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ABSTRACT A common modulation of gene expression in aneuploids is an inverse correlation of the
monitored gene with the dosage of another segment of the genome. Such effects can be reduced to the
action of single genes. One gene previously found to modulate leaky alleles of the white eye color gene in
Drosophila is Inverse regulator-a (Inr-a). Heterozygotes of mutations increase the expression of white about
2-fold, and trisomic regions surrounding the gene reduce the expression to about two-thirds of the normal
diploid level. Further cytological definition of the location of this gene on the second chromosome led to
a candidate pre-mRNA cleavege complex II protein (Pcf11) as the only gene in the remaining region whose
mutations exhibit recessive lethality as do alleles of Inr-a. The product of Pcf11 has been implicated in
transcriptional initiation, elongation, and termination reactions. Four mutant alleles showed molecular
lesions predicted to lead to nonfunctional products of Pcf11. The identification of the molecular lesion of
Inr-a provides insight into the basis of this common aneuploidy effect.
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Over three decades ago, Birchler (1979) studied the expression of
several enzymes in a dosage series of the long arm of chromosome
1 in maize. Some of the gene products that were not encoded on this
chromosome arm were negatively correlated in amount with the dos-
age of the chromosome arm. The range of effect was within the limits
of an inverse correlation, and hence, this effect became known as the
“inverse effect.” Subsequent studies on protein profiles in different
dosage series of maize indicated that any one protein could be mod-
ulated in this way by several regions of the genome (Birchler and
Newton 1981). Any one region would modulate some fraction of
the total detectable proteins. In addition to inverse effects, there were
also direct correlations of protein levels that operated in trans (i.e.
variation of a particular chromosome arm would modulate the ex-
pression of a protein encoded elsewhere in the genome). Different
chromosome arms produced a few to many effects. Further studies

indicated that these effects operate on the mRNA level (Birchler et al.
1990; Guo and Birchler 1994). Also, Guo and Birchler (1994) found
that the magnitude of these effects was within the limits of direct and
inverse correlations of expression with dosage in the triploid endo-
sperm of maize, suggesting that the relative dosage was critical to the
response.

An examination of the literature with regard to gene expression in
segmental trisomics indicated that the inverse effect was quite
prevalent in various organisms, including Datura, barley, Drosophila,
and later in human cell lines (Altug-Teber et al. 2007; Huettel et al.
2008; Prandini et al. 2007; Aït Yahya-Graison et al. 2007; Kahlem
et al. 2004; McDaniel and Ramage 1970; O’Brien and Gethman
1973; Pipkin et al. 1977; Rawls and Lucchesi 1974; Detwiler and
Macintyre 1978; Hall and Kankel 1976; Hodgetts 1975; Moore and
Sullivan 1978; Oliver et al. 1978; Smith and Conklin 1975; Nawata
et al. 2011; Birchler et al. 1989; Devlin et al. 1988; Birchler 1992; Sun
and Birchler 2009). Some of these studies noted these modulations,
whereas in others, they are obvious in the presented data. The fact that
several regions of the genome modulated the same gene product
perhaps led many authors to discount these effects, together with
the fact that, in the context of the times, gene regulation was thought
to operate by a basically positively acting mechanism, despite the fact
that an inverse effect would not be indicative of negative regulation as
usually defined. However, the studies in maize (Birchler 1979; Birchler
and Newton 1981; Guo and Birchler 1994) included corresponding
monosomics and trisomics in their analyses and so it was clear that
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these effects were not a spandrel of detrimental aneuploid syndromes.
Rather, they were negative correlations with chromosomal dosage and
not a secondary effect of the aneuploid condition.

Because many different segments of the genome can produce an
inverse dosage effect upon any one gene product, it is often the case
that the structural gene for a monitored product and any segment that
inversely modulates it are varied together in larger aneuploids. When
this occurs the gene dosage effect and an inverse dosage effect are of
such magnitude that they will cancel each other and generate dosage
compensation for the monitored gene product in a dosage series
(Birchler 1979, 1981; Birchler and Newton 1981; Devlin et al. 1982;
Birchler et al. 1990). That dosage compensation results from such
a combination was demonstrated by dissecting larger aneuploid
regions into smaller ones and finding the two types of effects as
separate entities (Birchler 1981; Birchler et al. 1990).

