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Chemokines are a family of small cytokines that share a typical key structure that is 
stabilized by disulfide bonds between the cysteine residues at the NH2-terminal of the 
protein, and they are secreted by a great variety of cells in several different conditions. 
Their function is directly dependent on their interactions with their receptors. Chemokines 
are involved in cell maturation and differentiation, infection, autoimmunity, cancer, and, in 
general, in any situation where immune components are involved. However, their role in 
postfracture inflammation and fracture healing is not yet well established. In this article, 
we will discuss the response of chemokines to bone fracture and their potential roles in 
postfracture inflammation and healing based on data from our studies and from other 
previously published studies.
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iNTRODUCTiON

Bone fracture healing is a complex progression of events that require a timely sequence of interactions 
between cells and their mediators. Both resident and infiltrating cells contribute to the three phases 
of fracture healing: inflammation (initial hematoma with subsequent infiltration of inflammatory 
cells), bone formation, and bone remodeling (1, 2).

Approximately 7.9 million fractures occur in the United States every year, and nearly 5–20% 
exhibit delay or disruption in healing, resulting in significant morbidity and reduced productivity 
(3, 4). Thus, understanding the molecular mechanisms involved in postfracture inflammation and 
repair have the obvious potential to improve the quality and the time of fracture healing and translate 
into significant therapeutic benefit in both patient outcomes and reduced costs to society.

Delayed bone fracture healing and non-union fractures represent an important clinical problem, 
especially in patients with open fractures, patients with diabetes, and patients with multiple fractures 
who also suffer from posttraumatic systemic inflammation. However, the underlying biochemical 
and cellular mechanisms that become dysregulated during delayed union and non-union fracture 
repair remain controversial.

A key initial step in fracture repair is an inflammatory reaction involving immune cells that 
become activated immediately in response to tissue damage. Although much is known about the 
function of inflammatory cells as well as the other cells that migrate within the fracture in response 
to injury, little is known about the chemotactic and activation signals that influence this response. 
It is now well accepted that chemokines promote inflammation (5–7) and angiogenesis (8–10). In 
addition, chemokines are thought to play an important role in several aspects of bone metabolism 
including the recruitment of leukocytes and the formation of osteoclasts (11, 12). Therefore, they 
may contribute to the regulation of osteoneogenesis, by integrating inflammatory events and the 
reparative processes important in modulating fracture healing.
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This review will discuss chemokine expression in response 
to bone fracture and the potential role of these molecules in 
postfracture inflammation and healing.

CHeMOKiNeS AND CHeMOKiNe 
ReCePTORS

Chemokines belong to a family of small cytokines. There are 
approximately 50 chemokines (13, 14) interacting with some 23 
different receptors (15–19). They range in size from 8 to 20 kDa 
and share a basic structure that is stabilized by disulfide bonds 
between cysteine residues. Based on the pattern of cysteine 
residues near the N-terminus, chemokines can be divided into 
four subfamilies (20): (1) the CC subfamily, which includes beta 
chemokines, has cysteine residues adjacent to each other; (2) the 
CXC subfamily, which includes alpha chemokines, has cysteine 
residues that are separated by an intervening amino acid; (3) 
the C subfamily has one cysteine residue at the N-terminus of 
the protein; and (4) the CX3C family, with only one representa-
tive, CX3CL1 (also known as neurotactin and fractalkine), in 
which the two cysteine residues are separated by three amino 
acids (21).

Chemokines are secreted by a great variety of cells such as 
mononuclear leukocytes (22–24), neutrophils (25–28), eosino-
phils (29), fibroblasts (30, 31), blood endothelial cells (32), and 
adipocytes (33, 34). They can be induced in several different 
conditions. The name “chemokine” is derived from the ability of 
chemokines to induce directed chemotaxis in nearby responsive 
cells. Some chemokines are considered pro-inflammatory and 
can be induced during an immune response to attract cells of 
the immune system to a site of infection, whereas others are 
considered homeostatic and are involved in controlling the 
migration of cells during normal physiological conditions (35, 
36). Chemokines play roles in cell maturation and differentiation, 
infection, autoimmunity, cancer, and, in general, in any situation 
where immune components are involved. However, their role in 
postfracture inflammation and fracture healing is not yet well 
established.

Chemokine function is directly dependent on the interaction 
with chemokine receptors. Chemokine receptors are G protein-
linked transmembrane receptors located on the surfaces of target 
cells (15, 37). Chemokines bind their cognate G protein-coupled 
receptors and trigger intracellular calcium fluxes. As a concentra-
tion of chemokines increases, calcium flux signaling continue to 
increase till it reaches a plateau, while cell migration increases 
with the increase of chemokine concentration but then returns 
to baseline. Typically, a moderate increase in chemokines’ con-
centration leads to chemotactic migration, but a huge increase in 
the concentration of chemokines could halt cell migration (38). 
However, the signaling mechanisms that govern this phenom-
enon remain unclear.

There are 20 signaling chemokine receptors (37) and three 
non-signaling or scavenger receptors that serve to mediate 
chemokine-dependent signaling by binding, internalizing, 
and degrading chemokines (39, 40). Though similar to other 
seven-transmembrane receptors, signaling chemokine receptors 

share certain structural features, such as the highly conserved 
DRYLAIV amino acid sequence in the second intracellular 
loop (41), a feature that is absent in decoy receptors, indicating 
its implication in signaling. Several studies have shown that 
chemokine receptors are expressed on the surface of cells as both 
homo- and heterodimers (42–45), but the stability of the dimer is 
likely dependent on the presence of the ligand.

In a recent article, Muñoz et al. (46) have described the differ-
ent types of dimerizations that occur between chemokine recep-
tors, with ligands and receptors forming complexes in a dynamic 
equilibrium (47, 48), underscoring the complexity of chemokine 
activities. However, the lack of specific tools for stabilizing het-
erodimeric complexes, combined with the constantly changing 
equilibrium between receptor conformations, has complicated 
the studies of signaling functions of each dimer and limited our 
ability to modulate chemokine/receptor interaction using phar-
macological approaches.

CHANGeS iN THe eXPReSSiON OF 
CHeMOKiNeS iN ReSPONSe TO 
FRACTURe AND THeiR POTeNTiAL ROLe 
iN FRACTURe HeALiNG

Although the function of the various cell types involved in 
postfracture inflammation is well established, the molecular 
mechanisms underlying the different phases of the bone repair 
process are still poorly understood. A thorough elucidation of 
how the spatial and temporal expression of chemokines and their 
receptors are modulated postfracture is ultimately essential to 
our understanding of the role of these chemokines in fracture 
repair.

Neutrophils are one of the most important cell types in the 
postfracture inflammation response. They are the first cell type 
to arrive at the fracture site in response to injury (49). They also 
express and produce chemokines that serve to attract further 
immune cells that ultimately participate in the healing process. 
A recent study, making use of a rat model in which a 5-mm 
bone defect was created in the femur, has reported the detection 
of neutrophils, a few granulocytes, and a few monocytes at the 
site of the defect as early as 12 h postfracture (49). The study 
also found that the number of neutrophils peaked at 24–48 h 
postfracture, marking the beginning of the inflammatory stage 
in this particular model system. Eosinophils and basophile 
granulocytes were seen 24  h postsurgery. In addition, protein 
expression of the major pro-inflammatory cytokine IL-6 and 
three major neutrophil chemoattractants, CXCL1, CXCL2, and 
CXCL3 (49), showed an increase in concentration immediately 
after surgery and a re-equilibration to baseline before 24  h 
postsurgery.

