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Abstract: Peptoids, or poly-N-substituted glycines, are characterised by broad structural diversity.
Compared to peptides, they are less restricted in rotation and lack backbone-derived H bonding.
Nevertheless, certain side chains force the peptoid backbone into distinct conformations. Designable
secondary structures like helices or nanosheets arise from this knowledge. Herein, we report the
copper-catalysed alkyne-azide cycloaddition (CuAAC) of macrocycles to form innovative tube-
like tricyclic peptoids, giving access to host–guest chemistry or storage applications. Different
linker systems make the single tubes tuneable in size and enable modifications within the gap. An
azobenzene linker, which is reversibly switchable in conformation, was successfully incorporated
and allowed for light-triggered changes of the entire tricyclic structure.

Keywords: peptidomimetics; tricyclic peptoids; CuAAC; foldamers

1. Introduction

Fundamental knowledge of the relationship between structure and function is a prin-
cipal topic in both biological and material science. Rational design of conformationally
stable macromolecules gives access to various applications regarding catalysis, host–guest
chemistry, and cargo transport. Peptoids, or poly-N-substituted glycines, have been shown
to form stable secondary structures, such as macrocycles [1–3], helices [4–6], or even
nanosheets [7–10]. As bioinspired oligomers, peptoids possess antimicrobial characteris-
tics [11–23] and hold promise for effective pharmaceuticals [20,24–27]. Attached to catalysts,
they can induce enantioselectivity by structure [28,29]. In the form of nanosheets, peptoids
act as molecular sensors or artificial membranes [7,8,30–34].

The submonomer method, firstly described by Zuckermann et al. [35], gives access
to an infinite number of structurally diverse oligopeptoids, as various amines are easily
introduced as sidechains. This remarkable diversity provides the basis for rationally
designed functional foldamers that render peptoids a promising substance class for various
applications.

Although the peptoid backbone is highly flexible due to its rather free rotating methy-
lene unit, it can be forced into distinct conformations by a selection of certain sidechains.
Thereby, aniline derivatives favour trans-conformations, while some aliphatic amines
cis-conformations (Scheme 1) [36–40].
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Scheme 1. Conformational equilibrium of a peptoid backbone. (a) N-aryl sidechain enforcing trans-
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ing host–guest interactions within their cavity [38,44,49] and could be further modified 

using copper-catalysed alkyne-azide [3 + 2] cycloaddition (CuAAC) [37,50,51]. CuAAC is 

a high-yielding, bio-orthogonal method that enables fast and facile modifications [49,50]. 

Kirshenbaum et al. reported the use of this kind of “click” chemistry to form cyclic pep-

toids [2,51]. By CuAAC of distinct side chains, the group was, furthermore, able to build 

up bi- and tricyclic structures [37]. 

To date, only one of these tube-like tricyclic structures is known (Figure 1). It was 

built up by CuAAC of two cyclic octamers with one alkyne and one azide moiety each 

[37]. Herein, we report the design of further rigidified tubular structures with modified 

linkage structures to enlarge the applicability of these unique peptoid macrocycles. 

 

Figure 1. Tricyclic peptoid reported by the group of Kirshenbaum in 2012 [37]. 

2. Results and Discussion 

2.1. Design and Synthesis of Cyclic Peptoids 

The stepwise synthesis of peptoid macrocycles was carried out using the published 

submonomer method on solid support [35]. Acetylation and substitution steps were alter-

nated until the desired chain length was achieved. After cleavage from the resin, linear 

precursors were converted in the solution without further purification. Cyclisation was 

Scheme 1. Conformational equilibrium of a peptoid backbone. (a) N-aryl sidechain enforcing
trans-conformation [36] and (b) positively charged N-alkyl sidechain favouring cis-amide conforma-
tion [40].