A mutagenesis screen was developed with the goal of testing
whether single gene mutations could mimic the dosage effects that are
found in segmental aneuploids. A phenotypic reporter was used in
which slight modulations of either an increase or decrease in
expression could be recognized. For this, leaky alleles of the white
eye color mutation in Drosophila were used. In particular, the
white-apricot allele produces an amount of pigment for which changes
in the 2-fold range had been classically used (Muller 1932). The
rationale of the mutagenesis was that if a mutation is generated that
knocks out the expression of a gene responsible for these effects
anywhere in the genome, then as a heterozygote, the eye color could
be recognized as different from the norm. The individual flies with
these changes could then be bred to test the heritability and to study
further the nature of the effect and genes involved. In December of
1982, the first such mutation was recovered from a hybrid dysgenesis
screen and eventually acquired the name, Inverse regulator-a[hd1]
(Rabinow et al. 1991).

This mutation increased the expression of white-apricot about
2-fold as a heterozygote (Rabinow et al. 1991). It was located to
chromosome 2 and found that homozygotes were recessive lethal.
Additional alleles were recovered based on their failure to complement
the recessive lethality. A trisomic region spanning the genetic location
of Inr-a reduced the expression of apricot, and the mutation in a trip-
loid increased the pigment levels by a ratio of 3/2 and thus conformed
to an inverse relationship. The mutations were found to modulate the
white locus on the mRNA level in some developmental stages.

Through a variety of mutageneses and other approaches, eventu-
ally 47 modifiers of the white gene were identified, and for many, the
molecular identification of a predicted function was made. These in-
clude transcription factors, signal transduction components, and chro-
matin proteins and their modifiers. From a variety of types of
evidence, the basis of their dosage effects have been attributed to their
involvement in macromolecular complexes (Birchler et al. 2001, 2005;
Veitia et al. 2008). In particular, the kinetics of assembly of macro-
molecular complexes contributes to their dosage sensitivity (Veitia
2002). The kinetics can account for both the positive and negative
correlations with dosage (Veitia et al. 2008) and is a potential expla-
nation for why such a diverse set of functions produce similar types of
dosage effects.

Yet, despite these advances, the molecular identification of the first
identified inversely acting single gene, Inr-a, remained unknown.
Here, we describe genetic and molecular analyses that indicate that
Inr-a is synonymous with pre-mRNA cleavage complex II protein
(Pcf11). Pcf11 has been studied in yeast, Drosophila, and mammalian
cells (e.g. Amrani et al. 1997; Sadowski et al. 2003; Zhang et al. 2005;
Zhang and Gilmour 2006; West and Proudfoot 2008). Its initially

identified function involved transcriptional termination reactions,
but subsequent studies have implicated this protein in other aspects
of transcription, such as processivity of RNA polymerase II (Zhang
et al. 2007) and the recycling of transcription factors for initiation
(Mapendano et al. 2010).

MATERIALS AND METHODS

Stocks
The Inr-a mutations have previously been described (Rabinow et al.
1991). The Inr-ahd1 allele was recovered from a hybrid dysgenesis
screen for mutations that as heterozygotes would increase or decrease
the amount of color of wa. The Inr-aEMS-2 was independently recov-
ered from an ethyl methane sulfonate chemical mutagenesis on
a marked second chromosome based on the failure to complement
Inr-ahd1 and then tested for an effect on wa . The Inr-agC allele was
recovered from a gamma irradiation mutagenesis based on using the
same approach as for Inr-ahd1. The strain y w67c23; P{w+mC=lacW}
Pcf11k08015/CyO is from the Bloomington Stock Center (#10756).
The stocks carrying a P or piggyBac element with a FRT site are from
Exelixis Inc. The strains e02114 (insertion at 2R: 10740461, genome
sequence version R5.42), f05586 (2R: 10740433.0.10740458), and
d03333 (2R: 10761429) were used for Pcf11 deletions (Pdel-1 and
Pdel-2). The strains f03590 (2R: 10740461), e00756 (2R: 10660106),
and d00997 (2R: 10769492) were used for the duplication (Pdup-3
and Pdup-4). Two other strains P{hsFLP}, w1118; Adv/CyO and w1118;
wgSp-1/CyO; sensLy-1/TM6B, Tb were also used to generate deletion and
duplication strains.

Genetic analysis and FLP-FRT recombination
Deletion and duplication strains were generated according to the
company (Exelixis)-provided methods (Parks et al. 2004).