Another chemokine reported to play a role in neutrophil 
migration is monocyte chemotactic protein (MCP) 1, a member 
of CC chemokine family. MCP-1 has also been referred to as 
CCL2. It is a ligand for CCR2 but can also bind the Duffy antigen 
receptor for chemokines (DARC) (50). CCL2 is one of the first 
and most highly expressed chemokines in response to fracture in 
both animal models (51–54) and human fractures (55) (Table 1). 
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TAbLe 1 | Chemokines that are upregulated during acute phase of 
fracture healing.

Chemokine 
name

Specific 
chemokine 
receptors

Type of fracture (fracture 
model bone animal model)

Reference

CCL2 
[monocyte 
chemotactic 
protein  
(MCP) 1]

CCR2 Stress fracture (axial 
loading—ulna—rat)

Wu et al. (51)
Rundle et al. 
(52)
Xing et al. (54)
Ishikawa et al. 
(53)
Hoff et al. (55)

Single fracture (3-point 
bending—tibia—mouse)
Not stabilized single fracture 
(3-point bending—tibia—mouse)
Single fracture (rib - mouse)
Single fracture (human)a

CCL3 
[macrophage 
inflammatory 
protein 1 alpha 
(MIP-1a)]

CCR1, 
CCR5

Single fracture (3-point 
bending—tibia—mouse) Single 
fracture (human)a

Rundle et al. 
(52), Hoff 
et al. (55)

CCL4 
[macrophage 
inflammatory 
protein 1 beta 
(MIP-1b)]

CCR1, 
CCR4, 
CCR5

Single fracture (femur-human)a Hoff et al. (55)

CCL5 
(Regulated 
upon Activation, 
Normally 
T-Expressed, 
and presumably 
Secreted)

CCR1, 
CCR3, 
CCR5

Single fracture (femur-human)a Hoff et al. (55)

CCL7 (MCP-3) CCR1, 
CCR2, 
CCR3

Not stabilized single fracture 
(3-point bending—tibia—
mouse). Single fracture 
(Femur–human)a

Xing et al. 
(54), Hoff 
et al. (55)

CCL8 (MCP-2) CCR1, 
CCR2, 
CCR5

Not stabilized single fracture 
(3-point bending—tibia—mouse)

Xing et al. (54)

CCL11 (Eotaxin) CCR3, 
CCR2, 
CCR5

Single fracture (femur—human)a Hoff et al. (55)

CXCL1, CXCL2, 
CXCL3

CXCR2 Segmental defect (5 mm bone 
defect—femur—rat)

Förster 
et al (49)

CXCL10 (IFN-
γ-inducible 
protein 10)

CXCR3 Single fracture (femur—human)a Hoff et al. (55)

CXCL8 
(interleukin-8)

CXCR1, 
CXCR2, 
IL8R

Single fracture (femur-human)a Hoff et al. (55)

CXCL12 
(stroma cell-
derived factor 1)

CXCR4, 
CXCR7

Segmental defect and live bone 
graft (mouse)

Kitaori et al. 
(90)

aFracture type not reported.
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CCL2 is involved in regulating neutrophil migration (56), angio-
genesis, and macrophage infiltration in several inflammatory 
processes (57, 58) as well as regulating the migration of CD4+ 
T regulatory cells (59). Furthermore, CCL2 has been shown to 
be expressed at the periosteum around the fracture site during 

fracture healing (53), suggesting that CCL2 is involved in both 
postfracture inflammation and bone remodeling.

It has been previously reported that tumor necrosis factor 
alpha (TNFα) enhances neutrophil recruitment in early postfrac-
ture inflammation and promotes the recruitment of monocytes 
by stimulating CCL2 production (7). Furthermore, depletion 
of neutrophils by Ly6G neutralizing antibody or inhibition of 
the CCL2 chemokine receptor CCR2 in a murine tibial fracture 
model resulted in significantly impaired fracture healing (7), 
while early treatment with TNFα increased neutrophil infiltra-
tion to the fracture area, as well as the expression of CCL2, when 
compared to untreated fractures (7). In another study with open 
tibial fracture, it has been reported that local treatment with low 
concentrations of TNFα enhanced fracture repair (60). This illus-
trates the importance of postfracture inflammation and especially 
the roles of TNFα and CCL2 in fracture healing. Moreover, the 
expression level of CCl2 was increased in patients with systemic 
skeletal disease such as osteoporotic patients (61), and the serum 
level of CCL2 was greater up to 4 weeks postsurgery in patients 
with type 2 diabetes compared to healthy patients (62). In both 
cases, patients suffered from fragility fractures, and the delay in 
fracture healing was obvious in type 2 diabetic patients, which 
suggested that increased level of CCL2 in the serum is one of the 
leading causes to impaired fracture healing in diabetic patients.

In an anabolic regimen, intermittent treatment with parathy-
roid hormone (PTH) caused MCP-1 expression to increase over 
time, eventually reaching 200-fold higher levels after 14 days of 
treatment. This in turn was accompanied by an increase in bone 
volume in the PTH-treated animals, compared to untreated 
control animals (63). Together, these data suggest that in addi-
tion to its role in chemotaxis of monocytes and neutrophils and 
osteolysis (64) during inflammatory bone remodeling, CCL2 
might also be involved in bone formation during skeletal repair. 
However, this remains to be tested.

Macrophage inflammatory protein 1 alpha, also known as 
CCL3, binds to CCR1 and CCR5 (Table 1), which are receptors 
that mediate CCL3 chemotactic functions. CCL3 is produced by 
macrophages, natural killer cells, fibroblasts, and mast cells. Its 
expression in fracture callus was found to be upregulated dur-
ing the first 3 days postfracture in both animal (52) and human 
models (55). In models with systemic inflammation, such as a 
rat diabetic model, increased levels of CCL3 in serum was also 
associated with delayed fracture healing, indicating the impor-
tance of a well-controlled inflammation on the overall process 
of fracture healing (65). In contrast to CCL2, the role of CCL3 in 
postfracture healing has not been well investigated.

Macrophage inflammatory protein 1 beta, also known as 
CCL4, binds the CCR1, CCR4, and CCR5 receptors (Table 1). 
CCL4 is secreted by major leukocytes such as T cells, B cells, and 
monocytes (66), and its expression was observed to be upregu-
lated in fracture hematoma within 3 days postfracture, in parallel 
with an increase in the number of monocytes (55). Chondrocytes, 
in particular hypertrophic chondrocytes, have been identified as 
another source of CCL4. Expression of CCL4 by these cells has 
been shown to be dependent on TNFα in diabetic fractures (67). 
This suggests a role for TNFα and CCL4 in the loss of cartilage 
that is observed during the process of diabetic fracture healing. 
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However, Lin et al. (68) have reported a differential expression 
of CCL4 in mesenchymal stem cells (MSCs) treated with high-
mobility group box. These data together illustrate a complex role 
of CCL4 in fracture healing that still needs to be investigated.

The chemokine regulated upon Activation, Normally 
T-Expressed, and presumably secreted, also called CCL5, binds 
CCR1, CCR3, and CCR5 (Table 1) and is expressed in T lym-
phocytes. CCL5 promotes the recruitment and activation of 
inflammatory cells such as monocytes (69), lymphocytes (70), 
mast cells (71), and eosinophils (72). In the case of infection 
by pathogens, it is known to play a protective effect, through its 
interaction with CCR5 and the downstream ERK1/ERK2 and 
AKT signaling pathways. In a study of human fractures, CCL5 
levels increased both at the site of the fracture hematoma and in 
the surrounding bone marrow (55). The magnitude of increase 
was greater in the fracture hematoma compared to surrounding 
bone marrow, an effect that can be likely explained by increased 
infiltration of T cells.

