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Abstract 

Background:  Gene co-expression networks are widely studied in the biomedical 
field, with algorithms such as WGCNA and lmQCM having been developed to detect 
co-expressed modules. However, these algorithms have limitations such as insufficient 
granularity and unbalanced module size, which prevent full acquisition of knowledge 
from data mining. In addition, it is difficult to incorporate prior knowledge in current 
co-expression module detection algorithms.

Results:  In this paper, we propose a novel module detection algorithm based on 
topology potential and spectral clustering algorithm to detect co-expressed mod-
ules in gene co-expression networks. By testing on TCGA data, our novel method can 
provide more complete coverage of genes, more balanced module size and finer 
granularity than current methods in detecting modules with significant overall survival 
difference. In addition, the proposed algorithm can identify modules by incorporating 
prior knowledge.

Conclusion:  In summary, we developed a method to obtain as much as possible 
information from networks with increased input coverage and the ability to detect 
more size-balanced and granular modules. In addition, our method can integrate data 
from different sources. Our proposed method performs better than current methods 
with complete coverage of input genes and finer granularity. Moreover, this method 
is designed not only for gene co-expression networks but can also be applied to any 
general fully connected weighted network.

Keywords:  Gene co-expression network, Module detection, Topology potential, 
Spectral clustering, Breast cancer
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Background
In the past few decades, high-throughput technologies have rapidly advanced and gener-
ated tons of biomedical data. Due to the high dimensionality of the biomedical data with 
complex relationships, it remains a challenge to analyze them in depth. To tackle this 
issue, the development of network-based methods has become an effective tool in ana-
lyzing complex relationships among great number of entities such as genes and proteins. 
In the area of biomedical data analysis, networks have been widely developed for differ-
ent types of data, such as gene co-expression networks [1, 2], co-methylation networks 
[3], protein–protein interaction networks [4] and gene regulatory networks [5].

Among these biomedical networks, gene co-expression network is one of the most 
widely studied. These networks have been developed to predict new gene functions 
[6], discover novel disease biomarkers [7, 8], detect genetic variants [9] and many other 
applications [10]. Gene co-expression networks are constructed by gene expression pro-
files and in which each gene is represented by a node and the relationship between a pair 
of gene is represented by a connected edge. The strength of the relationship between 
genes is usually quantified by the correlation between the expression of two genes. The 
Pearson correlation coefficient (PCC) is the most commonly used metric, and some 
nonlinear metrics such as Spearman rank correlation and mutual information have 
also been adopted [11]. Gene co-expression networks are divided into weighted and 
unweighted networks. An unweighted gene co-expression network is a traditional binary 
network, which only keeps relationships between genes above a specified cutoff, while 
a weighted network is a fully connected network and keeps all relationships as a con-
tinuous measurement. Because setting a cutoff will cause the information loss, weighted 
gene co-expression networks are commonly used in biomedical analysis [12]. To get 
biologically relevant information, it is necessary to perform module (or community) 
detection in gene co-expression networks. WGCNA [13] and lmQCM [14] are the most 
widely used module detection methods to detect co-expression modules. However, both 
of them have defects such as insufficient granularity, coverage and unbalanced mod-
ule size, which prevent us from obtaining complete information of the whole genomic 
data. Moreover, as demonstrated in [15], introducing prior-knowledge to network-based 
analysis may hold promise for examining the interactions between genes in complex dis-
eases. Unfortunately, the existing WGCNA and lmQCM can only detect gene co-expres-
sion modules without the ability to incorporate such prior knowledge.

Based on the above consideration, we improved upon the topology potential and spec-
tral clustering-based method put forward by Wang et al. [16]. Topology potential, a con-
cept in field theory of complex networks, was first presented by Gan et al. [17] in 2009. 
It is a metric used to determine essentiality of a node in the network by its relationship 
with others and has been widely used to identify communities in complex networks. 
In the bioinformatics field, researchers have tried to find essential proteins in protein–
protein interaction (PPI) networks by using topology potential [18]. In the definition of 
topology potential, there is a mass element to describe the properties of nodes, which 
can integrate information and knowledge other than topology properties. Spectral clus-
tering is a commonly used unsupervised learning method that has been widely applied 
to detect communities or modules from networks and graphs [19–21]. However, tradi-
tional spectral clustering using the graph Laplacian matrix constructed by the degree 
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adjacency matrix of that graph cannot provide sufficient structural information for com-
munity detection [16]. Correcting the Laplacian matrix by topology potential is neces-
sary to improve the accuracy for module detection. However, the method provided by 
[16] was designed for traditional unweighted binary networks and is not applicable to 
our fully connected weighted gene co-expression network. In addition, correction of 
Laplacian matrix in [16] does not consider the mass of nodes, which will cause asymme-
try in the Laplacian matrix. Therefore, we improved upon a previous method and com-
pared the results with WGCNA and lmQCM in detecting co-expression modules.

