (2)

_z � V sin θ, (3)

where x, y, z are the three-axis coordinates of the UAV, ψ, θ
are the track deflection angle and track inclination angle of
the UAV, V is the flight speed scalar of the UAV, and the two
angular speeds _ψ, _θ of the UAV are expressed by the fol-
lowing formula:

_ψ �
κψ

V cos θ
, (4)

_θ �
κθ
V

, (5)
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Figure 1: Geometric parameters of a single UAV member.
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Figure 2: Relative geometric parameters of two UAV members.
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where κψ and κθ are the acceleration term coefficients of
angular velocity.

In Figure 2, ψr, θr, Rr are the relative track deflection
angle, relative track inclination angle, and relative distance
on the sight distance of two UAV members, respectively.
Make the angular velocity ψ

·
, θ

·

of UAVs in the swarm
proportional to the deviation between the expected attitude
angle and the current attitude angle:

κψ � k1Δψd, (6)

κθ � k2Δθd, (7)

Δψd � ψd − ψ, (8)

Δθd � θd − θ, (9)

where k1, k2 are proportional constants, ψd, θd are the ex-
pected track deflection angle and the expected track incli-
nation angle, respectively, ψ, θ are the current track
deflection angle and the current track inclination angle,
respectively, and Δψd,Δθd are the deviation between the
expected track deflection angle and the current track de-
flection angle and the deviation between the expected track
inclination angle and the current track inclination angle,
respectively. Among them, the desired attitude angle of UAV
is calculated by the flight rules of UAV swarm. When the
number of effective flight rules of UAV is greater than 1, the
expected attitude angle deviation can be obtained from the
following formula:

Δψd � τ1 ψd1 −ψ􏼐 􏼑 + τ2 ψd2 −ψ􏼐 􏼑 + · · · + τn ψdn
−ψ􏼐 􏼑, (10)

Δθd � τ1 θd1 −θ􏼐 􏼑 + τ2 θd2 −θ􏼐 􏼑 + · · · + τn θdn
−θ􏼐 􏼑, (11)

where ψd1,ψd2, . . . ,ψdn
and θd1, θd2, . . . , θdn

are the expected
track deflection angle and expected track inclination under
the action of the first to n-th flight rules, respectively, and
τ1, τ2, . . . , τn is the weight corresponding to the first to n-th
flight rules.

For the i-th UAVmember in the swarm system, the basic
flight rules are abstracted as the following five.

Cohesion. +e cohesion feature can make the internal
members of the swarm system close to each other to
maintain the swarm formation. Each UAV member in the
swarm approaches the UAV within its detection distance,
that is, the expected velocity vector of the UAV points to the
centroids of several UAV members within its detection
distance ρ. Suppose that the i-th UAVmember in the swarm
can detect ni UAV members; (XiM

, YiM
, ZiM

) is the average
centroid coordinate of ni UAV members, and (Xi, Yi, Zi) is
the centroid coordinate of the i-th UAVmember; then under
this flight rule, the expected track deflection angle ψdiM

and
expected track inclination angle θdiM

of the i-th UAV
member are, respectively,

ψdiM
� arctan

YiM
− Yi

XiM
− Xi

􏼠 􏼡, (12)

θdiM
� arctan

ZiM
− Zi

����������������������

XiM
− Xi􏼐 􏼑

2
+ YiM

− Yi􏼐 􏼑
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (13)

Follow. +e follow feature enables each member in the
swarm system to follow the other two members. One
member is closest to the UAV member, and the other
member is randomly selected within the system. Let
(XiL

, YiL
, ZiL

) be the centroid coordinate of the UAV nearest
to the UAV member and (XiR

, YiR
, ZiR

) be the centroid
coordinate of the randomly selected UAV; then under this
flight rule, the expected track deflection angle ψdiF

and
expected track inclination angle θdiF

of the i-th UAV
member can be obtained by the following formula:

ψdiL
� arctan

YiL
− Yi

XiL
− Xi

􏼠 􏼡, (14)

θdiL
� arctan

ZiL
− Zi

���������������������

XiL
− Xi􏼐 􏼑

2
+ YiL

− Yi􏼐 􏼑
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (15)

ψdiR
� arctan

YiR
− Yi

XiR
− Xi

􏼠 􏼡, (16)

θdiR
� arctan

ZiR
− Zi

���������������������

XiR
− Xi􏼐 􏼑

2
+ YiR

− Yi􏼐 􏼑
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (17)

ψdiF
�
ψdiL

+ ψdiR

2
, (18)

θdiF
�
θdiL

+ θdiR

2
. (19)