Secondary structures can thus be induced via sequence control [41,42], but the scope
of conformational permutations and the influence of certain side chains still have not been
fully investigated. To constrain secondary structures, peptoid macrocycles of different sizes
have been synthesised [1,2,37,38,43–48]. Among them, octameric macrocycles whose spatial
structures were determined via X-ray crystallography and nuclear magnetic resonance
(NMR) techniques [3,37,38,43,44,48,49]. Cyclic octamers were capable of performing host–
guest interactions within their cavity [38,44,49] and could be further modified using copper-
catalysed alkyne-azide [3 + 2] cycloaddition (CuAAC) [37,50,51]. CuAAC is a high-yielding,
bio-orthogonal method that enables fast and facile modifications [49,50]. Kirshenbaum et al.
reported the use of this kind of “click” chemistry to form cyclic peptoids [2,51]. By CuAAC
of distinct side chains, the group was, furthermore, able to build up bi- and tricyclic
structures [37].

To date, only one of these tube-like tricyclic structures is known (Figure 1). It was
built up by CuAAC of two cyclic octamers with one alkyne and one azide moiety each [37].
Herein, we report the design of further rigidified tubular structures with modified linkage
structures to enlarge the applicability of these unique peptoid macrocycles.
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Figure 1. Tricyclic peptoid reported by the group of Kirshenbaum in 2012 [37].

2. Results and Discussion
2.1. Design and Synthesis of Cyclic Peptoids

The stepwise synthesis of peptoid macrocycles was carried out using the published
submonomer method on solid support [35]. Acetylation and substitution steps were
alternated until the desired chain length was achieved. After cleavage from the resin, linear
precursors were converted in the solution without further purification. Cyclisation was
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carried out according to a protocol by Kirshenbaum et al. [1] without exceeding the peptoid
concentration of 4.80 mM to circumvent dimerisation (Scheme 2).
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Scheme 2. A general approach for the stepwise synthesis of cyclic peptoids as derivatives of model structure 7a, including
solid-phase synthesis on a chlorotrityl chloride resin (2) and cyclisation of the linear precursor in solution. (a) Bromoacetic
acid, N,N’-diisopropylethylamine, methylene chloride (DCM), 21 ◦C, 1 h; (b) propargylamine, N,N’-dimethylformamide
(DMF), 21 ◦C, 1 h; (c) bromoacetic acid, N,N’-diisopropylcarbodiimide, DMF, 21 ◦C, 30 min; (d) (1). Alternating coupling
of a desired amine following (b) and bromoacetic acid following (c); (2). hexafluoroisopropanol, DCM, 21 ◦C, 30 min; (e)
PyBOP, DIPEA, dry DCM, 21 ◦C, 16 h.

By combining both solid- and liquid-phase techniques, plenty of peptoid macrocycles
were readily accessible. Alkyne and azide moieties were incorporated to give access to
post-synthetic modifications via CuAAC [50].

Peptoids were designed with the objective of the final backbone topology c-c-t-t-c-c-t-t,
where “c” indicates cis-conformation and “t” indicates trans-conformation of the single-
peptoid subunits. In our previous study, structural data of a macrocyclic octamer similar to
peptoid 7a that showed the desired backbone conformation were obtained [38]. Thereby,
incorporation of N-aryl amines stabilised the trans-amide structure elements. Different
N-alkyl amines gave access to cis-conformations, ensuring the spatial arrangement required
for cyclisation. Based on these former results, peptoid 7a was contrived to represent the
model structure of every macrocycle synthesised.

Considering further cycloaddition reactions, each peptoid was functionalised with
either two alkyne or azide moieties. This design should enable the combination of two
different macrocycles to form a tricyclic structure via intermolecular CuAAC of their
sidechains. Functional amines capable of the click reaction were both aliphatic and aromatic.
Four different cyclic peptoids (7a–7d, Table 1) were synthesised according to the general
approach described in Scheme 2. The cyclic octamers consist of four aryl and alkyl building
blocks each. The respective monomers were arranged pairwise to ensure the desired
backbone topology. Macrocycles 7a and 7b contain two adjacent anilines, as well as
aliphatic functionalities as capable moieties for cycloaddition next to a methoxyethyl
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residue. Peptoids 7c and 7d are decorated with para-substituted anilines and two adjacent
methoxyethyl sidechains.

Table 1. Synthesised eight-membered cyclic peptoids 7a–7d, capable of copper-catalysed alkyne-
azide cycloaddition (CuAAC).

Molecules 2021, 26, x FOR PEER REVIEW 4 of 17 

aliphatic functionalities as capable moieties for cycloaddition next to a methoxyethyl res-

idue. Peptoids 7c and 7d are decorated with para-substituted anilines and two adjacent 

methoxyethyl sidechains. 