In this paper, we present the Topology Potential-based Spectral Clustering (TPSC) 
Algorithm, an improved module detection algorithm based on topology potential and 
spectral clustering and use it to detect co-expression modules which show significant 
difference in overall survival time in breast cancer. The workflow of our proposed TPSC 
algorithm is displayed in Fig. 1. Depending on whether there are weights on nodes, there 
are two versions of TPSC, with TPSC-1 focusing on networks with only weights on 
the edge while TPSC-w being able to accommodate weights on both nodes and edges. 
We compared the results obtained by TPSC-1 with the widely used WGCNA and the 
lmQCM we previously developed. The experimental results show that our proposed 
method could detect modules with complete coverage, balanced module sizes and fine 
granularity. In addition, by introducing weighted nodes, our proposed TPSC-w method 
could select modules with the guidance of prior knowledge. Our method can mine 
not only gene co-expression networks, but also any general weighted fully connected 
network.

Results
Choices of dmin

In our proposed TPSC algorithm, there are three parameters, namely the minimum 
degree of local maximum node dmin , the weight cutoff threshold r and the topology 
potential impact factor σ . Parameters r and σ are determined by properties of the edge 

Weight of genes
(Only for TPSC-w)

Gene expression data

Gene correlation matrix

Topology potential
(Energy)

Normalized Laplacian
matrix k Local maximum genes

k co-expression modules

Spectral Clustering

Greedy Search

Fig. 1  Workflow of TPSC algorithm to detect co-expression modules. TPSC-1 and TPSC-w have similar 
workflows. The only difference is whether have weight of nodes (i.e. whether introduce prior knowledge)
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weights, which becomes constant once the edge weights are determined. The techni-
cal details of choosing these parameters will be discussed in the Discussion section. 
This also implies only the parameter dmin will affect the results of our algorithm. The 
parameter dmin will directly affect the identified number of modules, and its influence 
is shown in Fig.  2. It is clear that the number of modules k decreased as the param-
eter dmin increased, regardless of with or without weights on the nodes. Compared with 
the condition of TPSC-1, TPSC-w detected less modules. This make sense since prior 
knowledge can contribute to the screening for modules. However, in both conditions, 
the number of modules became stable when dmin was set between 5 and 9 and we fixed it 
as 5 in the analysis in the rest of the paper.

Detected modules

The number and size of modules are important to measure a module detection method. 
For gene co-expression networks, we do not want to get too many modules as the bio-
logical meanings for many of the smaller modules are not clear and it also causes more 
burden in downstream analysis. We also do not prefer a module with a large number 
of genes because it is challenging to find out which pathway is the main affect factor. 
A good module detection method should be balanced between the number and size of 
modules. In this paper, we compared our proposed method with well-known methods 
WGCNA and lmQCM (Fig.  3). Parameters for these two algorithms are set based on 
recommendation in corresponding papers. We show that our proposed method can pro-
vide an acceptable number and size of modules regardless of nodes weights.

For the The Cancer Genome Atlas breast cancer (TCGA-BRCA) dataset, we pre-
filtered the data and 4,125 genes were kept for the tests. The four methods identified 
13–24 gene modules with TPSC-1 generated the greatest number of modules (24), 
meanwhile, lmQCM and TPSC-w generated the least number of modules (13). Intro-
ducing weighted nodes decreased the number of modules in our method. The size 

10
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30

5 10 15 20
dmin

k

TPSC-1

TPSC-w

Fig. 2  Comparison of the number of modules ( k ) detected by TPSC-1 and TPSC-w with respect to different 
choice of dmin . The number of modules k decreased as the parameter dmin increased in both TPSC algorithms
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of modules varied across the four methods. The modules generated by lmQCM are 
generally smaller than the rest  of the other methods, but these modules only cov-
ered about a quarter of genes we provided. Modules generated by WGCNA covered 
all genes, but the method generated a large module with more than 1500 genes, i.e. 
more than one third of all genes in the network. Compared to lmQCM and WGCNA, 
TPSC generated modules that not only covered all genes, but also contained a more 
uniform module size.

Besides number and size of modules, we also investigated the overlap of modules 
detected by different algorithms. We compared the overlap of modules detected by 
TPSC-1 with those detected by lmQCM and WGCNA and the results are displayed 
in Fig. 4. As we can see in Fig. 4a, only a few modules showed strong overlap between 
TPSC and lmQCM. This is mainly due to the poor coverage over input genes by 
lmQCM. However, there were also some modules with strong overlaps, such as Q4 
with M21(Fisher’s exact test p = 1.603× 10−12 ) and Q7 with M16 ( p = 1.937× 10−12 ), 
which indicates that these two algorithms can also find some common modules with 
the similar biological implications. In Fig.  4b, we found that the giant module, W7, 
detected by WGCNA had strong overlap with each module detected by TPSC. Fur-
thermore, there are some modules (such as W2, W3, W16 and W17) detected by 
WGCNA that showed significant overlap with many modules detected by TPSC, indi-
cating WGCNA lacks granularity in comparison with our method.