Homing. +e homing feature enables swarm system mem-
bers to track specific signals to fly to a specified area. Let
(XiI

, YiI
, ZiI

) be the coordinate where the tracking signal is
located; then under this flight rule, the expected track de-
flection angle ψdiI

and expected track inclination angle θdiI
of

the i-th UAV member are, respectively,

ψdiI
� arctan

YiI
− Yi

XiI
− Xi

􏼠 􏼡, (20)

θdiI
� arctan

ZiI
− Zi

���������������������

XiI
− Xi􏼐 􏼑

2
+ YiI

− Yi􏼐 􏼑
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (21)

Dispersion. +e dispersion feature can keep enough safe
distance between members in the swarm, that is, ensure that
the flight interval between any twomembers does not exceed
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smin. +erefore, each UAV member flies in the opposite
direction of other UAVs in the swarm to prevent UAVs from
getting too close. Let (XiS

, YiS
, ZiS

) be the average centroid
coordinate of the i-th UAV whose distance from the UAV
member is less than smin; then under this flight rule, the
expected track deflection angle ψdiS

and expected track in-
clination angle θdiS

of the i-th UAV member are,
respectively,

ψdiS
� −arctan

YiS
− Yi

XiS
− Xi

􏼠 􏼡, (22)

θdiS
� arctan

ZiS
− Zi

���������������������

XiS
− Xi􏼐 􏼑

2
+ YiS

− Yi􏼐 􏼑
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (23)

Alliance. +e alliance feature can keep the internal members
of the swarm system in a certain order and ensure the flight
of the swarm system as a whole. Each UAV member flies in
the direction of the average velocity vector of the UAV
within its detection range. Under this flight rule, the ex-
pected track deflection angle ψdiA

and expected track in-
clination angle θdiA

of the i-th UAV member are,
respectively,

ψdiA
�

1
ni

􏼠 􏼡 􏽘

ni

j�1
ψdjA

􏼐 􏼑, (24)

θdiA
�

1
ni

􏼠 􏼡 􏽘

ni

j�1
θdjA

􏼐 􏼑. (25)

3. Cognitive Security Domain for
Swarm Anticollision

+e swarm collaboration adopts a distributed mechanism.
Each member of the system uses airborne sensors to detect
the unknown environment. +e members communicate
based on the global fully connected topology to realize in-
formation sharing. When sensing the threat of obstacles,
they can evade in real time and independently. It is assumed
that accurate environmental state information has been
obtained after fusion filtering of sensor data. Based on the
basic flight rules of the internal members of the swarm
system, the swarm evasion action is also regarded as the
flight rules of the internal members of the swarm. Similarly,
under the evasion flight rules, the expected track deflection
angle and expected track inclination angle of the i-th UAV
member are ψdiE

and θdiE
, respectively. +erefore, the swarm

system avoiding collaborative control can be described as
follows.

By calculating such a desired track deflection angle ψdi

and desired track inclination angle θdi (for the i-th UAV
member in a swarm), Δψdi and Δθdi are obtained, and the
guidance command is transmitted to the autopilot of the
corresponding UAV. Under the action of the flight control
system, it can ensure that no member in the swarm system
will collide with other members in the swarm or other
threats outside the swarm, so as to realize safe flight.

+e above calculation formulas of Δψdi and Δθdi are as
follows:

Δψdi � τiM
ψdiM

− ψ􏼐 􏼑 + τiF
ψdiF

− ψ􏼐 􏼑 + τiI
ψdiI

− ψ􏼐 􏼑

+ τiS
ψdiS

− ψ􏼐 􏼑 + τiA
ψdiA

− ψ􏼐 􏼑 + τiE
ψdiE

− ψ􏼐 􏼑,
(26)

Δθdi � τiM
θdiM

− θ􏼐 􏼑 + τiF
θdiF

− θ􏼐 􏼑 + τiI
θdiI

− θ􏼐 􏼑

+ τiS
θdiS

− θ􏼐 􏼑 + τiA
θdiA

− θ􏼐 􏼑 + τiE
θdiE

− θ􏼐 􏼑.
(27)

By setting different weights of flight rules, swarm evasion
cooperative control is divided into two decision-making
mechanisms: overall evasion mechanism and member
evasion mechanism. In the first mechanism, UAV swarm as
a whole can avoid collision threat. In the second mechanism,
the UAV swarm can avoid the collision threat through the
flight behavior of each member.