Table 1. Synthesised eight-membered cyclic peptoids 7a–7d, capable of copper-catalysed alkyne-

azide cycloaddition (CuAAC). 

Macrocycle R1 R2 Yield Purity 

7a propargyl H 11% 99% 

7b propylazide H 25% 98% 

7c 2-methoxyethyl ethynyl 8.0% 96% 

7d 2-methoxyethyl N3 9.0% 87% 

Purification was carried out via preparative reverse-phase high performance liquid 

chromatography (HPLC) solely after the cyclisation step. Product formation was con-

firmed via matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) meas-

urements. Macrocycles 7a–7d were obtained in moderate yields (8.0% to 25%) over 18 

steps each. Purity was determined by integration of analytical reverse-phase HPLC traces 

and turned out to account for 87% to 99%. 

2.2. Topology of Cyclic Peptoids 

A precondition for successful CuAAC of two macrocycles is a defined spatial ar-

rangement of the alkyne and azide moieties. Both structural elements have to point up-

ward or downward on the backbone, but necessarily in the same direction. Only one 3D 

structure of macrocyclic octamers resembling the synthesised ones is known from the lit-

erature [38]. Vollrath et al. published crystallographic data of a peptoid similar to macro-
cycle 7a in 2013. The building blocks of the published octamer comply with the ones of 

structure 7a, but the positions of both the two aliphatic alkyne side chains and the meth-

oxyethyl residues are interchanged. The backbone of this similar macrocycle showed the 

desired topology c-c-t-t-c-c-t-t, with sidechains pointing alternatingly up and down and 

both alkyne moieties located on the same side of the ring level. 
It was assumed that peptoid 7a would be arranged in the same topology due to struc-

tural analogy. Unfortunately, no measurable crystals of 7a were obtained. However, mac-

rocycle 7b, equipped with two aliphatic azides instead of the alkyne moieties, was suc-

cessfully crystallised. X-ray diffraction experiments revealed its stabilised structure (Fig-

ure 2). 

Macrocycle R1 R2 Yield Purity

7a propargyl H 11% 99%
7b propylazide H 25% 98%
7c 2-methoxyethyl ethynyl 8.0% 96%
7d 2-methoxyethyl N3 9.0% 87%

Purification was carried out via preparative reverse-phase high performance liquid
chromatography (HPLC) solely after the cyclisation step. Product formation was confirmed
via matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) measurements.
Macrocycles 7a–7d were obtained in moderate yields (8.0% to 25%) over 18 steps each.
Purity was determined by integration of analytical reverse-phase HPLC traces and turned
out to account for 87% to 99%.

2.2. Topology of Cyclic Peptoids

A precondition for successful CuAAC of two macrocycles is a defined spatial arrange-
ment of the alkyne and azide moieties. Both structural elements have to point upward or
downward on the backbone, but necessarily in the same direction. Only one 3D structure
of macrocyclic octamers resembling the synthesised ones is known from the literature [38].
Vollrath et al. published crystallographic data of a peptoid similar to macrocycle 7a in 2013.
The building blocks of the published octamer comply with the ones of structure 7a, but
the positions of both the two aliphatic alkyne side chains and the methoxyethyl residues
are interchanged. The backbone of this similar macrocycle showed the desired topology
c-c-t-t-c-c-t-t, with sidechains pointing alternatingly up and down and both alkyne moieties
located on the same side of the ring level.

It was assumed that peptoid 7a would be arranged in the same topology due to
structural analogy. Unfortunately, no measurable crystals of 7a were obtained. However,
macrocycle 7b, equipped with two aliphatic azides instead of the alkyne moieties, was
successfully crystallised. X-ray diffraction experiments revealed its stabilised structure
(Figure 2).
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Figure 2. Molecular structure of cyclic peptoid 7b revealing the backbone topology c-c-t-t-c-c-t-t with both aliphatic azides
located on the same side of the ring level. (a) Top view; (b) side view.

Comparison of the structural data of the previously published octamer and peptoid
7b disclosed an equal backbone topology, including identical angles [38]. The sidechains
are alternatingly located above and below the ring level, with both azide moieties pointing
in the same direction. In contrast to propargylamine, the functional group of azidopropy-
lamine is separated by three methylene units. The enlargement of conformational freedom
by rotation around carbon single bonds makes the latter more flexible.

