Data Article

The dataset for the assessment of the inflammatory potential of the overall diet consumed by women of childbearing age

Chandrika J. Piyathilake ${ }^{\text {a,*, }}$, Suguna Badiga ${ }^{\text {a }}$, Ashley R. Chappell ${ }^{\text {b }}$, Gary L. Johanning ${ }^{\text {c }}$, Pauline E. Jolly ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
${ }^{\mathrm{b}}$ Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, Al 35294, USA
${ }^{\text {c }}$ SunnyBay Biotech, Inc. Fremont, CA 94539, USA

A R TICLE INFO

Article history:

Received 3 May 2021
Revised 3 June 2021
Accepted 18 June 2021
Available online 21 June 2021

Keywords:

Childbearing age
Block food frequency questionnaire
Anti-inflammatory
Pro-inflammatory food items
Dietary inflammatory score

Abstract

The data presented in this article is related to the research article titled "Racial differences in dietary choices and their relationship to inflammatory potential in childbearing age women at risk for exposure to COVID-19". This data article provides details of dietary intake data from 509 women (African American, $n=327$ and Caucasian American, $n=182$) who are residents of Birmingham, AL. All women were characterized for demographic and lifestyle factors and indicators of excess body weight (EBW) that are likely to influence overall dietary habits. Dietary intake data was collected by administering the modified version of the NCI validated Block food frequency questionnaire (98.2-isoflav version) that includes 110 food items of the original version (98.2 version) and an additional 24 phytochemical rich food items. The data article describes our approach to derive the dietary inflammatory score using a validated empirical dietary inflammatory index based on the frequency and the amount of consumption of each food item with minor modifications. This data will allow researchers to understand the composition of a Southern-style diet consumed by women of childbearing age and its relationship to inflammatory

[^0]potential, EBW, dietary guidelines, dietary reference intakes or diet quality indices.
© 2021 Published by Elsevier Inc.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject
Specific subject area
Type of data
How data were acquired
Data format
Parameters for data collection
Description of data collection

Data source location

Data accessibility

Related research article

Health and Medical Sciences - Nutrition
The dataset for the assessment of the inflammatory score of the diet of women of childbearing age
Tables-3
Figure-1
Dietary data was obtained by administering NCI validated food frequency questionnaire (Block 98.2-isoflavon)
Raw, Analysed
Data was obtained from women age 19-50 years
Information regarding demographics and lifestyle factors was obtained by administering a risk factor questionnaire. Height, weight and waist circumference were measured using standard procedures. BMI was computed using weight and height measurements. \% body fat was measured using a TANITA bioelectrical impedance equipment. Dietary intake data that reflected the consumption of food items over the past 12 months was gathered using Block food frequency questionnaire (FFQ) 98.2-isoflavon.
Institution: University of Alabama at Birmingham
City/Town/Region: Birmingham, Alabama
Country: USA
Latitude and longitude (and GPS coordinates, if possible) for collected samples/data: $32^{0} 19^{0} 56280^{\prime \prime} \mathrm{N} 86^{0} 54^{\prime} 82728 \mathrm{~W}$
Primary data sources: unavailable
Repository name: Mendeley repository
Data identification number: 10.17632
Direct URL to data: Mendeley Data - Dietary Data
Piyathilake CJ, Badiga S, Chappell AR, Johanning GL, Jolly PE. Racial differences in dietary choices and their relationship to inflammatory potential in childbearing age women at risk for exposure to COVID-19. Nutr Res. 2021 Apr 25;90:1-12. https://doi.org/10.1016/j.nutres.2021.04.004. Epub ahead of print. PMID: 34049184; PMCID: PMC8143979

Value of the Data

- The dietary intake data presents information that reflects the consumption of 134 food items over a 12 -month period and their differences by socio-demographic and lifestyle factors.
- This data will allow researchers to understand the composition of a Southern-style diet consumed by women of childbearing age and its relationship to inflammatory potential, EBW, dietary guidelines, dietary reference intakes or diet quality indices.
- This data will be useful to provide tailored dietary advice to reproductive age women in order to improve the quality of their diet.

1. Data Description

The dataset deposited consists of demographic information, lifestyle factors and dietary intake data obtained from 509 women of aged 19-50 years who are residents of Birmingham, AL. Demographic data consists of age, race, level of education and indicators of excess body weight (EBW), namely, BMI, percentage of body fat and waist circumference and health insurance

Table 1
The distribution of demographics and lifestyle information.