3.1. Overall Avoidance Mechanism. In the overall evasion
mechanism, the UAV swarm as a whole, in order to ensure
that the internal members of the swarm do not separate
during the evasion process, the weight of the cohesive flight
rules of the UAV swarm is large. Under the action of
avoiding flight rules, the expected track deflection angle of
the i-th UAV member in the swarm is

ψdiE
� f1

π
2

􏼒 􏼓 + ψi, (28)

where f1 is the transformation function of track deflection
direction in the horizontal plane set to complete evasion. Let
(XiT

, YiT
, ZiT

) be the average centroid coordinates of all
collision threats outside the swarm at the detection distance
of the i-th UAV member, then f1(x) is expressed as

f1(x) �

−x,
π
4
<ψi ≤

3π
4
andXi ≥XiT

x,
π
4
≤ψi <

3π
4
andXi <XiT

x,
5π
4
<ψi ≤

7π
4
andXi ≥XiT

−x,
5π
4
≤ψi <

7π
4
andXi <XiT

−x,
3π
4
<ψi ≤

5π
4
andYi ≥YiT

x,
3π
4
≤ψi <

5π
4
andYi <YiT

x,
7π
4
<ψi ≤ 2π or 0<ψi ≤

π
4

􏼒 􏼓andYi ≥YiT

−x,
7π
4
≤ψi < 2π or 0≤ψi <

π
4

􏼒 􏼓andYi <YiT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

(29)
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According to equation (29), the overall avoidance
mechanism can be explained as follows: when the distance
between the swarm and the collision threat gradually in-
creases, the swarm flies along the pre-planned track; when
the swarm and the collision threat gradually approach and
the distance between them is less than a certain value,
according to equation (28), the swarm system performs
avoidance cooperative control as a whole. +e transfor-
mation of track deflection angle of each UAV member
depends on the position coordinate relationship between the
UAV and the collision threat.

Similarly, in the overall avoidance mechanism, the ex-
pected track inclination of the i-th UAV member in the
swarm is

θAVi � f2
π
2

􏼒 􏼓 + θi, (30)

where f2 is the transformation function of track inclination
direction in the vertical plane set to complete evasion and
f2(x) is expressed as

f2(x) �
x, Zi ≥ZiT

,

−x, Zi <ZiT
.

⎧⎨

⎩ (31)

For the i-th UAV member, the weight of circumvention
rule is defined as follows:

τiE
�

1, Pi − Pρi

�����

�����≤ ρc,

0, Pi − Pρi

�����

�����> ρc,

⎧⎪⎨

⎪⎩
(32)

where Pi � (Xi, Yi, Zi), Pρi � (XiT
, YiT

, ZiT
), ρc is defined as

the evasion distance of UAV members; that is, the evasion
control is carried out only when the distance between two
centroids is less than ρc.

3.2. Member AvoidanceMechanism. In the member evasion
mechanism, the control method is similar to the overall
evasion mechanism, except for the weight of flight rules. At
the same time, the extended distance ρe is defined based on
the available detection distance ρ and evasion distance ρc of
the sensor. +e three distances defined in this paper have the
following relationship: ρc < ρe < ρ.

Set the minimum interval s’min between any two UAV
members in the same swarm to

smin′ �
s1, Pi − Pρi

�����

�����≤ ρe,

s2, Pi − Pρi

�����

�����> ρe,

⎧⎪⎨

⎪⎩
(33)

where s1 > s2.
+en, the member avoidance mechanism can be

explained as follows: when the collision threat is within the
extended distance ρe of any UAV member in the swarm
system, the value of s’min increases from s2 to s1, so that the
swarm system can allow the collision threat to pass through
the swarm during the avoidance process. When the collision
threat enters the swarm and is within the avoidance distance

ρc of its internal members, the avoidance decision will be
made, and the rule weight, expected track deflection angle,
and expected track inclination angle can be obtained from
equations (28)–(32). Under this mechanism, the cohesion
weight τiM

is reduced, so that the distance expansion between
members in the swarm system can be better realized.

3.3. Cognitive Security Domain. +e autonomous anticolli-
sion decision and control of UAV swarm include anticol-
lision and separation guarantee, that is, to keep any member
in the swarm outside the area surrounding each member
adjacent to it. For the sake of safety, assuming that only UAV
maneuvers to avoid collision, the above area is defined as the
safety area of UAV, and the safety goal is to ensure that no
other UAV penetrates the area. +e exact mathematical
expression of cognitive security domain is given below.

Let z(t) ∈ Rd represent the state vector of two conflicting
UAVs at any time t> 0. It is assumed that its variation law
can be described by a differential equation:

_z(s) � f(z(s), s, u(s), r(s)),∀s ∈ [0, t],

z(0) � z0,
􏼨 (34)

where u(·) represents the decision and control quantity of
UAV, and r(·) represents some uncertainties considered in
the model.