Monocyte chemotactic protein 3, also known as CCL7, binds 
the CCR1, CCR2, and CCR3 receptors. CCL7 is another mediator 
of pro-inflammatory pathways by virtue of its ability to activate 
leukocytes (73, 74). Previous studies have identified CCL7 as a 
homing factor for MSCs (75). In a mouse model, mRNA levels 
of CCL7 increased as early as 1 day postfracture (53), peaked at 
2 days postfracture (53, 54), with a subsequent decline beginning 
at 3 days postfracture, but combined trauma model resulted in 
a significant increase in the level of CCL7 in plasma as early as 
6 h postfracture that lasted up to 3 days postinjury compared to 
control non-injured animals (76).

Monocyte chemotactic protein 2, also known as CCL8, binds 
to the CCR1, CCR2, and CCR5 receptors. CCL8 attracts leuko-
cytes and possesses various immunomodulating functions. Like 
other CC family chemokines, it influences mononuclear cell types 
(77). CCL8 was found to be upregulated (Table 1) during the first 
7 days postfracture (54).

Eotaxin, also known as CCL11, binds the CCR2, CCR3, and 
CCR5 receptors, thus affecting the migration of eosinophils that 
express the CCR3 receptor, as well as monocytes that express 
both CCR2 and CCR5 (78). It has been reported that pretreat-
ment of human monocytes with eotaxin reduces the binding of 
CCL2, the selective ligand for the CCR2, to monocytes (78) as 
well as the binding of CCL5 and CCL4 to CCR5. In previous 
studies (78), pretreatment of human monocytes with eotaxin 
triggered CCR5 activity at low concentrations of the ligand, 
while CCR2 was not activated by doses as high as 1 μM eotaxin, 
which suggested that eotaxin is a CCR5 agonist and a CCR2 
antagonist (78). In fracture calluses, CCL11 was found to be 
upregulated within 3  days postfracture (Table  1) in human 
models (55).

IFN-γ-inducible protein 10 (IP10), also called CXCL10, 
binds to CXCR3 and is secreted from a variety of cells, includ-
ing monocytes, endothelial cells, and fibroblasts, in response to 
interferon (79). CXCL10 inhibits bone marrow colony formation 
(80). It is a chemoattractant for human monocytes and T cells 
and promotes T cell adhesion to endothelia (80). Its expression 
is upregulated by both interferons and other inflammatory 
stimuli. It was found to be upregulated in fracture surrounding 

bone marrow in humans (Table 1), in parallel with an increase 
in the level of IFN-γ and TNFα and an increase in the number of 
CD3+ and CD3+CD4+ T cells in the surrounding bone marrow 
(55). Serum level of CXCL10 was found to be elevated in fracture 
patients with type 2 diabetes mellitus compared to patients with 
diabetes without fracture and normal patient with fracture (81). 
However, what role IP10 plays during fracture healing remains 
to be determined.

Interleukin-8, or CXCL8, binds the CXCR1, CXCR2, and 
IL-8R receptors (82, 83). IL-8 induces migration of hematopoi-
etic progenitor cells through stimulation of the β2-integrin LFA-1 
pathway (84). IL-8 levels have also been shown to be upregulated 
to a greater degree in fracture hematoma than in the surround-
ing bone marrow (Table 1), in parallel with an increase in the 
number of monocytes, granulocytes, and CD34+ HSCs (55). This 
suggests a role for IL-8 in HSC infiltration in response to bone 
injury.

Stroma cell-derived factor 1, also called CXCL12, binds the 
CXCR4 and CXCR7 receptors on the cell surface of responsive 
cells (85, 86). Local expression of CXCL12 has been shown to 
attract hematopoietic and endothelial progenitors to ischemic 
sites (87, 88). It is also expressed in bone marrow stroma cells 
(89) and has been reported to be upregulated at the endosteal 
surface around the injured bone from 7 to 14 days postsurgery 
(89). However, in other studies, CXCL12 levels have been 
reported to peak at different time points postfracture. For exam-
ple, in a murine segmental bone graft model, CXCL12 levels were 
increased at the periosteum of the live bone graft from the first 
day of surgery, and its level continued increasing with time (90). 
In another murine model of fracture healing, CXCL12 expression 
was found in the fracture callus of hypertrophic cartilage and 
in immature cartilage near the pre-existing cortical bone (91). 
One explanation for the discrepancy in the time when CXCL12 
expression peaks after fracture may be due to the specific nature 
of the injury. In some injuries, oxygen tension may change rapidly 
and since CXCL12 is reportedly regulated by a hypoxia-specific 
transcription factor, hypoxia-inducible factor 1, the expression of 
CXCL12 may increase rapidly after the blood supply is stopped 
in those models (92).

CXCL12 is well accepted as a major chemokine that plays a 
critical role in fracture repair. It is involved in fracture repair 
through possibly two mechanisms. One is by recruiting endothe-
lial progenitor cells, thus contributing to increased angiogenesis 
(87), a key phase in fracture repair. The other involves enhancing 
the homing of osteoblastic progenitors to promote new bone 
formation (93).

In the presence of inflammation, endothelial cells are stimu-
lated to increase the surface expression of adhesion molecules, 
such as selectins, as well as integrin ligands such as vascular cell 
adhesion molecule-1 and intercellular adhesion molecule-1. 
Subsequently, chemokines produced at the site of injury bind and 
activate chemokine receptors that are present at high concentra-
tions on the surface of endothelial cells (94, 95). Once activated, 
chemokine receptors permit the transcytosis of chemokines from 
one side to other side of vascular endothelial membrane, result-
ing in chemotaxis. The level of chemokines and the time of their 
bioavailability around the injured bone and in blood circulation 
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FiGURe 1 | Hypothetical model for the involvement of chemokines in 
fracture healing. Fracture induces secretion of TNFα and IL-6 as well as 
CXCLs that attract neutrophils. Neutrophils will induce monocyte chemotaxis 
through CXCL8 and CCL2 secretion. Then, since monocytes secrete several 
chemokines, such as CCL2, CCL4, and CCL7, that are known to attract 
MSC. These later will migrate toward fracture callus and secrete CXCL12 that 
will bind to CXCR4 and regulate osteogenesis and fracture healing.
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are key factors that influence cell recruitment to the injured bone 
for subsequent fracture repair.

FUNCTiONAL STUDieS USiNG 
KNOCKOUT MiCe

Animal models involving targeted knockout (KO) of selective 
chemokines and their receptors have been used to evaluate the 
role of chemokines in fracture repair process. Studies involving 
KO of DARC (52), CCL2/CCR2 (53), and CXCL12/CXCR4 (90) 
have illustrated a key role of chemokines in fracture healing. 
However, the role for a number of other chemokines such as 
CCL3 (96), CCL5 (97, 98), and CCL7 (75), found to be upregu-
lated during the early phase of fracture healing and function as 
chemoattractants for MSCs, remains to be elucidated.