Demographic/lifestyle variables	$N(\%)$
Race	
\quad African American	$327(64 \%)$
\quad Caucasian American	$182(36 \%)$
BMI (kg/m²)	$203(40 \%)$
$\quad<25$	$306(60 \%)$
≥ 25	$201(39 \%)$
\% Body fat	$308(61 \%)$
$\quad<33$	
Waist circumference (cm)	$208(41 \%)$
$\quad 88$	$301(59 \%)$
≥ 88	$105(21 \%)$
Level of education	$178(35 \%)$
\quad Grades 7-11	$9(2 \%)$
Completed high school/General Educational Development (GED)	$165(32 \%)$
Vocational/trade school	$47(9 \%)$
Partial college education	$5(1 \%)$
Completed college	$408(80 \%)$
Partial/completed graduation	$101(20 \%)$
Physical activity	$189(37 \%)$
$\quad<150$ minutes/week moderate activity	$320(63 \%)$
≥ 150 minutes/week moderate activity	
Current smoking status	$170(33 \%)$
Current smokers	$339(67 \%)$
Non-current smokers	$253(50 \%)$
Parity	$256(50 \%)$
0 live births	1 live birth

information. Lifestyle data variables include parity, level of physical activity (minutes/week) and current smoking status (yes/no). The distribution of demographic and lifestyle data of the population are presented in Table 1. A majority of the women are African American (64\%), have excess body weight ($\sim 60 \%$ based on BMI, \% body fat or WC), completed high school education or higher education (79%), engaged in less than 150 min of moderate physical activity (80%), non-smokers (67%) and 67% with parity ≥ 1 at the time the data collection. 50% of the women paid their medical care on their own while 50% had coverage through health maintenance organization (HMO), Medicaid or other government assistance.

To obtain dietary intake data, we administered the Block food frequency questionnaire 98.2isoflavon version, which contains 110 food items of the original questionnaire (98.2) and an additional 24 phytochemical containing food items. The Block associates merged those additional 24 food items shown in Fig. 1 with the 98.2 version to create the 98.2 -isoflavon version.

The dietary intake data deposited is in the form of Microsoft Excel spreadsheets at the following site: Mendeley Data-Dietary Data. The Excel sheet 1 provides information on the frequency and the amount of food items consumed, daily intakes of macro and micronutrients, phytochemicals, dietary fibre, servings of food groups (vegetables, fruits, grains, dairy, meat/beans, dairy and fat/sugar/sweets) and health indices (glycaemic index, glycaemic load and healthy eating index). The frequency of consumption of food items is presented as the following codes; $1=$ never, $2=$ a few times per year, $3=$ once per month, $4=2-3$ times per month, $5=$ once per week, $6=2$ times per week, $7=3-4$ times per week, $8=5-6$ times per week, $9=$ every day. To be consistent, we have converted the frequency of consumption of food items to per week. As shown in Excel sheet 1, the amount of food consumed is coded as 1, 2, 3, 4 referring to the