It can be seen that the change law depends on two
different kinds of decision and control vectors u(·) and r(·).
Let M and N be two nonempty compact subsets of Rm and
Rp, respectively. Suppose that A: � u: (0, t)⟶ M{ },
B: � u: (0, t)⟶ N{ }, for each z(0) ∈ Rd and (u, r) ∈
A × B, z � zu,r

0 represents the relevant trajectory, which is
defined as the system composed of equations (1)–(9).

Let O ⊂ Rd be an open set, which is called “collision
region.” All relative positions in the set are equivalent to
collisions.+e precise definition of the set will depend on the
selection of dynamic state space. Here, the collision regionO
is regarded as an obstacle, and its complement K� Rd/O
represents the set of state constraints.

Different safety zones are defined as follows:

(1) SetW1. It is defined as a subset of the initial position,
so that for any control strategy, UAV cannot
guarantee to avoid collision.

(2) Set W2(tf). It is defined as the set of all initial states
in Rd/W1, so that if there is no maneuver, there will
be a risk that the system reaches region W1 before
time tf.

4. Swarm Anticollision Game Decision
and Control

4.1. Game 2eory Model of Swarm Anticollision Problem.
In order to analyze the security of systems with both control
and disturbance, the worst-case method in antinatural game
can be used. Disturbances are regarded as opponents of
control and undermine security. For autonomous anticol-
lision control, a game problem involving two parties is
considered. One party is any member in the swarm, and the
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other party is each member adjacent to it. Here, the dynamic
model of the relative position between each member adja-
cent to it and any member is

_X � f′(X(t), u(t), r(t)), (35)

where X represents the state variable, u represents the
control quantity of UAV, and r represents the uncertainty of
the system, which plays the role of controlling the second
player.

Meanwhile, the above formula meets the following
conditions:

(1) For each (X, _X, u, r) ∈ Rd × Rd ×Μ × N, there is
Lf > 0 such that |f′(X, u, r) − f′( _X, u, r)|≤Lf

|X − _X|, where Lf is the Lipschitz constant
(2) For each X ∈ Rd and r ∈ M, f′(X,M, r) is a convex

set of Rd

4.2. Solution of Decision and Control Strategy Set. As can be
seen from Sections 3 and 3.1, the anticollision problem is
described as a problem staying in a given closed set
K� Rd/O, and the autonomous anticollision problem is
transformed into a game framework involving two parties.
At this time, the setW1 can be described by the worst case of
the game, which is that the first party player (UAV) wants to
avoid the collision area O, or equivalent to keeping the
system in the safe area K (through its own input u). +e
unexpected strategy set of player 1 (UAV) is defined as

Γ: u: B⟶ A,∀s ∈ [0,∞], (r(ξ) � 􏽥r(ξ),∀ξ ∈{

[0, s])⇒(u[r](ξ) � u[􏽥r](ξ),∀ξ ∈ [0, s])}. (36)

+en, the selection of UAV control law is limited to the
set Γ, and the victory domain of player 1 (UAV) is defined.

+e victory domain of player 1: the setV1(K) of all initial
positions z0. +ere is an unexpected strategy F ∈ Γ, which
can ensure that all corresponding trajectories z

u[r],r
0 (t) avoid

collision set O for all ∈ and the allowable control r ∈ B. And
V1(K) is

V1(K) � z0 ∈ K|∃F ∈ Γ,∀r(·) ∈ B􏼈 ,

∀t≥ 0, z
u[r],r
0 (t) ∈ K􏽯.

(37)

According to the definition, the two decision and control
policy sets are

W1 �
R

3

V1(K)
, (38)

W2 tf􏼐 􏼑 � z0 ∈ R
d
,∃r(·) ∈ B,∃s ∈ 0, tf􏽨 􏽩􏽮 ,

s.t.≥ 0, z
u0 ,r
0 (s) ∈W1􏼉.

(39)

4.3. Swarm System Stability Analysis. +is section analyzes
the stability of swarm system based on linear feedback
control theory. Taking the cohesion rule as an example, it is
proved that each UAV member in the swarm system flies
with the centroid of other UAVs in the swarm, and the

swarm system will eventually reach a stable equilibrium
state.