For cyclic octamers with aromatic alkyne or azide moieties, like peptoids 7c and 7d,
neither conformational data nor information about the orientation of both functionalisable
groups have been found so far. Measurable crystals of peptoid 7c were obtained after
multiple attempts, and their structure was elucidated via X-ray diffraction (Figure 3).
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Figure 3. Molecular structure of one of the two independent molecules of the cyclic peptoid 7c deco-
rated with two aromatic alkynes. The structural data coincide with those obtained for macrocycle 7b.

The backbone topology equals the one known from other eight-membered macro-
cycles [1,38]. Again, the side chains are alternatingly located above and below the ring
level, resulting in both alkyne moieties pointing into the same direction. These data co-
incide with those of the cyclic octamers 7a and 7b [38]. Due to the aromatic systems
introduced, the functionalisable groups were rigidified compared to derivatives decorated
with aliphatic moieties.

Although no measurable crystals of macrocycle 7d could be obtained, a similar con-
formation was expected due to the strong structural similarities to the remaining three
macrocycles 7a–7c.
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Every crystallised compound revealed the desired backbone topology c-c-t-t-c-c-t-t,
as proven for model structure 7a [38]. Aliphatic and aromatic azides, as well as alkynes,
were successfully incorporated, and the design allowed for a location on the same side of
the ring level. The latter constitutes a prerequisite for further modifications via CuAAC to
design tricyclic tube-like structures.

2.3. CuAAC of Two Cyclic Peptoids

Copper-catalysed alkyne-azide cycloaddition is an effective method for crosslink-
ing different structures. The four macrocycles mentioned were conjugated pairwise via
CuAAC following a modified protocol by Jagasia et al. [52]. Catalysis was performed with
tetrakis(acetonitrile)copper(I) hexafluorophosphate (Cu(CH3CN)4PF6) and 2,6-lutidine.
The reaction was carried out in dry methylene chloride under inert conditions. Monitoring
of the product formation via analytical reverse-phase HPLC revealed a reaction time of
three days for every starting material to be converted. Subsequent purification was carried
out via preparative reverse-phase HPLC.

CuAAC of peptoids 7a and 7b, decorated with aliphatic functional groups, yielded
the tricyclic compound 8 (Scheme 3).
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Scheme 3. CuAAC of peptoids 7a and 7b decorated with aliphatic functional groups. (a) 2,6-Lutidine,
Cu(CH3CN)4PF6, dry DCM, 21 ◦C, 3 days.

The tube-like structure was isolated in 7% yield. Analysis via MALDI-TOF and
analytical HPLC revealed product formation with a purity of more than 99%. To validate
conversion, IR measurements of both the azide-functionalised starting material and the
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final tricycle were taken. The characteristic azide band visible in the IR trace of peptoid
7b was omitted in the product spectrum. This measurement verified the formation of the
tricyclic structure with both azide moieties converted into a triazole.

The CuAAC of the two macrocycles decorated with aromatic alkynes and azides
(7c and 7d) was carried out following the procedure mentioned above. Product 8 was
isolated in 6% yield and 98% purity (Scheme 4).
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The yields for the CuAAC of two aliphatic and of two aromatic residues are similar.
Therefore, it is reasonable that neither flexibility nor rigidity is advantageous for this kind
of reaction.

2.4. CuAAC of Cyclic Peptoids and Small Molecules

To increase the structural diversity of the tube-like tricyclic peptoids, small molecules
were incorporated by tuning the size of the tube and allowing access to further functionali-
sation. For size enlargement of the cavity in between the macrocycles, 1,4-diethynylbenzene
(10) was attached to peptoid 7b (Scheme 5).
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Scheme 5. CuAAC of the macrocyclic peptoid 7b and 1,4-diethynylbenzene (10). (a) 2,6-Lutidine,
Cu(CH3CN)4PF6, dry DCM, 21 ◦C, 3 days.

The bifunctionalised linker 10 was added in excess to enable full conversion and
to circumvent intramolecular crosslinking. The reaction conditions complied with the
ones mentioned for the CuAAC of the two peptoid macrocycles. Compound 11 was
isolated in 17% yield after purification. Product formation was verified via MALDI-TOF
and purity was determined to be 99%. The CuAAC of linker conjugate 11 and another
azide-functionalised peptoid macrocycle failed.