HOW OFTEN	never	$\begin{gathered} \text { A FEW } \\ \text { R } \\ \text { TiMES } \\ \text { per } \\ \text { YEAR } \end{gathered}$	$\begin{gathered} \text { ONCE } \\ \text { ONer } \\ \text { mONTH } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 2.3 \\ \text { rimes } \\ \text { Het } \\ \text { morit } \end{array}$		$\mathrm{E} \left\lvert\, \begin{gathered} 2 \\ \mathrm{KIMES} \\ \mathrm{~K} \\ \mathrm{per} \\ \text { WeEK } \end{gathered}\right.$		$\left\{\begin{array}{c\|} 5.6 \\ \text { Times } \\ \text { per } \\ \text { wEEK } \end{array}\right.$	$\begin{gathered} \text { Everry } \\ \text { DAY } \end{gathered}$	HOW MUCH EACH TIME				
White wine	\bigcirc	0	\bigcirc	How many olasses? (One glass equals 3.5 . 02 2)	1	2	\bigcirc	$\stackrel{\bigcirc}{5}$						
Red wine	\bigcirc		1	\bigcirc	\bigcirc	$\stackrel{\bigcirc}{5+}$								
Grape juice, canned or bottled	\bigcirc	$\begin{gathered} \text { How many } \\ \text { glasses? } \\ \text { (one glass } \\ \text { equals } 8 \text { fioz) } \end{gathered}$	1	\bigcirc	\bigcirc	${ }_{4}$								
Chocolate milk	\bigcirc	$\left.\begin{array}{\|c\|} \text { How many } \\ \text { glassess? } \\ \text { lono glass } \\ \text { equals } 8 f 102) \end{array} \right\rvert\,$	\bigcirc	\bigcirc	\bigcirc	${ }_{4}$								
Dark chocolate candy bar	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	O	\bigcirc	\bigcirc	How many bars?	($\begin{gathered}\text { O } \\ \text { small } \\ \\ \text { a }\end{gathered}$	¢	$\underset{\text { late }}{\stackrel{1}{0}}$	$\underset{\substack{0 \\ \text { lasge } \\ \text { L }}}{ }$
Milk chocolate candy bar	\bigcirc	0	\bigcirc	How many bars?	(¢ small 	O	\bigcirc 1 1319	($\begin{gathered}\bigcirc \\ \text { 2 } \\ \text { lage }\end{gathered}$						
Plums, raw	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	How much	$\begin{gathered} O \\ \text { plium } \\ \text { pion } \end{gathered}$	$\begin{gathered} \circ \\ \substack{3 / 4 \\ \text { plum }} \end{gathered}$	¢ ${ }_{\text {Plum }}$	
Frozen strawberries or canned peaches	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	How much	$\begin{aligned} & 9 \\ & \substack{1 / 4 \\ \text { cup }} \end{aligned}$	$\begin{gathered} 0 \\ \substack{1 / 2 \\ \text { cup }} \end{gathered}$	$\begin{aligned} & 9 \\ & \text { cu4 } \\ & \text { cup } \end{aligned}$	O c cup
Grapes, white, green, red	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	How many each time	$\stackrel{\circ}{\circ-8}$	$\stackrel{\odot}{9-12}$	$\stackrel{\bigcirc}{13-16}$	$\stackrel{\bigcirc}{17+}$
Grapes black or black berries	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	How many each time	$\stackrel{\circ}{\circ-8}$	$\stackrel{\bigcirc}{\bigcirc-12}$	13-16	$\stackrel{\bigcirc}{\bigcirc+}$
Raspberries, raw	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	How many each time	$\stackrel{\circ}{5-8}$	$\stackrel{\odot}{\odot}$	$\stackrel{\odot}{\circ} \stackrel{\circ}{13-16}$	$\stackrel{\bigcirc}{\bigcirc+}$
Blueberries, raw	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	How much	$\begin{aligned} & 1 / 4 \\ & \substack{1 / 4 \\ \text { cup }} \end{aligned}$	$\begin{aligned} & 0 \\ & \substack{1 / 2 \\ \text { cup }} \end{aligned}$	$\begin{aligned} & 9 \\ & \substack{3 / 4 \\ \text { cup }} \end{aligned}$	0 1 cup
Cherries, raw, sweet	\bigcirc	How many each time	$\stackrel{\circ}{\circ-8}$	$\stackrel{\odot}{\odot}$	13-16	${ }_{17+}$								
Cherry tomatoes	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	How many	$\stackrel{\odot}{\circ-4}$	$\stackrel{\circ}{\circ-6}$	\bigcirc	$\stackrel{-}{\bigcirc+}$
Onion, fried, boiled, cooked or raw	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	How many slices or rings?	$\stackrel{\odot}{\odot-2}$	$\stackrel{\odot}{\circ}$	$\stackrel{\circ}{5-6}$	\bigcirc
Canned tomato products	\bigcirc	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	How much	$\begin{aligned} & 0 \\ & 1 / 4 \\ & \text { cup } \end{aligned}$	$\begin{gathered} \bigcirc \\ \substack{12 \\ \text { cuf }} \end{gathered}$	$\begin{aligned} & 0 \\ & 3 / 4 \\ & \text { cup } \end{aligned}$	\bigcirc cup cup
Celery, raw	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	\bigcirc	How many stalks?	\bigcirc	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \circ \\ & 2 \end{aligned}$	$\stackrel{\bigcirc}{\bigcirc+}$
Lemon juice, canned, bottled or fresh (do not include lemonade)	\bigcirc	How many Tbsp.	1	$\begin{aligned} & \circ \\ & 2 \end{aligned}$	\bigcirc	\bigcirc								
HOW OFTEN	never	A FEW TMMES per YeAR	$\begin{gathered} \text { ONCE } \\ \text { pet } \\ \text { MONH } \end{gathered}$	$\begin{array}{c\|} \hline 2.3 \\ \text { Times } \\ \text { pee } \\ \text { moNTH } \end{array}$	$\begin{gathered} \text { ONCE } \\ \text { per } \\ \text { WEEK } \end{gathered}$	2 TIMES per WEEK$\|$	$\begin{array}{\|c\|} \hline 3.4 \\ \text { TMIMES } \\ \text { pet } \\ \text { WEEK } \\ \hline \end{array}$	5.6 TMES per WEER	${ }_{\text {EVERY }}^{\text {DAY }}$	HOW M	JC	EAC	T	
Tea: Hot \& Cold				cup	er									
Brewed flavored green, oolong, decaffeinated black	\bigcirc	0	\bigcirc	How many cups?	1	2	$\stackrel{\odot}{3-4}$	$\stackrel{\bigcirc}{5+}$						
Instant diet, green ready-to-drink, black ready-to-drink diet, plain or flavored	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	How many cups?	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\stackrel{\odot}{\circ-4}$	$\stackrel{-}{\square}$
Ready-to-drink plain \& flavored, instant sweetened or unsweetened plain or flavored	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	How many cups?	0	$\begin{aligned} & \circ \\ & 2 \end{aligned}$	$\stackrel{\circ}{\circ-4}$	$\stackrel{\bigcirc}{\bigcirc+}$
Brewed green decaf	\bigcirc	How many cups?	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\stackrel{\circ}{\circ}$	${ }_{5+}$								
Brewed black	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	How many cups?	$\begin{aligned} & \circ \\ & 1 \end{aligned}$	$\begin{aligned} & \circ \\ & 2 \end{aligned}$	$\stackrel{\circ}{3 \cdot 4}$	$\stackrel{\bigcirc}{\bigcirc+}$
Brewed green	\bigcirc	How many cups?	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\stackrel{\circ}{3 \cdot 4}$	\bigcirc								

Fig. 1. 24 Phytochemical rich foods included to the Block FFQ 98.2.
serving sizes from small to large and M referring to missing data. Excel sheet 2 provides the codes based on the number of servings from 1-4 or missing data as " M " for each food item or a group of similar items. Excel sheet 3 provides the data dictionary for demographic and lifestyle variables, indicators of EBW, and food items provided in the excel sheet 1.