4.3.1. Stability Analysis of Two UAV Members. +e relative
position relationship of the two UAV members is shown in
Figure 2. +e velocity vectors V1,V2 of the UAV are or-
thogonally decomposed along the sight distance line and the
direction perpendicular to the sight distance line of the two
UAV members, and the following can be obtained:

_R
r

� V2 cos θ2 cos θ
r cos ψ2 −ψr

( 􏼁 + V2 sin θ2 sin θ
r

− V1 cos θ1 cos θ
r cos ψ1 −ψr

( 􏼁 − V1 sin θ1 sin θ
r
,

(40)

_ψr
�

V2 cos θ2 sin ψ2 −ψr
( 􏼁 − V1 cos θ1 sin ψ2 −ψr

( 􏼁

R
r cos θr , (41)

_θ
r

�
−V2 cos θ2 sin θ

r cos ψ2 −ψr
( 􏼁 + V2 sin θ2 cos θ

r

R
r

+
V1 cos θ1 sin θ

r cos ψ1 −ψr
( 􏼁 − V1 sin θ1 cos θ

r

R
r ,

(42)

_ψ1 �
−k1 ψ1 −ψr

( 􏼁

V1 cos θ1
, (43)

_θ1 �
−k2 θ1 −θr

( 􏼁

V1
, (44)

_ψ2 �
k1 π− ψ2 −ψr

( 􏼁􏼂 􏼃

V2 cos θ2
, (45)

_θ2 �
k2 −θ2 −θr

( 􏼁

V1
. (46)

Let δψ1 � (ψ1 − ψr), δψ2 � (ψ2 − ψr), select six state
variables as Rr, δψ1, δψ2, θ

r, θ1, θ2, respectively, and linearize
the above equations to obtain the following state equations:

_R
r

δ _ψ1

δ _ψ2

_θ
r

_θ1

_θ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0 −V1 −V2 0 0 0

V1 + V2

R
r2

−k1

V1
0 0 0 0

V1 + V2

R
r2 0

−k1

V2
0 0 0

0 0 0 0
−V1

R
r

V2

R
r

0 0 0
−k2

V1

k2

V1
0

0 0 0
−k2

V2
0

−k2

V2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rr

δψ1

δψ2

θr

θ1

θ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(47)
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In order to simplify the calculation, let V1 � V2 � V and
k1 � k2 � k; according to the Laplace transform and the
maximum value theory, the state of the equilibrium point is

R
r

�
2V

2

(kπ/2)
,

δψ1 �
−π
2

,

δψ2 �
π
2

,

θr
� 0,

θ1 � 0,

θ2 � 0.

(48)

Let V � x1, 2V/Rr2 � x2, k/V � x3, V/Rr � x4, then the
characteristic equation becomes

det(λI − A) � 0. (49)

+e obtained eigenvalues are

λ� −x3,−x3,−
1
2
x3 ±

����������

x3
2

−8x1x2

􏽱

,−
1
2
x3 ±

����������

x3
2

−8x3x4

􏽱

.

(50)

Because x1, x2, x3, x4 > 0, x3
2 � (k/V)2 and 8x1x2 �

π2(k/V)2, 8x3x4 � 2π(k/V)2, we have 8x1x2 > x3
2, 8x3x4

> x3
2, and the eigenvalues of the characteristic equation are

negative real numbers. +erefore, ∀k, V, the dual computer
system composed of two UAV members is stable.

4.3.2. Stability Analysis of n UAV Members. Under the
cohesion rule, the i-th UAV member in the swarm system
follows the centroid motion of the other (n − 1) UAV
members. Here, the average centroid of these (n − 1) UAV
members is regarded as a virtual UAVmember, and its track
deflection angle and track inclination angle are expressed as

ψin−1
�

1
n − 1

􏼒 􏼓 􏽘

n

j�1,j≠i
ψj􏼐 􏼑, (51)

θin−1
�

1
n − 1

􏼒 􏼓 􏽘

n

j�1,j≠i
θj􏼐 􏼑. (52)

At this time, the line of sight vector Rr
iin−1

, expected track
deflection angle ψr

iin−1
, and track inclination angle θr

iin−1
are,

respectively,

R
r
iin−1

�
1

n − 1
􏼒 􏼓 􏽘

n

j�1,j≠i
R

r
ij􏼐 􏼑, (53)

ψr
iin−1

�
1

n − 1
􏼒 􏼓 􏽘

n

j�1,j≠i
ψr

ij􏼐 􏼑, (54)

θr
iin−1

�
1

n − 1
􏼒 􏼓 􏽘

n

j�1,j≠i
θr

ij􏼐 􏼑. (55)

+en, the speed acceleration term is

κψi � −k ψi − ψr
iin−1

􏼐 􏼑, (56)

κθi � −k θi − θr
iin−1

􏼐 􏼑. (57)

Combining Equations (56) and (57) with Equations (4)
and (5), respectively, we have

_ψi �
−k ψi − ψr

iin−1
􏼐 􏼑

V cos θi

, (58)