To enable further structural diversity that was adjustable via light, an azobenzene
linker system was synthesised according to a published procedure [53]. Azobenzenes
are known for their ability to switch their conformation from cis to trans and vice versa
after irradiation with light [54,55]. They have been used as submonomers in solid-phase
synthesis and have been shown to affect the structure of the resulting peptoid derivatives
due to triggerable cis-trans-isomerisation [56].

The effectivity of the conformational change after UV radiation was monitored via
NMR for the synthesised linker (see Supplementary Materials). The potent azobenzene
should then be incorporated as a spacer between two macrocycles. So far, examples for
only linear peptoids with an azobenzene switch have been found [56]. Herein, we report
the first peptoid macrocycle attached to an azobenzene. Conjugate 13 (Scheme 6) was
synthesised via CuAAC according to the conditions mentioned above. Product 13 was
obtained in 19% yield and 98% purity, similarly to the yield obtained for the CuAAC of the
simplified linker 10 (Scheme 5).
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The subsequent switch experiments should confirm the conformational change of the
entire system 13. NMR spectra of product 13 both before and after irradiation with UV
light were measured (Figure 4).

1 
 

 
Figure 4. Switch experiment of conjugate 13, whose conformation change from trans (red) to cis (green) after irradiation
with UV light was monitored via nuclear magnetic resonance (NMR).

Significant changes in the aromatic area were observed. Additionally, the signals
of the terminal alkyne and methylene groups of the azobenzene linkers shifted. UV-
Vis measurements verified these results (see Supplementary Materials). Therefore, the
azobenzene of conjugate 13 can switch efficaciously from trans- to cis-conformation after
irradiation with UV light.

Unfortunately, the desired tricyclic structure 14 with one peptoid macrocycle attached
to each alkyne moiety of the azobenzene linker could not be isolated (Scheme 6). It is
conceivable that the chosen linker system is unable to close the tricyclic tube via CuAAC
due to its high degree of flexibility. Compound 13 polymerised to an insoluble solid instead.

To circumvent polymerisation, a rigidified azobenzene linker system was synthesised
according to a procedure known from the literature [57]. Switch experiments revealed
conformational changes with effectivities of 97% for trans- and 95% cis-conformers (see Sup-
plementary Materials).

The CuAAC of the rigidified linker and peptoid 7b was carried out as described
before, using an excess of the azobenzene linker to circumvent intramolecular crosslinking.
After three days, macrocycle 15 and the tube-like structure 16 were isolated (Figure 5).
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Figure 5. Products of the CuAAC of peptoid 7b and a rigidified azobenzene linker (green). (a) Conjugate 15 displays the
linker with one peptoid macrocycle attached to one alkyne moiety each. (b) CuAAC of both alkyne moieties led to the
tube-like structure 16.

Structure 15 with peptoid conjugation to one alkyne moiety of the azobenzene linker
was obtained in 3% yield after purification. Interestingly, the yield is significantly less
compared to the CuAAC of the more flexible azobenzene linker 12 described above. In
return, the desired tube-like tricyclic peptoid structure 16 was additionally obtained in
a similar yield of 2%. Masses of both products were confirmed via MALDI-TOF and
electrospray ionization (ESI-TOF). NMR measurements verified the receipt of the single
structures (see Supplementary Materials).

Switch experiments of both molecules were monitored via NMR after irradiation
with UV light (365 nm) for 30 min. The conformational change from trans to cis was
verified by significant shifts in the aromatic region (Figure 6). In the case of product 15,
an additional signal shift of the terminal alkyne proton was observable after irradiation
(see Supplementary Materials).
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Figure 6. Switch experiment of the tricyclic structure 16, whose conformation change from trans (red) to cis (green) after
irradiation with UV light was monitored via NMR.

Additionally, UV-Vis spectra of compounds 15 and 16 were recorded before and after
irradiation with UV light (Figure 7 and Supplementary Materials).
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Figure 7. UV-Vis spectra of compound 16 before (green) and after irradiation with UV light (365 nm)
for 1 sec (red), indicating a conformational change from trans to cis. The reverse conformational
change was induced via irradiation with UV light (365 nm), followed by irradiation with visible light
(460 nm) for 1 min each (blue).