1.1. Summarization of dietary intake data

All food items were grouped into two categories based on their inflammatory potential as either anti-inflammatory foods (75 food items) or pro-inflammatory foods (55 food items) based on published reports of knowledge about their effects on overall diet-related inflammation score or inflammatory biomarkers [1-9] and further grouped based on their similarityfurther subdivided into various food groups as shown in Table 2. The scoring of the food items based on the frequency and the amount of consumption of the food item(s) per week is presented in Table 3.

2. Experimental Design, Materials and Methods

2.1. Data collection

The data was collected from 509 reproductive age women who are residents of Birmingham, AL. A risk factor questionnaire was administered to obtain information regarding demographics and lifestyle factors. Height, weight and waist were measured using standard procedures. BMI was computed using the weight and height measurements ($\mathrm{kg} / \mathrm{m}^{2}$). Percentage body fat was measured using the TANITA bioelectrical impedance equipment.

2.2. Assessment of dietary intake

Self-administered dietary intake data was gathered using the modified version of the validated Block food frequency questionnaire (FFQ) 98.2-isoflavon that contain 134 food items (110 food items of the original version +24 phytochemical rich food items added). The study staff was available to provide guidance and clarity on questions and to check the completeness of answering questions. The questionnaire included information on the portion sizes of food items consumed and their frequency. Each participant was provided with portion size pictures to aid in choosing the accurate portion size. Information obtained from the FFQ data was processed by the Nutriquest (Mason City, IA 50401) using a database developed and updated from the USDA Nutrient Database for Reference standards. The data file provided by the Nutriquest included information on the estimates of the amount and the frequency of each food item as wells as daily nutrient intakes of 40 nutrients of interest to the current study.

2.3. Calculation of the dietary inflammatory score (DIS)

Dietary data summarized was used to calculate the DIS using a similar method as described by Kannauchi et al [10] to derive the empirical dietary inflammatory index (eDII), an index based on the frequency and the amount of consumption of foods. Unlike in this previous method, we scored individual food items rather than food groups in order to obtain a more comprehensive score. Briefly, we grouped the food items consumed by each study participant as pro-inflammatory or anti-inflammatory based on published reports of knowledge about their effects on overall diet-related inflammation score or inflammatory biomarkers. [1-9] The food items grouped as anti-inflammatory ($n=75$) or pro-inflammatory ($n=55$); respectively and were further grouped based on their similarity. We computed the weekly consumption of each

Table 2
Foods items grouped based on their similarity and their inflammatory effect.

Anti-inflammatory Foods

Vegetable/fruit juices

Tomato Juice or V8 juice
Real 100% orange juice or grapefruit juice including fresh, frozen or bottled
Grape juice
Other real juices like apple juice, prune juice, lemonade Lemon juice canned, bottled or fresh

Health drinks

Instant breakfast milkshakes like carnation, diet shakes like slim fast or liquid supplements like Ensure
Coffee/tea beverages
Coffee regular or decaf
Tea or iced tea
Brewed flavored green, oolong, decaffeinated black tea
Instant diet tea
Ready to drink tea
Brewed green tea decaf
Brewed black tea
Brewed green tea
Milk
Milk
Milk or milk substitutes on cereals
Ice cream, ice milk, ice cream bars
Yogurt or frozen yogurt
Alcoholic beverages
Wine (red or white)
Beer or non-alcoholic beer
Liquor or mixed drinks
Fruits and berries
Raw peaches, apricots, nectarines (in season)
Cantaloupe (in season)
Strawberries (in season)
Frozen strawberries
Watermelon (in season)
Bananas
Apples or pears
Orange or tangerines
Grapefruit
Plums, raw
Frozen strawberries or canned peaches
Grapes, white, red or green
Grapes black or black berries
Raspberries, raw
Blueberries
Cherries
Others-honeydew, pineapple, kiwi (in season)
Canned fruits like applesauce, fruit cocktail or dried fruit like raisins
Vegetables and green leafy vegetables
Spinach
Mustard greens, turnip greens, collards
Broccoli
Carrots or mixed vegetables or stews containing carrots
Green beans and peas
White potatoes not fried including boiled, baked, mashed, and potato salad
Sweet potatoes, yams (not in pie)
Raw tomatoes included in salad
Cherry tomatoes
Cole slaw, cabbage
Celery raw
Any other vegetables like okra, squash, cooked green peppers
Canned tomato products