Total RNA and genomic DNA isolation and gDNA
and cDNA sequencing
Young adult flies (�50) were used to prepare genomic DNA (gDNA)
with a quick gDNA preparation method (Drosophila Protocols, p431–
432). Total RNA from �50 late 3rd instar larvae was isolated by
TRIzol reagent (GibicoGRL). The RNA was first treated with Turbo
DNase (Ambion), then reverse-transcribed using M-MLV reverse
transcriptase from Promega. PCR primers were designed and synthe-
sized to amplify fragments of Pcf11. Sequencing was performed at the
MU DNA core facility.

Fluorescence in situ hybridization (FISH)
Larvae at the late 3rd instar stage were dissected for salivary glands in
0.7% NaCl. The glands were transferred to a drop of the same solution
(�20 ml) on a cover slip. Then the solution was removed, and 20 ml of
acetic acid solution (5 vol. of glacial acetic acid plus 3 vol. of water)
was immediately added to cover the glands. After �10 min of in-
cubation at room temperature, the salivary glands were squashed and
fixed by UV cross-linking (Pardue 2000). Labeling the probes and
hybridization conditions were as described (Kato et al. 2011).

RESULTS

Identification of Inr-a mutations
Previously, multiple mutations showing an inverse dosage effect on
the white eye color gene were isolated by various genetic mutagenesis
screens (Rabinow et al. 1991). Several of them that were located to
chromosome 2 showed recessive lethality and failed to complement
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each other. They were assumed to be one locus and designated as
Inr-a.

In an attempt to identify this gene, the Inr-ahd1 mutation was
genetically mapped by recombination (Rabinow et al. 1991). The most
likely genetic position was 72.5 cM. Using the available deficiency
strains at the time with deletions from 46B to 52D to do the comple-
mentation tests, no deletion was found to remove the Inr-a mutation.
However, three chromosome regions were not covered in the dele-
tions: 46D-47D, 50A-50F, and 51B-51E (Rabinow et al. 1991). The
region 51B–51E contains the gene knotmapped at 72.3 cM; thus Inr-a
may be located in this region.

The gene Pcf11 seemed to be a candidate of interest in this region
(�80 genes total) because its mutations are recessive lethal. A trans-
poson insertion mutant of Pcf11, l(2)K08015 from the Bloomington
Stock Center, was tested and failed to complement the recessive le-
thality of any Inr-a mutation, suggesting Pcf11 and Inr-a are the same
gene. This insertion carries the mini-white marker gene, and thus, it
cannot be tested for phenotypic modulation of white alleles.

To confirm that the P-element insertion in intron 1 of Pcf11
caused dysfunction of the gene in the l(2)K08015 allele, cDNA was
prepared from the heterozygote strain and amplified for sequencing.
The sequencing data showed that DNA polymorphisms at exon 10
were present in the cDNA sequence. However, the sequence at the 59-
end (exons 1–6) was mostly double peaked (Figure 1A), indicating
two different sequences. After manually reading the sequence trace,
both sequences were clear. Blasting the genomic sequence with the 41
bp sequences shown in Figure 1A, they matched exons 2 and 5 (Figure
1B), indicating that the transcript from the P-inserted allele skips
exons 2–4, likely due to alternative splicing.

Next, we amplified the genomic DNA and sequenced the Pcf11
gene of three Inr-a heterozygous mutants available in our lab stocks
described in Materials and Methods. A stop codon mutation was
found in the mutation Inr-aEMS-2, which changes 456R (according
to Pcf11-PD) to a stop codon (CGA to UGA in exon 6) (Figure 2A;
see Figure 1B for its location in the gene). A frame-shift mutation was

Figure 1 The P-element insertion in Pcf11 intron 1 causes alternative
splicing. (A) The cDNA was prepared from strain l(2) K08015/+; the 59-
end sequencing result is partly shown. The double-peaked graph can
be read in two sequences. (B) The BLAST search results indicate that
the two sequences match exons 2 and 5. Some exons in RD are num-
bered on the shaded boxes (open reading frame with brown color).
The vertical bars show the matching regions. The green arrowhead
below the blue bar representing the Pcf11 gene denotes the position
of the P insertion. The other three arrows above the bar denote the
positions of the other mutations analyzed in this study.