Trans-conformation is indicated by the dark state trace. Conformational change
towards the cis-conformation was triggered by irradiation with UV light (365 nm) for 1 min.
Reverse conformational change from cis to trans was monitored after irradiation with UV
light (365 nm) first to force the azobenzene into cis, with subsequent irradiation with visible
light (460 nm) for 1 min each.
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When changing conformation from trans to cis, a significant increase in intensity is
observable at around 280 nm. A decrease occurs simultaneously at around 360 nm. The
trace of the probe irradiated with UV light first and with visible light next corroborates the
transfer from cis to trans, showing the reversibility of the system.

These results give evidence of a reversible conformational switch of the tricyclic
peptoid 16. With this, the tube-like structure can open and close, rendering it applicable for
storage or host–guest chemistry.

3. Materials and Methods

General procedure for the synthesis of cyclic peptoids: In a fritted syringe, a 2-
chlorotrityl-chloride resin (300 mg, 0.480 mmol, 1.60 mmol/mg loading density,
100–200 mesh, 1.00 equiv.) was swollen in 3 mL of methylene chloride (DCM) for 2 h.
After filtration, a freshly prepared solution of bromoacetic acid (2.59 mmol, 5.40 equiv.)
and N,N′-diisopropylethylamine (DIPEA, 2.59 mmol, 5.40 equiv.) in 2.5 mL of DCM was
added and shaken for 1 h at 21 ◦C. The resin was extensively washed with peptide-grade
N,N′-dimethyl-formamide (pDMF). For the following substitution reaction, a solution of
the corresponding amine (3.98 mmol, 8.30 equiv.) in 2.5 mL of pDMF was added to the resin
and shaken for 30 min at room temperature (overnight in the case of aniline). Following
extensive washing with pDMF, a solution of bromoacetic acid (4.80 mmol, 10.0 equiv.) and
N,N′-diisopropylcarbodiimide (DIC, 4.80 mmol, 10.0 equiv.) in 2.5 mL pDMF were added
and shaken for 30 min at room temperature (2 h in the case of aniline). The acetylation
and substitution steps were alternated repeatedly until the desired peptoid length was
achieved. For cleavage, a solution of 33% hexafluoroisopropanol in DCM was added and
the mixture was shaken overnight. The solvent was removed under reduced pressure.

For cyclisation, the activating agent benzotriazol-1-yl-oxytripyrrolidino-phosphonium
hexafluorophosphate (PyBOP, 1.44 mmol, 3.00 equiv.) and DIPEA (2.88 mmol, 6.00 equiv.)
were added to a solution of the respective peptoid in 100 mL of DCM. The solution was
stirred overnight at room temperature, and the solvent was removed under reduced
pressure. The residue was dissolved in a mixture of acetonitrile/water (1:1), lyophilised,
and purified via preparative reverse-phase HPLC.

General procedure for the CuAAC of the two peptoids: Both the peptoid decorated
with azide (1.00 equiv.) and the one decorated with alkyne moieties (1.00 equiv.) were
dissolved in dry DCM and degassed with argon. Afterwards, 2,6-lutidine (6.00 equiv.)
was added and the solution was stirred for 5 min. Finally, tetrakis(acetonitrile)copper(I)
hexafluorophosphate (Cu(CH3CN)4PF6, 1.00 equiv.) was added, and the mixture was
stirred for 3 days at room temperature. The solvent was removed under reduced pressure
and the residue was purified via preparative reverse-phase HPLC.

General procedure for the CuAAC of a linker and a peptoid: The desired peptoid
(1.00 equiv.) and the respective linker (10.0 equiv.) were dissolved in dry DCM and
degassed with argon for 10 min. Afterwards, 2,6-lutidine (8.00 equiv.) was added and
the solution was stirred for 5 min. Finally, Cu(CH3CN)4PF6 (1.00 equiv.) was added and
the mixture was stirred for 3 days at room temperature. The solvent was removed under
reduced pressure and the residue was purified via preparative reverse-phase HPLC.