Table 2 (continued)
Anti-inflammatory Foods

Onion

Onions fried, boiled cooked or raw
Bean or legume products
Split bean or lentil soup
Refried beans
Baked beans, black-eyed peas, pintos, any other dried beans
Chili with bean with or without meat
Tofu, bean curds
Salad and salad dressing
Green salad
Raw tomatoes including in salad
Salad dressing
Vegetable stew and vegetable soup
Vegetable stew
Vegetable soup, vegetable beef, chicken vegetable or tomato soup

Cereals with high fiber

Cooked cereals like oat meal cream of wheat or grits
High fiber cereals like all bran, raisin bran, fruit-n-fiber
Dark bread like rye or whole wheat including in sandwiches
Fatty fish and shellfish
Oyster
Other shellfish like shrimps, scallops, crabs
Tuna, tuna salad, tuna casserole
Other fish, not fried
Meat substitutes
Meat substitutes-veggie burgers and garden burgers

Nuts

Peanuts, other nuts, or seeds
Peanut butter
Miscellaneous
Catsup, salsa or chili peppers
Mustard soy sauce, steak sauce, barbecue sauce, other sauces

Pro-inflammatory Foods

Beverages

Regular soft drinks, bottled drinks like Snapple
Drinks with some juice in them like sunny delight, juice squeeze
Kool aid, HI C or other drinks with added vitamin C
Rice and cereal related foods
Rice dish made with rice
Chinese food, Thai or Asian
Any other cold cereal like cornflakes, Special K
Corn and related items
Corn
Corn bread or corn muffins
Tortillas
Refined foods-cakes, pastries, cookies, biscuits

Crackers

Doughnuts, Danish pastry
Cakes, sweet rolls, coffee cake
Cookies
Pancakes, waffles, French toast, pop tarts
Rolls, hamburger buns English muffin, bagels
Biscuits or muffins
White bread or toast including French, Italian or in sandwiches

Pasta

Noodles, macaroni, pasta salad
Spaghetti lasagna or other pasta with tomato sauce

Table 2 (continued)

Cheesy foods

Cheese, sliced cheese or cheese spread including on sandwiches Eggs
Eggs including egg biscuits or egg mcmuffins (not egg substitutes)
Meat-red, processed and organs

Beef steaks, roasts, pot roasts or in frozen dinners or sandwiches Pork chops, pork roasts or frozen dinners or sandwiches Veal, lamb or deer meat Ribs, spareribs Liver including chicken livers or liverwurst Gizzard, pork neck bones, chitins, pig feet etc. Mixed dishes with beef or pork, like stew, corned beef hash, stuffed cabbage, meat dish with noodles Mixed dishes with chicken like chicken casserole, chicken and noodles pot pie or stir fry hicken or turkey not fried such as baked, grilled or in sandwiches Boloney, sliced ham, turkey lunch meat, other lunch meat Tacos, burritos, enchiladas, tamales etc. with meat and chicken with focus on the amount of meat ot dogs, hamburgers, sausages Hamburgers, cheeseburgers, meat loafs, at home or in restaurant with focus on the amount of meat Breakfast sausages including sausage biscuits ed foods (not pretzels) Fried fish or fish sandwich at home or in restaurant

Pumpkin pie, sweet potato pie
Any other pie or cobbler
Candy and bars
Chocolate candy or candy bars
 rs, power bars

Fats \& sugar
Margarine on bread or potatoes or vegetables
vegetable
Sugar in ter

Jelly, jam or syrup

Gravy
Other soups chicken noodle chowder, mushroom, instant soups
food item using the frequency and quantity information reported by the participants. We then categorized the consumption of each food item into three groups of consumption level as high, moderate or low based on frequency and amount consumed per week and provided a score depending on whether the item was pro-inflammatory $(+2,+1$ or 0) or anti-inflammatory ($-2,-1$ or 0). The inflammatory scores of all items were then added to create the overall DIS for each study participant. For example, if the study participant had a score of -30 for the consumption of anti-inflammatory foods and a score of +35 for the consumption of pro-inflammatory foods, then the overall DIS for that participant is +5 .

Table 3
Food item(s) scored as high, moderate or low (anti-inflammatory $-2,-1$ and 0 and proinflammatory $+2,+1$ and 0) based on the frequency and the amount of consumption of each item(s) per week.