_θi �
−k θi − θr

iin−1
􏼐 􏼑

V
. (59)

Similarly, it can be considered that the virtual point of
(n − 1) UAV member follows the flight of the i-th UAV
member, and the track deflection angular velocity acceler-
ation term is expressed as

κψin−1
�

1
n − 1

􏼒 􏼓 􏽘

n

j�1,j≠i
κψj �

1
n − 1

􏼒 􏼓 􏽘

n

j�1,j≠i
−k ψj − ψr

jjn−1
􏼐 􏼑

�
k

n − 1
􏼠 􏼡 − 􏽘

n

j�1,j≠i
ψj + 􏽘

n

j�1,j≠i
ψr

jjn−1
⎛⎝ ⎞⎠.

(60)

Here

􏽘

n

j�1,j≠i
ψr

jjn−1
� ψr

11n−1
+ψr

22n−1
+ · · · +ψr

(i−1)(i−1)n−1
􏼐

+ψr
(i+1)(i+1)n−1

+ · · · +ψr
nnn−1

􏼑,

�
1

n −1
􏼒 􏼓 ψr

12 +ψr
13 + · · · +ψr

1n( 􏼁(

+ ψr
21 +ψr

23 · · · +ψr
2n( 􏼁 + · · ·

+ ψr
(i+1)1 +ψr

(i+1)2 + · · · +ψr
(i+1)(i−2)􏼐

+ψr
(i−1)i + · · · +ψr

(i−1)n􏼑

+ · · · + ψr
(i+1)1 +ψr

(i+1)2 + · · · · +ψr
(i+1)i􏼐

+ψr
(i+1)(i−2) + · · ·

+ψr
(i+1)n􏼑 + · · · + ψr

n1 +ψr
n2 + · · · +ψr

n(n−1)􏼐 􏼑􏼑.

(61)

According to the relative position relationship of UAV, it
can be seen that ψr

ij � π − ψr
ji; then,

􏽘

n

j�1,j≠i
ψr

jjn−1
� π(n − 1) + 􏽘

n

j�1,j≠i
ψr

ij. (62)
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Substituting equation (62) into equation (60), the fol-
lowing can be obtained:

κψin−1
� k π−

1
n −1

􏽘

n

j�1,j≠i
ψj −

1
n −1

􏽘

n

j�1,j≠i
ψr

ij
⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (63)

It can be obtained from equations (50) and (54) that

κψin−1
� k π − ψin−1

− ψr
iin−1

􏼐 􏼑􏼐 􏼑. (64)

Simultaneously equation (62) and equation (4) can obtain

_ψin−1
�

k π − ψin−1
− ψr

iin−1
􏼐 􏼑􏼐 􏼑

V cos θin−1

. (65)

Similarly, the track inclination velocity acceleration term
is expressed as

κθin−1
�

1
n − 1

􏼒 􏼓 􏽘

n

j�1,j≠i
κθj,

�
1

n − 1
􏼒 􏼓 􏽘

n

j�1,j≠i
−k θj − θr

jjn−1
􏼐 􏼑,

�
k

n − 1
􏼠 􏼡 − 􏽘

n

j�1,j≠i
θj + 􏽘

n

j�1,j≠i
θr

jjn−1
⎛⎝ ⎞⎠,

(66)

where

􏽘

n

j�1,j≠i
θr

jjn−1
� θr

11n−1
+θr

22n−1
+···+θr

(i−1)(i−1)n−1
􏼐

+θr
(i+1)(i+1)n−1

+···+θr
nnn−1

􏼑,

�
1

n−1
􏼒 􏼓 θr

12+θr
13+···+ψr

1n( 􏼁+ θr
21+θr

23 ···+θr
2n( 􏼁+···(

+ θr
(i+1)1+θr

(i+1)2+···+θr
(i+1)(i−2) +θr

(i−1)i +···+θr
(i−1)n􏼐 􏼑

+···+ θr
(i+1)1+θr

(i+1)2+··· ·+θr
(i+1)i +θ

r
(i+1)(i−2) +···􏼐

+θr
(i+1)n􏼑+···+ θr

n1+θr
n2+···+θr

n(n−1)􏼐 􏼑􏼑.