Postfracture inflammation has been evaluated in our mouse 
model using standard closed femoral fracture at the mid-
shaft (52). The mRNA expression levels of IL-1β, IL-6, tumor 
necrosis factor, and CCL2, which binds to DARC and CCR2, 
were increased 1  day postfracture. However, the magnitude of 
increase was lower in DARC-KO fracture calluses, consistent 
with a reduced inflammatory response. Accordingly, the number 
of macrophages was significantly reduced around the fractures in 
DARC-KO mice compared to wild type mice. This was associated 
with greater collagen (COL) II expression at 3 days and COL-X 
at 7 days postfracture, compared to wild-type mice, suggesting 
that lack of DARC expression in DARC-KO mice led to an early 
or premature fracture cartilage formation and differentiation. 
However, by 21  days postfracture, histological analysis did not 
show any difference in fracture healing between DARC-KO and 
wild-type mice. This may have been the result of a reduction in 
the recruitment of osteoclast precursors to the fracture callus in 
DARC-KO mice, which in turn has increased the time required 
for the transition from cartilage callus to bone.

By using a rib fracture model and graft exchanges, Ishikawa 
et al. (53) have reported delayed fracture healing at 21 days post-
fracture in both CCL2-KO and CCR2-KO mice and that blockade 
of the CCR2 receptor only in the early phase of healing caused 
delayed fracture healing in wild-type mice. The discrepancy 
between our model and the CCL2-KO model could be due to 
CCL2 expression not being sufficiently reduced in DARC-KO 
mice so as to cause a delay in fracture healing (52). Furthermore, 
the finding that CCL2 exhibits a significant chemotactic effect on 
neutrophils (56) and MSCs (53) but has no effect on osteogenesis 
or chondrogenesis (53) suggests that the effect of CCL2 on frac-
ture healing occurs via early neutrophil recruitment and MSC 
recruitment to the fracture site for subsequent bone formation.

Other studies have also reported the importance of MSC 
recruitment in fracture healing (99). By using heterozygous 
CXCL12+/– and CXCR4+/– mice, Kitaori et al. (90) have dem-
onstrated that CXCL12 recruits MSCs to the injured bone post-
fracture for subsequent bone formation. Furthermore, it has been 
reported that following fracture, a CXCL12- and BMP2-positive 
perivascular cell population is recruited along the endosteum. 
This is then followed by an increase in BMP2 levels that leads 
to downregulation of CXCL12, a step that is essential for the 

differentiation of CXCL12 and BMP2+ cells during osteogenesis. 
Moreover, CXCL12 has been shown to regulate BMP-2-stimulated 
osteogenic differentiation (100), while the CXCR4 receptor is 
involved in regulating osteoblast development in postnatal bone 
(101). Therefore, we conclude that CXCL12 signaling may have 
roles in fracture healing that extend beyond cell recruitment, 
including direct effects on MSC proliferation and differentiation 
into cells of the chondrogenic and osteogenic lineages.

CONCLUSiON

In conclusion, various chemokines are involved in postfracture 
inflammation and healing, and their induction and involve-
ment in the whole process are dose, site, and time dependent. 
Two chemokines have been investigated extensively for their 
role in fracture healing: CCL2 and CXCL12. CCL2 is involved 
in neutrophil recruitment, which is an early stage of fracture 
healing and in MSC infiltration for subsequent fracture repair. 
The importance of CCL2 and its specific receptor CCR2 in the 
progress of fracture healing have been demonstrated in mouse 
models (KO mice) that lack CCL2 or CCR2 expression and which 
showed delayed healing. However, an increase in CCL2 levels 
in plasma postfracture has been associated with a likelihood of 
delayed fracture healing. CXCL12, which is expressed in bone 
marrow and perivascular stroma cells, is crucial for the recruit-
ment of MSC to the injured bone postfracture, a necessary step for 
subsequent bone formation. On the basis of the above findings, 
we proposed a model (Figure 1) where fracture induces secre-
tion of TNFα and Il-6, as well as CXCLs that attract neutrophils. 
Neutrophils would be expected to induce monocyte chemotaxis 
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via stimulation of CCL2 secretion. Then, once monocytes secrete 
several chemokines, such as CCL2, CCL4, and CCL7, known to 
attract MSC, these cells will be induced to migrate toward fracture 
callus and secrete CXCL12. CXCL12 will in turn bind to CXCR4 
and regulate BMP2 effects on osteogenesis and fracture healing. 
Currently, no published study has investigated the involvement of 
CCL4 and CCL7 in fracture healing. Thus, the issue of whether 
other chemokines are involved in fracture healing and how they 
interact with each other in the fracture healing process remains 
to be investigated. A comprehensive understanding of the role 
of chemokines in the fracture healing process could lead to 
development of chemokine-based therapies to promote healing 
of non-union fractures.

AUTHOR CONTRibUTiONS

BE prepared the manuscript and collected the data.

ACKNOwLeDGMeNTS

All work was performed at the facilities provided by the Veterans 
Administration in Loma Linda, CA, USA. The author thanks Dr. 
Mohan S and Dr. Rasmussen C, for their help in editing this man-
uscript. Our experiments were supported by the US Department 
of Defense (DOD), Award number W81XWH-10-1-0952. The 
content is solely the responsibility of the authors and does not 
necessarily represent the official views of the DOD.

ReFeReNCeS

1. Cruess RL, Dumont J. Fracture healing. Can J Surg (1975) 18:403–13. 
2. Simmons DJ. Fracture healing perspectives. Clin Orthop Relat Res (1985) 

200:100–13. 
3. Einhorn TA, Lane JM. Significant advances have been made in the way 

surgeons treat fractures. Clin Orthop Relat Res (1998) 355(Suppl):S2–3. 
doi:10.1097/00003086-199810001-00001 

4. Zeckey C, Mommsen P, Andruszkow H, Macke C, Frink M, Stübig T, et al. 
The aseptic femoral and tibial shaft non-union in healthy patients – an 
analysis of the health-related quality of life and the socioeconomic outcome. 
Open Orthop J (2011) 5:193–7. doi:10.2174/1874325001105010193 

5. Speyer CL, Ward PA. Role of endothelial chemokines and their receptors 
during inflammation. J Invest Surg (2011) 24:18–27. doi:10.3109/08941939
.2010.521232 

6. Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: 
endothelial cells-conditional innate immune cells. J Hematol Oncol (2013) 
6:61. doi:10.1186/1756-8722-6-61 

7. Chan JK, Glass GE, Ersek A, Freidin A, Williams GA, Gowers K, et al. Low-
dose TNF augments fracture healing in normal and osteoporotic bone by 
up-regulating the innate immune response. EMBO Mol Med (2015) 7:547–61. 
doi:10.15252/emmm.201404487 

8. Xu X, Huang P, Yang B, Wang X, Xia J. Roles of CXCL5 on migra-
tion and invasion of liver cancer cells. J Transl Med (2014) 12:193. 
doi:10.1186/1479-5876-12-193 

9. Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV. CCL2 
regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 
(2006) 177:2651–61. doi:10.4049/jimmunol.177.4.2651 

10. Scapini P, Morini M, Tecchio C, Minghelli S, Di Carlo E, Tanghetti E, et al. 
CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo 
is mediated by neutrophil-derived vascular endothelial growth factor-A. 
J Immunol (2004) 172:5034–40. doi:10.4049/jimmunol.172.8.5034 

11. Dapunt U, Maurer S, Giese T, Gaida MM, Hansch GM. The macrophage 
inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant- 
associated osteomyelitis: linking inflammation to bone degradation. 
Mediators Inflamm (2014) 2014:728619. doi:10.1155/2014/728619 

12. Goto Y, Aoyama M, Sekiya T, Kakita H, Waguri-Nagaya Y, Miyazawa K, et al. 
CXCR4+ CD45- cells are niche forming for osteoclastogenesis via the SDF- 1, 
CXCL7, and CX3CL1 signaling pathways in bone marrow. Stem Cells (2016) 
34:2733–43. doi:10.1002/stem.2440 

13. Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: 
basic chemokinese grammar for immune cells. Annu Rev Immunol (2004) 
22:891–928. doi:10.1146/annurev.immunol.22.012703.104543 

14. Murphy PM. International union of pharmacology. Update on chemokine 
receptor nomenclature. Pharmacol Rev (2002) 54:227–9. doi:10.1124/
pr.54.2.227 

15. Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, 
et al. International union of pharmacology. XXII. Nomenclature for chemo-
kine receptors. Pharmacol Rev (2000) 52:145–76. 