Figure 2 Lesions identified in the Pcf11 gene from the Inr-amutations.
(A) A stop codon found in the Inr-aEMS-2/+ heterozygote. A base pair of
C:G was changed to T:A by EMS mutagenesis, thus changing 456R to
a stop codon (Z). The double peaks indicate a nucleotide change.
DNA sequence and its translation are shown. (B) A replacement of 7
bp with 5 bp (colored in DNA sequences) was found in the Inr-agC/+
heterozygote. A series of double peaks is shown. The original and new
DNA sequences and the translation of the original one are indicated.
(C). Double peaks were found in Pcf11 intron 4 in the Inr-ahd1/+ het-
erozygote. This change is in the conserved splicing donor site
(shaded). DNA sequences of the exon intron were shown as upper-
and lowercased letters.

Figure 3 The mRNA of both alleles of Pcf11 was detected at the 59
end, but only one allele was detected at the 39 end in the Inr-ahd1/+
heterozygote. Upper row shows the genomic DNA polymorphisms
(double peaks). Lower row shows the cDNA sequences at the corre-
sponding positions. When the polymorphisms disappear, this indicates
that only one allele is expressed. Left, single nucleotide polymorphism
at position 1089; middle, deletion of six nucleotides starts at position
7869; right, single nucleotide polymorphism at position 8696. DNA
sequences are shown with paired colored letters for double peaks.
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found in Inr-agC: seven base pairs (bp)(TTGCTCC) are replaced by
five (GCGCA) in exon 7; thus the amino acid sequence is changed
after 656 K (see Figure 2B; see Figure 1B for its location in the gene).

A point mutation was found in the consensus splicing donor site of
intron 4 in Inr-ahd1 (see Figure 2C; see Figure 1B for its location in the
gene). To confirm that this mutation causes alternative splicing, first
we attempted to PCR the cDNA from the heterozygous strain with
primers anchored in exon 4 and exon 5, but we failed to see poly-
morphisms. Then we attempted to detect the alternative splicing by
taking advantage of polymorphisms between the DNA sequences of
the two alleles. Single-base polymorphisms and a 6 bp deletion are
distributed along the codon sequence. By sequencing the cDNA and
gDNA of the same heterozygous strain, we observed cDNA poly-

morphisms (double peaks in the sequencing traces) at the 59 end
before intron 4 but not at the 39 end including the polymorphisms
of the deletion (a series of double peaks after the deletion point)
(Figure 3). This result indicates that the mutant copy of Pcf11
expressed a truncated mRNA unable to function. Taken together,
we conclude that Inr-a is synonymous with Pcf11.

Short cytological regions containing Pcf11 demonstrate
an inverse dosage effect
The dosage effect of Inr-a was demonstrated previously by using muta-
tions, which presumably disrupt a copy of the gene (confirmed by our
study), and a large duplication (44C–50B). Because the content in this
large fragment is complex and many genes within are functionally

Figure 4 Generation of deletion and duplication of Pcf11 by FLP-FRT–mediated recombination. (A) Sketch for the strategy of making the deletion
Pdel-1. The piggyback element RB and P-element XP (the blue arrowheads indicate the repeats at the ends) carrying FRT sequences (green
arrowheads) are shown inserted in two copies of the chromosome, in which the sequence orders are indicated by letters a, b, and c. Fragment
b contains the Pcf11 gene. The mini-white genes are shown as red rectangles. After recombination, two possibilities of deletions without mini-
white are shown. (B) Similar sketch for generating the duplication Pdup-3. Here piggyback WH and XP are shown. (C, D) Probes for detecting
Pcf11 and Kdm4B were labeled with Texas-Red or Alexa Fluor 488 (green). The genes were detected on salivary gland polytene chromosomes.
Heterozygous deletion of Pcf11 Pdel-1/+ was confirmed in panel C with a half band in red (arrow). Heterozygous duplication Pdup-3/+ was
confirmed in panel D with one-and-a-half bands (arrow). The DAPI staining channel is shown in insets.

Figure 5 The Pcf11 deletion and duplication mutations
show dosage effects on white-apricot (wa). The eye
color indicates the expression level of wa. The geno-
types of the eyes are briefly indicated (“EMS-2” denotes
“Inr-aEMS-2”). One copy of Pcf11 (“Pdel-1/+” in panel A
and “EMS-2/+” in panel B) produced the strongest
color and three copies (“Pdup-3/+” in both panels A
and B) produced the weakest color. When the deletion
or the mutation were combined with the duplication,
the eye color was largely restored to the wild-type
(“Pdel-1/Pdup-3” in panel A and “EMS-2/Pdup-3” in
panel B compared with “+/+”).
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unknown, the question arises whether the expression effect detected
was caused by an extra dose of Inr-a or the collectively varied genes.