Anti-inflammatory Foods	Score		
	$\begin{aligned} & \hline-2 \text { (high } \\ & \text { consumption) } \end{aligned}$	-1 (moderate consumption)	$\begin{aligned} & \hline 0 \text { (low } \\ & \text { consumption) } \end{aligned}$
Vegetable/fruit juices			
Tomato Juice or V8 juice	≥ 7 glasses	5-6 glasses	< 5 glasses
Real 100% orange juice or grapefruit juice including fresh, frozen or bottled	≥ 7 glasses	5-6 glasses	< 5 glasses
Other real juices like apple juice, prune juice, lemonade	≥ 7 glasses	5-6 glasses	< 5 glasses
Lemon juice canned, bottled or fresh	≥ 7 glasses	5-6 glasses	< 5 glasses
Health drinks			
Instant breakfast milkshakes like carnation, diet shakes like slim fast or liquid supplements like Ensure	≥ 7 cans	5-6 cans	< 5 cans
Coffee/tea beverages			
Coffee regular or decaf	≥ 14 cups	7-13 cups	< 7cups
Tea or iced tea	≥ 14 cups	7-13 cups	<7 cups
Brewed flavored green, oolong, decaffeinated black tea	≥ 14 cups	7-13 cups	< 7cups
Brewed green decaf tea	≥ 14 cups	7-13 cups	<7 cups
Brewed black tea	≥ 14 cups	7-13 cups	<7 cups
Brewed green tea	≥ 14 cups	7-13 cups	<7 cups
Milk			
Milk	≥ 7 cups	5-6 cups	< 5 cups
Ice cream, ice milk, ice cream bars	>3 cups	2 cups	< 2 cups
Milk or milk substitutes on cereals	$\geq 40 \mathrm{oz}$.	10-40 oz.	< 10 oz.
Yogurt or frozen yogurt	≥ 5 cups	3-4 cup	<3 cup
Fruits			
Raw peaches, apricots, nectarines (in season) (number consumed)	≥ 5	3-4	<3
Cantaloupe (in season) (number consumed)	≥ 1	1/2	< 1/2
Strawberries (in season)	≥ 3 cups	2 cups	< 2 cups
Watermelon (in season)	≥ 3	2	<2
Other seasonal fruits-honeydew, pineapple, kiwi	≥ 3 cups	2 cups	< 2 cups
Bananas (number consumed)	≥ 5	3-4	≤ 2
Apples or pears (number consumed)	≥ 5	3-4	≤ 2
Orange or tangerines (number consumed)	≥ 5	3-4	≤ 2
Grape fruit (number consumed)	≥ 5	3-4	≤ 2
Plums, raw (number consumed)	≥ 5	3-4	≤ 2
Frozen strawberries or canned peaches	≥ 2 cups	1 cup	< 1 cup
Grapes, white, red or green (number consumed)	≥ 20	$19->10$	≤ 10
Grapes, black or black berries (number consumed)	≥ 20	19->10	≤ 10
Raspberries, raw (number consumed)	≥ 20	19-> 10	≤ 10
Blueberries (number consumed)	≥ 20	$19->10$	≤ 10
Cherries (number consumed)	≥ 20	19-> 10	≤ 10
Canned fruits like applesauce, fruit cocktail or dried fruit like raisins (number consumed)	> 3 cups	2 cups	< 2 cups
Vegetables and green leafy vegetables			
Broccoli	≥ 3 cups	2 cups	< 2 cups
Carrots or mixed vegetables or stews containing carrots	≥ 3 cups	2 cups	< 2 cups
Green beans and green	≥ 3 cups	2 cups	< 2 cups
Spinach	≥ 3 cups	2 cups	< 2 cups
Mustard greens, turnip greens, collards	≥ 3 cups	2 cups	< 2 cups
Potato	≥ 5 cups	3-4 cups	< 3 cups

Table 3 (continued)

Anti-inflammatory Foods	Score		
	$\begin{aligned} & \hline-2 \text { (high } \\ & \text { consumption) } \end{aligned}$	-1 (moderate consumption)	$\begin{aligned} & \hline 0 \text { (low } \\ & \text { consumption) } \end{aligned}$
Sweet potatoes, yams (not in pie)	≥ 5 cups	3-4 cups	<3 cups
Any other vegetables like okra, squash, cooked green peppers	≥ 5 cups	3-4 cups	< 3 cups
Cole slaw, cabbage	> 3 cups	2 cups	<2 cups
Refried beans	>3 cups	2 cups	<2 cups
Chili with bean with or without meat	>3 cups	2 cups	<2 cups
Baked beans black eyed peas, pintos and any other dried beans	> 3 cups	2 cups	<2 cups
Raw tomatoes included in salad	>3 cups	2-3 cups	<2 cups
Cherry tomatoes	>3 cups	2-3 cups	<2 cups
Celery raw	> 10 stalks	5-10 stalks	< 5 stalks
Canned tomato products	> 3 cups	2-3 cups	< 2 cups
Salad and salad dressings			
Green salad	≥ 5 cups	3-4 cups	< 3 cups
Raw tomatoes including in salad	>5 cups	3-4 cups	< 3 cups
Salad dressings	> 7 tbsp	5-6 tbsp	< 5 tbsp
Vegetable stew and vegetable soup			
Vegetable stew	≥ 5 bowls	3-4 bowls	< 3 bowls
Vegetable soup, vegetable beef, chicken vegetable or tomato soup	≥ 5 bowls	3-4 bowls	< 3 bowls
Beans and legumes			
Split peas, ban or lentil soups	≥ 5 bowls	3-4 bowls	< 3 bowls
Green beans and peas	>3 cups	2-3 cups	<2 cups
Baked beans, black-eyed peas, pintos, any other dried beans	> 3 cups	2-3cups	< 2 cups
Tofu, bean curds	≥ 2 cups	1 cup	< 1 cup
Split bean or lentil soup	> 5 bowls	3-5 bowls	< 3 bowls
Onion/garlic			
Onions fried, boiled cooked or raw	≥ 2 cups	1 cup	< 1 cup
Cereals and cereal products with high fiber			
Cooked cereals like oat meal cream of wheat or grits	> 7 bowls	5-6 bowls	< 5 bowls
High fiber cereals like all bran, raisin bran, fruit fiber	> 7 bowls	5-6 bowls	<5 bowls
Dark bread like rye or whole wheat including in sandwiches	> 14 slices	7-13 slices	<7 slices
Fatty fish and shellfish			
Oyster	≥ 2 cups	1 cup	< 1 cup
Other shellfish like shrimp, scallops, crabs	≥ 2 cups	1 cup	< 1 cup
Tuna, tuna salad, tuna casserole	≥ 2 cups	1 cup	< 1 cup
Fried fish or fish sandwiches at home or in a restaurant	≥ 2 cups	1 cup	< 1 cup
Other fish, not fried	≥ 2 cups	1 cup	< 1 cup
Meat substitutes			
Meat substitutes-veggie burgers and garden burgers	> 5 patties	3-5 patties	< 3 patties
Nuts			
Peanuts, other nuts or seeds	> 3 cups	2-3 cups	<2 cups
Peanut butter	$>7 \mathrm{tsp}$	5-6 tsp	< 5 tsp
Alcoholic beverages			
Wine (red or white)	7-20 glasses	2-6 glasses	<2 glasses, ≥ 21 glasses
Beer or non-alcoholic beer	7-13 bottles	5-6 bottles	$\begin{aligned} & <5 \text { bottles, } \\ & \geq 13 \text { bottles } \end{aligned}$
Liquor or mixed drinks	7-13 bottles	5-6 bottles	< 5 bottles, ≥ 14 bottles
(continued on next page)			