Switch experiments via NMR: The sample was dissolved in deuterated acetonitrile
and stored under exclusion of light. Measurements were performed on a Bruker 500 spec-
trometer at 500 MHz. Spectra were recorded before and after irradiation with UV light
(365 nm).

Switch experiments via UV-Vis: 20 µM solutions of the single samples were stored
in the dark. Measurements were performed on a PerkinElmer Lambda 750 UV/Vis/NIR
spectrometer and monitored in the range from 200 to 800 nm wavelength. Spectra were
monitored before and after irradiation with UV and visible light, respectively.
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Crystal Structure Determinations

The single-crystal X-ray diffraction study was carried out on a Bruker D8 Venture
diffractometer with a Photon100 detector at 123(2) K (7b) and an Agilent SuperNova-
Dual diffractometer with an Atlas CCD-detector at 120(2) K (7b) using Cu-Kα radiation
(λ = 1.54178 Å). (Bruker AXS GmbH, Karlsruhe, Germany] Agilent Technologies, Oxford,
United Kingdom) Dual-Space Methods (SHELXD) (for 7b) or Direct methods (SHELXS-97)
(for 7c) (SHELXD and SHELXS [58]) were used for the structure solution, and refinement
was carried out using SHELXL-2013 or SHELXL-2014 (full-matrix least-squares on F2)
(SHELXL [59]). Hydrogen atoms were refined using a riding model (H(water) free). Semi-
empirical absorption corrections were applied. For 7b, an extinction correction was applied.
In 7b, the solvent water and the two 3-azidopropyl groups were disordered (see cif-file for
details). In 7c, the absolute structure could not be determined reliably (Parsons x-parameter,
x = 0.5(2); see cif-file for details) [60].

7b: colourless crystals, C52H62N14O10 − 0.5 H2O, Mr = 1052.16, crystal size
0.36 × 0.12 × 0.06 mm, monoclinic, space group C2/c (No. 15), a = 23.0990(10) Å,
b = 18.4326(8) Å, c = 25.4929(12) Å, β = 105.159(2)◦, V = 10476.5(8) Å3, Z = 8,
ρ = 1.334 Mg/m−3, µ(Cu-Kα) = 0.789 mm−1, F(000) = 4456, 2θmax = 145.4◦, 50,224 re-
flections, of which 10,350 were independent (Rint = 0.073), 687 parameters, 51 restraints,
R1 = 0.090 (for 8336 I > 2σ(I)), wR2 = 0.228 (all data), S = 1.04, largest diff. peak/hole = 1.196
(in disordered 3-azidopropyl)/−0.772 e Å−3.

7c: colourless crystals, C56H64N8O12, Mr = 1041.15, crystal size 0.19 × 0.08 × 0.04 mm,
orthorhombic, space group Pca21 (No. 29), a = 36.3213(8) Å, b = 9.1548(3) Å, c = 32.2512(7) Å,
V = 10724.0(5) Å3, Z = 8, ρ = 1.290 Mg/m−3, µ(Cu-Kα) = 0.754 mm−1, F(000) = 4416,
2θmax = 152.4◦, 24,059 reflections, of which 15,570 were independent (Rint = 0.043),
1369 parameters, 1 restraint, R1 = 0.079 (for 12810 I > 2σ(I)), wR2 = 0.214 (all data), S = 1.03,
largest diff. peak/hole = 0.851/−0.306 e Å−3.

Cambridge Chrystallographic Data Centre (CCDC) 1446764 (7b) and 1446765 (7c)
contain the supplementary crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.
uk/data_request/cif.

4. Conclusions

Herein, we report the successful synthesis of tube-like tricyclic peptoids via CuAAC,
giving access to novel secondary structures. An azobenzene linker system was successfully
incorporated as a spacer between two macrocycles. The opportunity to modify the linkage
makes the structures tuneable in size and enables the introduction of functional centres.
The azobenzene changed its conformation reversibly from trans to cis after irradiation with
UV and visible light, respectively. With this, the tricyclic structure was forced into bot an
open and a closed conformation. This switch was verified using NMR experiments and
UV-Vis measurements. Hence, this new class of tube-like peptoid structures gives access to
host–guest applications or controllable storage of small molecules.

Supplementary Materials: The following are available online: synthetic procedure, switch experi-
ments.
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