(67)

According to the relative position relationship of UAV, it
can be seen that θr

ij � −θr
ji; then,

􏽘

n

j�1,j≠i
θr

jjn−1
� − 􏽘

n

j�1,j≠i
θr

ij. (68)

Substituting equation (68) into equation (66), the fol-
lowing can be obtained:

κθin−1
�

k

n − 1
− 􏽘

n

j�1,j≠i
θj − 􏽘

n

j�1,j≠i
θr

ij
⎛⎝ ⎞⎠. (69)

It can be obtained from equations (52) and (55) that

κθin−1
� −k θin−1

+ θr
iin−1

􏼐 􏼑. (70)

Simultaneously equation (70) and equation (5) can
obtain

_θin−1
�

−k θin−1
+ θr

iin−1
􏼐 􏼑

V
. (71)

According to equations (40)–(46), the virtual point of
(n − 1) UAV members is regarded as the second member of
the two UAV members; that is, ψ2, θ2 is replaced by
ψin−1

, θin−1
, and the sight distance vector Rr, expected track

deflection angle, and track inclination angle ψr, θr are
replaced by Rr

iin−1
and ψr

iin−1
, θr

iin−1
, respectively. +e forms of

equations (58), (59), (65) and (70), (47) are similar to
equations (48)–(53) established by two UAVmembers in the
sight distance direction. +erefore, the stability of two UAV
members in the swarm system can be analyzed and proved
by the stability of two UAV members. According to Section
4.1, the swarm system composed of n UAV members has a
stable equilibrium state; that is, the swarm system is stable.

5. Simulation Experiment and Verification

In order to facilitate the result analysis and discussion, the
simulation verification of UAV swarm flight and cooperative
avoidance in two-dimensional plane is mainly carried out.
Without losing generality, the simulation scenario is set as
avoidance between two swarm systems. For one swarm, the
other swarm is collision threat. Both swarm systems adopt
the autonomous cooperative control method of flight and
avoidance proposed in this paper. In this scenario, the
following three simulation experiments are carried out.

5.1. Simulation 1: Swarm System Avoidance Process. +e
overall evasion mechanism andmember evasion mechanism
are used to simulate the evasion process of two UAV swarm
systems in two-dimensional space. +e swarms are in the
two-dimensional horizontal plane, and the avoidance de-
cision mainly depends on the change of track deflection
angle of UAV members. +e speed of UAV members is
constant as 20m/s, and smin � 60m, s1 � 150m, and
s2 � 60m. +e available detection distance of airborne
sensors is set to a fixed value ρ � 600m, and the other two
are ρc � 400m and ρe � 600m. +e initial track deflection
angles of the two swarm systems are ψ1 � 0°,ψ2 � 180°. +e
dynamic characteristics of UAV and the constraints are roll
angle −20° ≤ ϕc ≤ 20°, overload in pitch plane ny ≤ 2g,
overload in yaw plane nz ≤ 4g, and turning radius
rd ≥ 200m. When the swarm system flies normally, the
initial value of the weight corresponding to each flight rule is

τiM
� 0.55, τiF

.

� 0.22, τiI
,

� 0.78, τiS
,

� 0.55, τiA
,

� 0.42, τiE
,

� 0.

(72)
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If the swarm system detects external UAV members,
under the overall and member avoidance mechanism, the
weights change to, respectively,

τiM
′ � 0.55, τiF

′,

� 0.22, τiI
′,

� 0.38, τiS
′,

� 0.55, τiA
′,

� 0.42, τiE
′,

� 0.55,

τiM
′′ � 0.30, τiF

′′,

� 0.30, τiI
′′,

� 0.38, τiS
′′,

� 0.55, τiA
′′,

� 0.42, τiE
′′,

� 0.55.

(73)

+e avoidance process of UAV swarm is shown in Fig-
ures 3 and 4.+e flight track of swarm 1 is represented by blue
line and that of swarm 2 is represented by red line. During the

avoidance process of the swarmsystem, the variation curves of
the minimum distance Rmin between UAV members and the
maximumdistance dmax fromall UAVmembers to the swarm
centroid are shown in Figure 5(a) and 5(b), respectively.

From the simulation 1 experimental results, it can be
seen that under the action of basic flight rules, UAV swarm
can maintain stable flight in a certain formation and can
realize formation reconstruction after evasion. Under the
action of overall evasion mechanism and member evasion
mechanism, the swarm system can complete evasion and
realize safe flight. +e difference between the two mecha-
nisms is that in the overall mechanism, the variation of UAV
track deflection angle relative to the initial flight direction is
relatively large; that is, the overall track cost is high. In the
member mechanism, the overall change of UAV track de-
flection angle is small, but the change rate is large, and the
avoidance process is more complex.