16. Gosling J, Dairaghi DJ, Wang Y, Hanley M, Talbot D, Miao Z, et al. Cutting 
edge: identification of a novel chemokine receptor that binds dendritic cell- 
and T cell-active chemokines including ELC, SLC, and TECK. J Immunol 
(2000) 164:2851–6. doi:10.4049/jimmunol.164.6.2851 

17. Chaudhuri A, Polyakova J, Zbrzezna V, Williams K, Gulati S, Pogo AO. 
Cloning of glycoprotein D cDNA, which encodes the major subunit of 
the Duffy blood group system and the receptor for the Plasmodium vivax 
malaria parasite. Proc Natl Acad Sci U S A (1993) 90:10793–7. doi:10.1073/
pnas.90.22.10793 

18. Nibbs RJ, Gilchrist DS, King V, Ferra A, Forrow S, Hunter KD, et  al. The 
atypical chemokine receptor D6 suppresses the development of chemically 
induced skin tumors. J Clin Invest (2007) 117:1884–92. doi:10.1172/JCI30068 

19. Nibbs RJ, Wylie SM, Yang J, Landau NR, Graham GJ. Cloning and character-
ization of a novel promiscuous human beta-chemokine receptor D6. J Biol 
Chem (1997) 272:32078–83. doi:10.1074/jbc.272.51.32078 

20. Zlotnik A, Yoshie O. Chemokines: a new classification system and their 
role in immunity. Immunity (2000) 12:121–7. doi:10.1016/S1074-7613(00) 
80165-X 

21. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, et al. Neurotactin, 
a membrane-anchored chemokine upregulated in brain inflammation. 
Nature (1997) 387:611–7 Erratum in Nature (1997) 389(6646):100. 
doi:10.1038/42491 

22. Lord PC, Wilmoth LM, Mizel SB, McCall CE. Expression of interleukin-1 
alpha and beta genes by human blood polymorphonuclear leukocytes. J Clin 
Invest (1991) 87:1312–21. doi:10.1172/JCI115134 

23. Wolpe SD, Sherry B, Juers D, Davatelis G, Yurt RW, Cerami A. Identification 
and characterization of macrophage inflammatory protein 2. Proc Natl Acad 
Sci U S A (1989) 86:612–6. doi:10.1073/pnas.86.2.612 

24. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, et  al. 
Rapid and coordinated switch in chemokine receptor expression during 
dendritic cell maturation. Eur J Immunol (1998) 28:2760–9. doi:10.1002/
(SICI)1521-4141(199809)28:09<2760::AID-IMMU2760>3.0.CO;2-N 

25. Bazzoni F, Cassatella MA, Rossi F, Ceska M, Dewald B, Baggiolini M. 
Phagocytosing neutrophils produce and release high amounts of the 
neutrophil-activating peptide 1/interleukin 8. J Exp Med (1991) 173:771–4. 
doi:10.1084/jem.173.3.771 

26. Strieter RM, Kasahara K, Allen R, Showell HJ, Standiford TJ, Kunkel SL. 
Human neutrophils exhibit disparate chemotactic factor gene expres-
sion. Biochem Biophys Res Commun (1990) 173:725–30. doi:10.1016/
S0006-291X(05)80095-6 

27. Kasama T, Strieter RM, Lukacs NW, Burdick MD, Kunkel SL. Regulation 
of neutrophil-derived chemokine expression by IL-10. J Immunol (1994) 
152:3559–69. 

28. Xing Z, Jordana M, Kirpalani H, Driscoll KE, Schall TJ, Gauldie J. Cytokine 
expression by neutrophils and macrophages in vivo: endotoxin induces tumor 
necrosis factor-a, macrophage inflammatory protein-2, interleukin-1b, and 
interleukin-6 but not RANTES or transforming growth factor-b1 mRNA 
expression in acute lung inflammation. Am J Respir Cell Mol Biol (1994) 
10:148–53. Erratum in: Am J Respir Cell Mol Biol (1994) 10:following 346. 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1097/00003086-199810001-00001
https://doi.org/10.2174/1874325001105010193
https://doi.org/10.3109/08941939.2010.521232
https://doi.org/10.3109/08941939.2010.521232
https://doi.org/10.1186/1756-8722-6-61
https://doi.org/10.15252/emmm.201404487
https://doi.org/10.1186/1479-5876-12-193
https://doi.org/10.4049/jimmunol.177.4.2651
https://doi.org/10.4049/jimmunol.172.8.5034
https://doi.org/10.1155/2014/728619
https://doi.org/10.1002/stem.2440
https://doi.org/10.1146/annurev.immunol.22.012703.104543
https://doi.org/10.1124/pr.54.2.227
https://doi.org/10.1124/pr.54.2.227
https://doi.org/10.4049/jimmunol.164.6.2851
https://doi.org/10.1073/pnas.90.22.10793
https://doi.org/10.1073/pnas.90.22.10793
https://doi.org/10.1172/JCI30068
https://doi.org/10.1074/jbc.272.51.32078
https://doi.org/10.1016/S1074-7613(00)
80165-X
https://doi.org/10.1016/S1074-7613(00)
80165-X
https://doi.org/10.1038/42491
https://doi.org/10.1172/JCI115134
https://doi.org/10.1073/pnas.86.2.612
https://doi.org/10.1002/(SICI)1521-4141(199809)28:09 < 2760::AID-IMMU2760 > 3.0.CO;2-N
https://doi.org/10.1002/(SICI)1521-4141(199809)28:09 < 2760::AID-IMMU2760 > 3.0.CO;2-N
https://doi.org/10.1084/jem.173.3.771
https://doi.org/10.1016/S0006-291X(05)80095-6
https://doi.org/10.1016/S0006-291X(05)80095-6


7

Edderkaoui Chemokines and Fracture Healing

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 39

29. Ponath PD, Qin S, Ringler DJ, Clark-Lewis I, Wang J, Kassam N, et al. Cloning 
of the human eosinophil chemoattractant, eotaxin. Expression, receptor 
binding, and functional properties suggest a mechanism for the selective 
recruitment of eosinophils. J Clin Invest (1996) 197:604–12. doi:10.1172/
JCI118456 

30. Diny NL, Hou X, Barin JG, Chen G, Talor MV, Schaub J, et al. Macrophages 
and cardiac fibroblasts are the main producers of eotaxins and regulate eosin-
ophil trafficking to the heart. Eur J Immunol (2016) 46:2749–60. doi:10.1002/
eji.201646557 

31. Distler O, Pap T, Kowal-Bielecka O, Meyringer R, Guiducci S, Landthaler 
M, et al. Overexpression of monocyte chemoattractant protein 1 in systemic 
sclerosis: role of platelet-derived growth factor and effects on monocyte 
chemotaxis and collagen synthesis. Arthritis Rheum (2001) 44:2665–78. 
doi:10.1002/1529-0131(200111)44:11<2665::AID-ART446>3.0.CO;2-S 

32. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, et al. The chemo-
kine receptor CCR4 in vascular recognition by cutaneous but not intestinal 
memory T cells. Nature (1999) 400:776–80. doi:10.1038/23495 

33. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and 
insulin resistance. Proc Natl Acad Sci U S A (2003) 100:7265–70. doi:10.1073/
pnas.1133870100 

34. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 
contributes to macrophage infiltration into adipose tissue, insulin resis-
tance, and hepatic steatosis in obesity. J Clin Invest (2006) 116:1494–505. 
doi:10.1172/JCI26498 

35. Clark-Lewis I, Kim KS, Rajarathnam K, Gong JH, Dewald B, Moser B, 
et  al. Structure-activity relationships of chemokines. J Leukoc Biol (1995) 
57:703–11. 