To clarify this point and further confirm Pcf11 as an inverse-
dosage gene, we tried to delete and duplicate Pcf11 in a small region
using the FLP-FRT system. P- or piggyback-element–containing FRT
sites were previously transformed into the fly genome, and collections
of stocks, each with an element located variously ,were generated by
Exelixis Inc. Strains were carefully chosen so that a deletion or dupli-
cation could be generated from these strains covering the gene Pcf11
without the mini-white marker (Figure 4, A and B). These deletion or
duplication strains could be used to test the dosage effect on white-
apricot (wa) later.

Two deletion strains, Pdel-1 and Pdel-2, were generated spanning
Pcf11 flanked with six genes. The sizes of the deletions are �21.0 kb,
and they share one end point (2R: 10761429, genome sequence ver-
sion R5.42); the other ends are very close (2R: 10740461 and 2R:
10740433). Both strains showed a dosage effect on wa and were re-
cessive lethal. We focused on Pdel-1 for later experiments.

Also, a tandem duplication of �29 kb, Pdup-3, was generated,
including Pcf11 and another 10 genes (from 2R 10740461 to
10769492). Another tandem duplication, Pdup-4, was generated with
the same start point downstream but extending farther upstream with
a size of 109 kb (from 2R: 10660106 to 10769492). Both duplications
showed similar dosage effects and were lethal as homozygotes. The
shorter duplication, Pdup-3, was used for further analyses.

To confirm the deletions and duplications, we first sequenced the
original stocks to insure the transposons were present and inserted at
the right loci. Then using Pcf11 and a “control” gene Kdm5B (which is
located �1 Mb upstream) as probes, we applied FISH to the polytene
chromosomes of salivary glands. The deletions were confirmed by
half-bands of Pcf11 (Figure 4C), which represent a signal on only
one of the two homologs present. The duplication Pdup-3 was more
difficult to be detected by FISH. Occasionally when the homologous
chromosomes were separated, we noticed the brightness of the Pcf11
band was doubled on one homolog compared with the other. In rare
cases, double bands could be seen on one homolog but not on the
other; that is, a half band and a whole band together when the homo-
logs were not separated (Figure 4D).

To test the dosage effects of the deletion and duplication, we
crossed these mutants with the wa marker. This reporter allele was
previously shown to be effective to indicate the dosage effect. As
expected, wa expression as shown by the eye color was increased in
the deletion strain (1 copy of Pcf11) and reduced in the duplication
strain (three copies) compared with the wild-type (two copies) (Figure
5A). When the deletion and duplication is combined (two total cop-
ies), the eye color is restored to a similar level as the wild-type (Figure
5A). Pdup-3 can also cancel the dosage effect of Inr-aEMS-2, as
expected (Figure 5B), indicating a copy number rescue of the mutant
phenotype. Because wa has a copia retrotransposon insertion into
white, an additional point mutation allele, wa2, was tested as previ-
ously to confirm that the effects are not specific to apricot (Rabinow
et al. 1991). The allele Inr-aEMS-2 and Pdel1/+ increased wa2 eye color
above normal and Pdup3/+ reduced it (Figure S1). Therefore, the
results are consistent with the inverse dosage effect being caused by
a single gene copy number change in the genome.

DISCUSSION
In this study, a more precise localization of Inr-a was conducted. With
this information, only a few possible genes remained to associate the
inverse effect phenotype with a DNA sequence. The alleles of Inr-a
exhibit a recessive lethality, and only one gene in the cytologically

defined region did the same: Pcf11. Four different types of alleles of
Inr-a, namely, a P-element insertion, an allele from hybrid dysgenesis,
an EMS-induced allele, and a gamma irradiation–induced allele were
examined for lesions in Pcf11. Through comparisons of the cDNA and
genomic DNA from heterozygous stocks, all four of these Inr-a muta-
tions possess a molecular lesion in Pcf11 that would be predicted to
lead to a nonfunctional product.

As noted above, Pcf11 has been implicated in affecting transcrip-
tional initiation, elongation, and termination reactions. We hope the
finding that a dosage series of this gene that produces an inverse effect
on a reporter target gene will serve to more fully understand how
Pcf11 gene functions. Alternatively, the inverse dosage effect is a com-
mon modulation of gene expression (Sabl and Birchler 1993; Guo and
Birchler 1994) found in aneuploids in diverse organisms, so the iden-
tification of an example single gene with this response will provide
a system in which to learn more about this effect.
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