Table 3 (continued)

Anti-inflammatory Foods	Score		
	$\begin{aligned} & \hline-2 \text { (high } \\ & \text { consumption) } \end{aligned}$	-1 (moderate consumption)	$\begin{aligned} & \hline 0 \text { (low } \\ & \text { consumption) } \end{aligned}$
Miscellaneous			
Catsup, salsa or chili peppers	> 14 tbsp	7-13 tbsp	< 7 tbsp
Mustard soy sauce, steak sauce, barbecue sauce, other sauces	> 14 tbsp	7-13 tbsp	<7 tbsp
	Score		
Pro-inflammatory Foods	$\begin{aligned} & \hline+2 \text { (high } \\ & \text { consumption) } \end{aligned}$	+1 (moderate consumption)	$\begin{aligned} & 0 \text { (low } \\ & \text { consumption) } \end{aligned}$
Beverages			
Regular soft drinks, bottled drinks like snapple	≥ 7 bottles/	5-6 bottles	<5 bottles
Drinks with some juice in them like sunny delight, Juice squeeze	≥ 7 bottles	5-6 bottles	< 5 bottles
Kool aid, HI C or other drinks with added vitamin C	≥ 7 bottles	5-6 bottles	< 5 bottles
Rice and cereal related foods			
Rice dish made with rice	> 7 cups	5-6 cups	< 5 cups
Any other cold cereal like cornflakes, special K	> 5 bowls	3-4 bowls	< 3 bowls
Chinese food, Thai or Asian	≥ 5 bowls	3-4 bowls	< 3 bowls
Corn and related items			
Corn	> 3 cup	2 cup	<2 cup
Corn bread or corn muffins	> 14 pieces	7-13 pieces	<7 pieces
Tortillas (number consumed)	> 14	7-13	<7
Refined foods-cakes, pastries, cookies, biscuits			
Crackers	> 3 cups	2 cups	<2 cups
Doughnuts, Danish pastry (number consumed)	≥ 5	3-4	< 3
Cakes, sweet rolls, coffee cake	> 15 pieces	10-15 pieces	<10 pieces
Cookies (number consumed)	≥ 14	10-13	< 10
Pancakes, waffles, French toast, pop tarts	> 7 pieces	5-6 pieces	<5 pieces
Rolls, hamburger buns, English muffin bagels (number consumed)	> 15	10-15	<10
Biscuits or muffins (number consumed)	> 7	5-6	< 5
White bread or toast including French, Italian or in sandwiches	> 14 slices	7-13 slices	<7 slices
Pasta			
Noodles, macaroni, pasta salad	≥ 5 cups	3-4 cups	< 3 cups
Spaghetti, lasagna or other pasta with tomato sauce	≥ 5 cups	3-4 cups	< 3 cups
Cheesy foods			
Cheese, sliced cheese or cheese spread including on sandwiches	≥ 14 slices	7-13 slices	<7 slices
Cheese dishes without tomato sauce like macaroni and cheese	≥ 5 cups	3-4 cups	< 3 cups
Pizza, including carry out	≥ 10 slices	7-9 slices	<7 slices
Eggs			
Eggs including egg biscuits or egg mcmuffins (not egg substitutes	≥ 7 eggs	5-6 eggs	<5 eggs
Meat-red, processed and organ meat			
Bacon	≥ 7 eggs	5-6 eggs	< 5 eggs
Pork chops, pork roasts or frozen dinners or sandwiches (number consumed)	≥ 3	2	<2
Veal, lamb or deer meat	$\geq 3 \mathrm{lb}$	2lb	< 2lb
Ribs, spare ribs	≥ 10 ribs	5-9 ribs	< 5 ribs
Liver, including chicken livers or liverwurst	$\geq 3 \mathrm{lb}$	2lb	< 2lb
Gizzard, pork neck bones, chitlins, pig feet	$\geq 3 \mathrm{lb}$	2lb	$<2 \mathrm{lb}$