5.2. Simulation 2: 2e Influence of Flight Rule Weight on the
Stable Scale of the Swarm System. +e influence of several
flight rule weight coefficients τM, τI, τS on the stable scale of
swarm system is studied. First, make the weight of the self-
guidance rule constant τI � 0.6, and the weight of the dis-
persion rule takes values τS � 0.2, τS � 0.4, τS � 0.6, re-
spectively. +e weight of the cohesion rule τM changes from
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Figure 3: Swarm avoidance process under the overall mechanism. (a) t � 25s. (b) t � 50s. (c) t � 75s. (d) t � 100s.
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0.1 to 1.0. When the swarm system is stable, the scale
changes with the weight of the cohesion rule, as shown in
Figure 6(a). +en, let the weight of the dispersion rule be a
constant value τS � 0.4, and the weight of the self-guidance

rule takes values τI � 0.3, τI � 0.5, τI � 0.7, respectively. +e
weight of the cohesion rule τM changes from 0.1 to 1.0.
When the swarm system is stable, the scale changes with the
weight of the cohesion rule, as shown in Figure 6(b).
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Figure 4: Swarm avoidance process under membership mechanism. (a) t � 25s. (b) t � 50s. (c) t � 75s. (d) t � 100s.
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Figure 5: Variation curves of Rmin and dmax. (a) Overall mechanism. (b) Membership mechanism.
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From the simulation 2 experimental results in Figure 6(a),
it can be seen that the change trend of the scale of the swarm
system is as follows: first, it decreases with the increase of the
weight of the cohesion rule τM and then increases with the
increase of τM.+is is because the cohesionwithin the swarm
system is obvious at the beginning, and the stability of the
swarm system gradually decreases with the continuous in-
crease of τM. As can be seen from Figure 6(b), the scale of the
swarm system has a similar change trend and increases with
the increase of theweight of the self-guidance rule τI, because
the cohesion decreases with the increase of τI. It can be seen
that the value of τM between 0.2 ∼ 0.4 ismore appropriate for
the small scale and stability of the system.

5.3. Simulation 3: Real-Time Performance of Evasion Control.
+is paper discusses the real-time performance of swarm
system evasion control method and compares it with MPC

algorithm, in whichMPC algorithm is proposed in reference
[17]. In the two algorithms, the simulation scene settings are
the same, and they are implemented in Visual C++ 6.0 and
MATLAB R2021a environment. +e computer is configured
as Intel Core i5 processor, main frequency 3.10GHz,
memory 8G, and 32-bit operating system. After multiple
simulations, the average running time of the algorithm is
shown in Figure 7.

It can be seen from the simulation 3 experimental results
that the running time of MPC method increases exponen-
tially with the increase of the number of formation UAVs.
When the number of UAVs is large, the calculation effi-
ciency is greatly reduced and the running time of the al-
gorithm is long. +e running time of the overall mechanism
and member mechanism in the swarm algorithm increases
slowly with the increase of the number of UAVs in the
swarm. When the number of UAVs in the swarm is no more
than 10, the execution time of the algorithm is within 25ms,
which can meet the needs of online real-time control.

6. Conclusions

In this paper, a cognitive game method is used to study the
anticollision cooperative decision-making and control of
UAV swarms, and the method is used to simulate the flight
and avoidance process between UAV swarms. +e basic
flight behavior rules of UAV swarm are designed. Under the
action of these rules, UAV swarm can realize normal flight
and formation reconstruction. Aiming at the problem of
anticollision, two anticollision mechanisms, named whole
and member mechanism, are put forward. At the same time,
a cognitive security domain facing swarm anticollision is
constructed. On this basis, the game theory model of swarm
anticollision problem is established, and the solution
method of swarm anticollision game decision and control
strategy is designed. Finally, the stability of UAV swarm
system using the above method is analyzed. Simulation
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Figure 6: Influence of weight change of flight rules on system scale. (a) τI � 0.6, τS � 0.2, 0.4, 0.6. (b) τS � 0.4, τI � 0.3, 0.5, 0.7.
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results show that compared with the traditional MPC
method, the swarm control proposed in this paper is simpler
and more efficient.
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M. Defoort, J. Ruiz-León, and H. M. Becerra, “Autonomous
and non-autonomous fixed-time leader-follower consensus
for second-order multi-agent systems,” Nonlinear Dynamics,
vol. 102, no. 4, pp. 2669–2686, 2020.

[8] W. Crowther, “Rule-based guidance for flight vehicle flock-
ing,” in Proceedings of the Institution of Mechanical Engineers -
Part G: Journal of Aerospace Engineering, vol. 218, no. 2,
pp. 111–124, Professional Engineering Publishing LTD, 1
Birdcage Walk, Westminister, England, 2004.

[9] X. Wang, L. Shen, Z. Liu et al., “Coordinated flight control of
miniature fixed-wing UAV swarms: methods and experi-
ments,” Science China Information Sciences, vol. 62, no. 11,
Article ID 212204, 2019.
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