36. Zlotnik A, Morales J, Hedrick JA. Recent advances in chemokines and 
chemokine receptors. Crit Rev Immunol (1999) 19:1–47. doi:10.1615/
CritRevImmunol.v19.i1.10 

37. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: 
positioning cells for host defense and immunity. Annu Rev Immunol (2014) 
32:659–702. doi:10.1146/annurev-immunol-032713-120145 

38. Roy I, Getschman AE, Volkman BF, Dwinell MB. Exploiting agonist biased 
signaling of chemokines to target cancer. Mol Carcinog (2017) 56:804–13. 
doi:10.1002/mc.22571

39. Graham GJ, McKimmie CS. Chemokine scavenging by D6: a movable feast. 
Trends Immunol (2006) 27:381–6. doi:10.1016/j.it.2006.06.006 

40. Nibbs R, Graham G, Rot A. Chemokines on the move: control by the chemo-
kine interceptors Duffy blood group antigen and D6. Semin Immunol (2003) 
15:287–94. doi:10.1016/j.smim.2003.08.006 

41. Murphy PM. The molecular biology of leukocyte chemoattractant 
receptors. Annu Rev Immunol (1994) 12:593–633. doi:10.1146/annurev.
iy.12.040194.003113 

42. Hamatake M, Aoki T, Futahashi Y, Urano E, Yamamoto N, Komano J. Ligand-
independent higher-order multimerization of CXCR4, a G-protein-coupled 
chemokine receptor involved in targeted metastasis. Cancer Sci (2009) 
100:95–102. doi:10.1111/j.1349-7006.2008.00997.x 

43. Hernanz-Falcon P, Rodriguez-Frade JM, Serrano A, Juan D, del Sol A, 
Soriano SF, et  al. Identification of amino acid residues crucial for chemo-
kine receptor dimerization. Nat Immunol (2004) 5:216–23. doi:10.1038/ 
ni1027 

44. Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H, 
Fujii N, et  al. Bioluminescence resonance energy transfer reveals ligand- 
induced conformational changes in CXCR4 homo- and heterodimers. J Biol 
Chem (2005) 280:9895–903. doi:10.1074/jbc.M411151200 

45. Rodriguez-Frade JM, Vila-Coro AJ, de Ana AM, Albar JP, Martinez AC, 
Mellado M. The chemokine monocyte chemoattractant protein-1 induces 
functional responses through dimerization of its receptor CCR2. Proc Natl 
Acad Sci U S A (1999) 96:3628–33. doi:10.1073/pnas.96.7.3628 

46. Muñoz LM, Holgado BL, Martínez-A C, Rodríguez-Frade JM, Mellado 
M. Chemokine receptor oligomerization: a further step toward chemokine 
function. Immunol Lett (2012) 145:23–9. doi:10.1016/j.imlet.2012.04.012 

47. Muñoz LM, Barroso R, Dyrhaug SY, Navarro G, Lucas P, Soriano SF, et al. 
CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding 
to the cell surface. Proc Natl Acad Sci U S A (2014) 111(19):E1960–9. 
doi:10.1073/pnas.1322887111 

48. Gilliland CT, Salanga CL, Kawamura T, Trejo J, Handel TM. The chemokine 
receptor CCR1 is constitutively active, which leads to G protein-independent, 

β-arrestin-mediated internalization. J Biol Chem (2013) 288(45):32194–210. 
doi:10.1074/jbc.M113.503797 

49. Förster Y, Schmidt JR, Wissenbach DK, Pfeiffer SE, Baumann S, Hofbauer 
LC, et  al. Microdialysis sampling from wound fluids enables quantitative 
assessment of cytokines, proteins, and metabolites reveals bone defect- 
specific molecular profiles. PLoS One (2016) 11:e0159580. doi:10.1371/
journal.pone.0159580 

50. Gardner L, Patterson AM, Ashton BA, Stone MA, Middleton J. The human 
Duffy antigen binds selected inflammatory but not homeostatic chemo-
kines. Biochem Biophys Res Commun (2004) 321:306–12. doi:10.1016/j.
bbrc.2004.06.146 

51. Wu AC, Morrison NA, Kelly WL, Forwood MR. MCP-1 expression is spe-
cifically regulated during activation of skeletal repair and remodeling. Calcif 
Tissue Int (2013) 92:566–75. doi:10.1007/s00223-013-9718-6 

52. Rundle CH, Mohan S, Edderkaoui B. Duffy antigen receptor for chemo-
kines regulates post-fracture inflammation. PLoS One (2013) 8:e77362. 
doi:10.1371/journal.pone.0077362 

53. Ishikawa M, Ito H, Kitaori T, Murata K, Shibuya H, Furu M, et al. MCP/CCR2 
signaling is essential for recruitment of mesenchymal progenitor cells during 
the early phase of fracture healing. PLoS One (2014) 9:e104954. doi:10.1371/
journal.pone.0104954 

54. Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, et  al. Multiple roles for 
CCR2 during fracture healing. Dis Model Mech (2010) 3:451–8. doi:10.1242/
dmm.003186 

55. Hoff P, Gaber T, Strehl C, Schmidt-Bleek K, Lang A, Huscher D, et  al. 
Immunological characterization of the early human fracture hematoma. 
Immunol Res (2016) 64(5–6):1195–206. doi:10.1007/s12026-016-8868-9 

56. Johnston B, Burns AR, Suematsu M, Issekutz TB, Woodman RC, Kubes P. 
Chronic inflammation upregulates chemokine receptors and induces neutro-
phil migration to monocyte chemoattractant protein-1. J Clin Invest (1999) 
103(9):1269–76. doi:10.1172/JCI5208 

57. Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, 
et al. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. 
Cancer Med (2016) 10:2920–33. doi:10.1002/cam4.886 

58. Wang J, Li H, Li B, Gong Q, Chen X, Wang Q. Co-culture of bone marrow 
stem cells and macrophages indicates intermediate mechanism between local 
inflammation and innate immune system in diabetic periodontitis. Exp Ther 
Med (2016) 12:567–72. doi:10.3892/etm.2016.3386 

59. Loyher PL, Rochefort J, Baudesson de Chanville C, Hamon P, Lescaille G, 
Bertolus C, et al. CCR2 influences T regulatory cell migration to tumors and 
serves as a biomarker of cyclophosphamide sensitivity. Cancer Res (2016) 
76(22):6483–94. doi:10.1158/0008-5472.CAN-16-0984 

60. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal 
J. TNF-alpha promotes fracture repair by augmenting the recruitment and 
differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A 
(2011) 108:1585–90. doi:10.1073/pnas.1018501108 

61. Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of 
the bone microenvironment in human fragility fracture bone. Bone (2009) 
44(1):87–101. doi:10.1016/j.bone.2008.08.120 

62. Liuni FM, Rugiero C, Feola M, Rao C, Pistillo P, Terracciano C, et al. Impaired 
healing of fragility fractures in type 2 diabetes: clinical and radiographic 
assessments and serum cytokine levels. Aging Clin Exp Res (2015) 27(Suppl 
1):S37–44. doi:10.1007/s40520-015-0422-4 