Table 3 (continued)

		Score	
$\begin{array}{c}\text { Pro-inflammatory Foods }\end{array}$	+2 (high		
consumption)			

Ethics Statement

The data collection was conducted according to the Declaration of Helsinki and was approved by the University of Alabama at Birmingham Institutional Review Board, protocol number IRB040126002.

CRedit Author Statement

Chandrika J. Piyathilake: Conceptualization, Methodology, Resource, Investigation, Formal analyses, Writing - original draft, Preparation and finalizing the manuscript; Suguna Badiga: Investigation, Formal analysis, Visualization; Ashley R. Chappell: Investigation; Gary L. Johanning: Writing - reviewing \& editing; Pauline E. jolly: Writing - reviewing and editing.

Declaration of Competing Interest

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by R01 105448 (National Cancer Institute) and T37-MD001448 (Minority Health Research Training grant, National Institute on Minority Health and Health Disparities)

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.107238.

References

[1] L. Ferrucci, A. Cherubini, S. Bandinelli, B. Bartali, A. Corsi, F. Lauretani, et al., Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers, J. Clin. Endocrinol. Metab. 91 (2006) 439-446, doi:10.1210/jc. 2005-1303.
[2] S.G. Wannamethee, G.D. Lowe, A. Rumley, K.R. Bruckdorfer, P.H. Whincup, Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis, Am. J. Clin. Nutr. 83 (2006) 567-574, doi:10.1093/ ajcn.83.3.567.
[3] A. Bordoni, F. Danesi, D. Dardevet, D. Dupont, A.S. Fernandez, D. Gille, et al., Dairy products and inflammation: a review of the clinical evidence, Crit. Rev. Food Sci. Nutr. 57 (2017) 2497-2525, doi:10.1080/10408398.2014.967385.
[4] S.H. Ley, Q. Sun, W.C. Willett, A.H. Eliassen, K. Wu, A. Pan, et al., Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women, Am. J. Clin. Nutr. 99 (2014) 352-360, doi:10.3945/ajcn.113. 075663.
[5] W. Chai, Y. Morimoto, R.V. Cooney, A.A. Franke, Y.B. Shvetsov, L. Le Marchand, et al., Dietary red and processed meat intake and markers of adiposity and inflammation: the multiethnic cohort study, J. Am. Coll. Nutr. 36 (2017) 378-385, doi:10.1080/07315724.2017.1318317.
[6] E.M. Holt, L.M. Steffen, A. Moran, S. Basu, J. Steinberger, J.A. Ross, et al., Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents, J. Am. Diet Assoc. 109 (2009) 414-421, doi:10.1016/j.jada.2008.11.036.
[7] A. Basu, S. Devaraj, I. Jialal, Dietary factors that promote or retard inflammation, Arterioscler. Thromb. Vasc. Biol. 26 (2006) 995-1001, doi:10.1161/01.ATV.0000214295.86079.d1.
[8] S. Jung, M.H. Kim, J.H. Park, Y. Jeong, K.S. Ko, Cellular antioxidant and anti-inflammatory effects of coffee extracts with different roasting levels, J. Med. Food. 20 (2017) 626-635, doi:10.1089/jmf.2017.3935.
[9] K.W. Della Corte, I. Perrar, K.J. Penczynski, L. Schwingshackl, C. Herder, A.E. Buyken, Effect of dietary sugar intake on biomarkers of subclinical inflammation: a systematic review and meta-analysis of intervention studies, Nutrients 10 (2018) 606, doi:10.3390/nu10050606.
[10] M. Kanauchi, M. Shibata, M. Iwamura, A novel dietary inflammatory index reflecting for inflammatory ageing: technical note, Ann. Med. Surg. (Lond) 47 (2019) 44-46, doi:10.1016/j.amsu.2019.09.012.

[^0]: DOI of original article: 10.1016/j.nutres.2021.04.004

 * Corresponding author.

 E-mail addresses: piyathic@uab.edu (C.J. Piyathilake), sbadiga@uab.edu (S. Badiga), ashley17@uab.edu (A.R. Chappell), garyj947@gmail.com (G.L. Johanning), jollyp@uab.edu (P.E. Jolly).
 https://doi.org/10.1016/j.dib.2021.107238
 2352-3409/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY license
 (http://creativecommons.org/licenses/by/4.0/)