63. Li X, Liu H, Qin L, Tamasi J, Bergenstock M, Shapses S, et al. Determination 
of dual effects of parathyroid hormone on skeletal gene expression in vivo 
by microarray and network analysis. J Biol Chem (2007) 282:33086–97. 
doi:10.1074/jbc.M705194200 

64. Jiang X, Sato T, Yao Z, Keeney M, Pajarinen J, Lin TH, et al. Local delivery 
of mutant CCL2 protein-reduced orthopaedic implant wear particle-in-
duced osteolysis and inflammation in  vivo. J Orthop Res (2016) 34:58–64. 
doi:10.1002/jor.22977 

65. Fontaine JL, Hunt NA, Curry S, Kearney T, Jupiter D, Shibuya N, et al. Fracture 
healing and biomarker expression in a diabetic Zucker rat model. J Am 
Podiatr Med Assoc (2014) 104:428–33. doi:10.7547/0003-0538-104.5.428 

66. Lipes MA, Napolitano M, Jeang KT, Chang NT, Leonard WJ. Identification, 
cloning, and characterization of an immune activation gene. Proc Natl Acad 
Sci U S A (1988) 85:9704–8. doi:10.1073/pnas.85.24.9704 

67. Alblowi J, Tian C, Siqueira MF, Kayal RA, McKenzie E, Behl Y, 
et  al. Chemokine expression is upregulated in chondrocytes in 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1172/JCI118456
https://doi.org/10.1172/JCI118456
https://doi.org/10.1002/eji.201646557
https://doi.org/10.1002/eji.201646557
https://doi.org/10.1002/1529-0131(200111)44:11 < 2665::AID-ART446 > 3.0.CO;2-S
https://doi.org/10.1038/23495
https://doi.org/10.1073/pnas.1133870100
https://doi.org/10.1073/pnas.1133870100
https://doi.org/10.1172/JCI26498
https://doi.org/10.1615/CritRevImmunol.v19.i1.10
https://doi.org/10.1615/CritRevImmunol.v19.i1.10
https://doi.org/10.1146/annurev-immunol-032713-120145
https://doi.org/10.1002/mc.22571
https://doi.org/10.1016/j.it.2006.06.006
https://doi.org/10.1016/j.smim.2003.08.006
https://doi.org/10.1146/annurev.iy.12.040194.003113
https://doi.org/10.1146/annurev.iy.12.040194.003113
https://doi.org/10.1111/j.1349-7006.2008.00997.x
https://doi.org/10.1038/ni1027
https://doi.org/10.1038/ni1027
https://doi.org/10.1074/jbc.M411151200
https://doi.org/10.1073/pnas.96.7.3628
https://doi.org/10.1016/j.imlet.2012.04.012
https://doi.org/10.1073/pnas.1322887111
https://doi.org/10.1074/jbc.M113.503797
https://doi.org/10.1371/journal.pone.0159580
https://doi.org/10.1371/journal.pone.0159580
https://doi.org/10.1016/j.bbrc.2004.06.146
https://doi.org/10.1016/j.bbrc.2004.06.146
https://doi.org/10.1007/s00223-013-9718-6
https://doi.org/10.1371/journal.pone.0077362
https://doi.org/10.1371/journal.pone.0104954
https://doi.org/10.1371/journal.pone.0104954
https://doi.org/10.1242/dmm.003186
https://doi.org/10.1242/dmm.003186
https://doi.org/10.1007/s12026-016-8868-9
https://doi.org/10.1172/JCI5208
https://doi.org/10.1002/cam4.886
https://doi.org/10.3892/etm.2016.3386
https://doi.org/10.1158/0008-5472.CAN-16-0984
https://doi.org/10.1073/pnas.1018501108
https://doi.org/10.1016/j.bone.2008.08.120
https://doi.org/10.1007/s40520-015-0422-4
https://doi.org/10.1074/jbc.M705194200
https://doi.org/10.1002/jor.22977
https://doi.org/10.7547/0003-0538-104.5.428
https://doi.org/10.1073/pnas.85.24.9704


8

Edderkaoui Chemokines and Fracture Healing

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 39

diabetic fracture healing. Bone (2013) 53:294–300. doi:10.1016/j.bone.2012. 
12.006 

68. Lin F, Xue D, Xie T, Pan Z. HMGB1 promotes cellular chemokine synthesis 
and potentiates mesenchymal stroma cell migration via Rap1 activation. Mol 
Med Rep (2016) 14:1283–9. doi:10.3892/mmr.2016.5398

69. Meurer R, Van Riper G, Feeney W, Cunningham P, Hora D, Springer MS. 
Formation of eosinophilic and monocytic intradermal inflammatory sites in 
the dog by injection of human RANTES but not human monocyte chemoat-
tractant protein 1, human macrophage inflammatory protein 1a, or human 
interleukin 8. J Exp Med (1993) 178:1913. doi:10.1084/jem.178.6.1913 

70. Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes 
and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 
(1990) 347:669. doi:10.1038/347669a0 

71. Conti P, Reale M, Barbacane RC, Letourneau R, Theoharides TC. 
Intramuscular injection of hrRANTES causes mast cell recruitment and 
increased transcription of histidine decarboxylase in mice: lack of effects in 
genetically mast cell-deficient W/WV mice. FASEB J (1998) 12:1693–700. 

72. Kuna P, Alam R, Ruta U, Gorski P. RANTES induces nasal mucosal inflam-
mation rich in eosinophils, basophils, and lymphocytes in vivo. Am J Respir 
Crit Care Med (1998) 157:873–9. doi:10.1164/ajrccm.157.3.9610052 

73. Combadiere C, Ahuja SK, Van Damme J, Tiffany HL, Gao JL, Murphy 
PM. Monocyte chemoattractant protein-3 is a functional ligand for CC 
chemokine receptors 1 and 2B. J Biol Chem (1995) 270:29671–5. doi:10.1074/
jbc.270.50.29671 

74. Menten P, Wuyts A, Van Damme J. Monocyte chemotactic protein-3. Eur 
Cytokine Netw (2001) 12:554–60. 

75. Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, et al. Monocyte 
chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. 
Stem Cells (2007) 25:245–51. doi:10.1634/stemcells.2006-0293 

76. Neunaber C, Oestern S, Andruszkow H, Zeckey C, Mommsen P, Kutter D, 
et al. Cytokine productive capacity of alveolar macrophages and Kupffer cells 
after femoral fracture and blunt chest trauma in a murine trauma model. 
Immunol Lett (2013) 152:159–66. doi:10.1016/j.imlet.2013.05.012 

77. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat 
Immunol (2001) 2:123–8. doi:10.1038/84219 

78. Ogilvie P, Bardi G, Clark-Lewis I, Baggiolini M, Uguccioni M. Eotaxin is 
a natural antagonist for CCR2 and an agonist for CCR5. Blood (2001) 
97:1920–4. doi:10.1182/blood.V97.7.1920 

79. Luster AD, Jhanwar SC, Chaganti RSK, Kersey JH, Ravetch JV. Interferon-
inducible gene maps to a chromosomal band associated with a (4;11) trans-
location in acute leukemia cells. Proc Natl Acad Sci U S A (1978) 84:2868–71. 
doi:10.1073/pnas.84.9.2868 

80. Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, et al. 
Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis 
in vivo. J Exp Med (1995) 182:155–62. doi:10.1084/jem.182.1.155 

81. Sun M, Yang J, Wang J, Hao T, Jiang D, Bao G, et al. TNF-α is upregulated 
in T2DM patients with fracture and promotes the apoptosis of osteoblast 
cells in  vitro in the presence of high glucose. Cytokine (2016) 80:35–42. 
doi:10.1016/j.cyto.2016.01.011 

82. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic 
cytokines – CXC and CC chemokines. Adv Immunol (1994) 55:97–179. 
doi:10.1016/S0065-2776(08)60509-X 

83. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev 
Immunol (1997) 15:675–705. doi:10.1146/annurev.immunol.15.1.675 

84. Pruijt JF, van Kooyk Y, Figdor CG, Lindley IJ, Willemze R, Fibbe WE. Anti-
LFA-1 blocking antibodies prevent mobilization of hematopoietic progenitor 
cells induced by interleukin-8. Blood (1998) 91:4099–105. 

85. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, et al. The 
lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks 
HIV-1 entry. Nature (1996) 382:829–33. doi:10.1038/382829a0 

86. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier J-L, Arenzana-
Seisdedos F, et  al. The CXC chemokine SDF-1 is the ligand for LESTR/
fusin and prevents infection by T-cell-line-adapted HIV-1. Nature (1996) 
382:833–5. Erratum in: Nature (1996) 384:288 only. doi:10.1038/382833a0 

87. Carr AN, Howard BW, Yang HT, Eby-Wilkens E, Loos P, Varbanov A, et al. 
Efficacy of systemic administration of SDF-1 in a model of vascular insuffi-
ciency: support for an endothelium-dependent mechanism. Cardiovasc Res 
(2006) 69:925–35. doi:10.1016/j.cardiores.2005.12.005 

88. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, 
et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial 
progenitor cell recruitment for ischemic neovascularization. Circulation 
(2003) 107:1322–8. doi:10.1161/01.CIR.0000055313.77510.22 

89. Myers TJ, Longobardi L, Willcockson H, Temple JD, Tagliafierro L, Ye P, 
et al. BMP2 regulation of CXCL12 cellular, temporal, and spatial expression 
is essential during fracture repair. J Bone Miner Res (2015) 30:2014–27. 
doi:10.1002/jbmr.2548 

90. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, et al. Stromal 
cell-derived factor 1/CXCR4 signaling is critical for the recruitment of 
mesenchymal stem cells to the fracture site during skeletal repair in a mouse 
model. Arthritis Rheum (2009) 60:813–23. doi:10.1002/art.24330 

91. Toupadakis CA, Wong A, Genetos DC, Chung DJ, Murugesh D, Anderson 
MJ, et al. Long-term administration of AMD3100, an antagonist of SDF-1/
CXCR4 signaling, alters fracture repair. J Orthop Res (2012) 30:1853–9. 
doi:10.1002/jor.22145 

92. Ceradini D, Kulkarni A, Callaghan M, Tepper O, Bastidas N, Kleinman M, 
et  al. Progenitor cell trafficking is regulated by hypoxic gradients through 
HIF-1 induction of SDF-1. Nat Med (2004) 10:858–64. doi:10.1038/nm1075 

93. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop 
Relat Res (1998) (355 Suppl):S7–21. doi:10.1097/00003086-199810001-00003 

94. Kumar V, Abbas AK, Fausto N. Robbins & Cotran Pathologic Basis of Disease: 
International. 7th ed. New York: Elsevier (2005).

95. Johnson Z, Power CA, Weiss C, Rintelen F, Ji H, Ruckle T, et al. Chemokine 
inhibition–why, when, where, which and how? Biochem Soc Trans (2004) 
32(Pt2):366–77. doi:10.1042/bst0320366 

96. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, et  al. 
Bone marrow mesenchymal stem cells express a restricted set of functionally 
active chemokine receptors capable of promoting migration to pancreatic 
islets. Blood (2005) 106:419–27. doi:10.1182/blood-2004-09-3507 

97. Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, et al. The 
in vitro migration capacity of human bone marrow mesenchymal stem cells: 
comparison of chemokine and growth factor chemotactic activities. Stem 
Cells (2007) 25:1737–45. doi:10.1634/stemcells.2007-0054 

98. Rice CM, Scolding NJ. Adult human mesenchymal cells proliferate and 
migrate in response to chemokines expressed in demyelination. Cell Adh 
Migr (2010) 4:235–40. doi:10.4161/cam.4.2.11404 

99. Rapp AE, Bindl R, Heilmann A, Erbacher A, Müller I, Brenner RE, et  al. 
Systemic mesenchymal stem cell administration enhances bone formation in 
fracture repair but not load-induced bone formation. Eur Cell Mater (2015) 
29:22–34. doi:10.22203/eCM.v029a02 

100. Hosogane N, Huang Z, Rawlins BA, Liu X, Boachie-Adjei O, Boskey AL, et al. 
Stromal derived factor-1 regulates bone morphogenetic protein 2-induced 
osteogenic differentiation of primary mesenchymal stem cells. Int J Biochem 
Cell Biol (2010) 42:1132–41. doi:10.1016/j.biocel.2010.03.020 

101. Zhu W, Liang G, Huang Z, Doty SB, Boskey AL. Conditional inactivation of 
the CXCR4 receptor in osteoprecursors reduces postnatal bone formation 
due to impaired osteoblast development. J Biol Chem (2011) 286:26794–805. 
doi:10.1074/jbc.M111.250985 

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Edderkaoui. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/j.bone.2012.
12.006
https://doi.org/10.1016/j.bone.2012.
12.006
https://doi.org/10.3892/mmr.2016.5398
https://doi.org/10.1084/jem.178.6.1913
https://doi.org/10.1038/347669a0
https://doi.org/10.1164/ajrccm.157.3.9610052
https://doi.org/10.1074/jbc.270.50.29671
https://doi.org/10.1074/jbc.270.50.29671
https://doi.org/10.1634/stemcells.2006-0293
https://doi.org/10.1016/j.imlet.2013.05.012
https://doi.org/10.1038/84219
https://doi.org/10.1182/blood.V97.7.1920
https://doi.org/10.1073/pnas.84.9.2868
https://doi.org/10.1084/jem.182.1.155
https://doi.org/10.1016/j.cyto.2016.01.011
https://doi.org/10.1016/S0065-2776(08)60509-X
https://doi.org/10.1146/annurev.immunol.15.1.675
https://doi.org/10.1038/382829a0
https://doi.org/10.1038/382833a0
https://doi.org/10.1016/j.cardiores.2005.12.005
https://doi.org/10.1161/01.CIR.0000055313.77510.22
https://doi.org/10.1002/jbmr.2548
https://doi.org/10.1002/art.24330
https://doi.org/10.1002/jor.22145
https://doi.org/10.1038/nm1075
https://doi.org/10.1097/00003086-199810001-00003
https://doi.org/10.1042/bst0320366
https://doi.org/10.1182/blood-2004-09-3507
https://doi.org/10.1634/stemcells.2007-0054
https://doi.org/10.4161/cam.4.2.11404
https://doi.org/10.22203/eCM.v029a02
https://doi.org/10.1016/
j.biocel.2010.03.020
https://doi.org/10.1074/jbc.M111.250985
http://creativecommons.org/licenses/by/4.0/

	Potential Role of Chemokines in Fracture Repair
	Introduction
	Chemokines and Chemokine Receptors
	Changes in the Expression of Chemokines in Response to Fracture and Their Potential Role in Fracture Healing
	Functional Studies Using Knockout Mice
	Conclusion
	Author Contributions
	Acknowledgments
	References