To investigate how the prior knowledge contributes to modularizing the co-expres-
sion network, we also examined the overlaps between modules detected by TPSC-1 
with TPSC-w. The results are shown in Fig.  5. While introducing prior knowledge 
of gene disease associations, some of the modules were kept (such as M3, M14 and 
M17) but others were divided or merged. Some of the modules detected by TPSC-w 
integrated multiple modules detected by TPSC-1 (e.g., G1, G3, G11 and G12). These 
results revealed that prior knowledge of gene disease associations can influence the 
module detection.
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Fig. 3  Number and size of modules generated by our proposed TPSC, lmQCM and WGCNA. Numbers 
marked in parantheses near the name of method describe the number of modules generated by the 
method, the dot in the figure marks an outlier and the cross describes the average module size of each 
method
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Survival analysis

To identify pathways in breast cancer associated with patient survival, we performed 
survival analysis on the modules detected by the previous four methods. For each mod-
ule, we divided all 999 samples into two groups by eigengene value. Modules with a 
positive eigengene value implied potential up-regulation while a negative value means 
down-regulation. We found four modules showed a significant survival difference in the 
modules detected by our proposed method without weight of nodes and two modules 
in each of the other three methods based on Log-rank test p-value. It is worthy pointing 
out that after performing multiple correction by Benjamini and Hochberg false discov-
ery rate (B&H FDR), most of the modules was not significant except for modules G12 
and Q4. Kaplan–Meier curve of the cell-cycle related gene module led to significant sur-
vival difference detected by TPSC-1, lmQCM and WGCNA (M21, M23, Q4 and W2) is 
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displayed in Fig. 6. Other curves of survival difference significant modules are provided 
in Additional File 1. Statistic information of these modules is listed in Table 1.

Our proposed TPSC-1 method generated the greatest modules that showed sur-
vival difference, but the ratio of number of survival difference significant modules and 
all modules is similar for all 4 methods. Furthermore, while adding weight of nodes to 
our method (TPSC-w), the number of modules with significant survival difference is 
decreased. This may be caused by the weight selection of different nodes.
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Functional enrichment analysis

We performed functional enrichment analysis on the modules with significant survival 
difference to find out pathways and other biological patterns related to survival. Gene 
ontology, pathway and cytoband analysis is performed by ToppGene (https​://toppg​ene.
cchmc​.org/). Table  2 summarized mainly results of biological process, pathways and 
cytobands enriched in modules detected by TPSC, WGCNA and lmQCM. Detailed 
enrichment results are displayed in Additional File 2.

We found two modules that have significant survival difference by using proposed 
TPSC-w. The first module (G1) was mainly enriched in the biological process of cell 
cycle and mitosis. This module was also enriched in the pathway of HTLV-I infection 
and prostate cancer. Furthermore, this module enriched in cytobands 3p21.3, 8p12-p11 
and 17q11.2, which are all important chromosomal locations involved for breast cancer. 
The second module (G12) was also focused on cell cycle and mitotic process. In pathway 
analysis, P53 signaling, PI3K-AKt signaling and FOXO signaling pathway were enriched. 
In addition, 17q11.2, 7q21.3, 1q32 and 17q22-q23 were enriched in cytoband analysis.

For TPSC-1, we found four modules with significant survival difference. The first 
survival significant module (M6) was enriched on the process of extracellular matrix 
and structure organization, blood vessel development and cell adhesion and motility. 
This module was enriched in pathways of extracellular matrix organization, collagen 
formation and ensemble of genes encoding ECM-associated proteins. The second 
module (M16) was mainly enriched in cytobands on 17q11.2 and 6q22-q23. This 
module was also enriched in the biology process of response to growth hormone. 
The other two modules (M21 and M23) were both enriched in cell cycle and mitosis 
in biological process. They all enriched to pathways related to RHO GTPases. M21 
also enriched in the pathway related to proteoglycans in cancer and circadian clock. 
M23 also enriched in the pathways of antifolate resistance.

As a comparative baseline, we also performed enrichment analysis on modules 
with significant survival difference generated by WGCNA and lmQCM. The first 

Table 1  Statistically significant survival difference of modules generated by four methods

Module Size Group with increased 
Survival

p Value (Log-rank 
test)

q Value (B&H FDR)

TPSC-w (2/13)

 G1 518 Downregulated 0.0430 0.2795

 G12 261 Upregulated 0.0006 0.0077

TPSC-1 (4/24)

 M6 57 Upregulated 0.0460 0.2760

 M16 89 Downregulated 0.0250 0.2000

 M21 358 Downregulated 0.0150 0.1800

 M23 260 Upregulated 0.0120 0.1800

lmQCM (2/13)

 Q4 109 Upregulated 0.0019 0.0247

 Q7 43 Downregulated 0.0280 0.1820

WGCNA (2/17)

 W2 307 Upregulated 0.0130 0.2210

 W13 192 Downregulated 0.0490 0.4165

https://toppgene.cchmc.org/
https://toppgene.cchmc.org/
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module generated by lmQCM (Q4) was enriched in cell cycle and mitotic processes. 
RHO GTPases pathways, P53 pathways, oocyte meiosis and HTLV-I infection path-
ways were also enriched. In cytoband analysis, genes in this module was enriched at 
12q13.12, 2p24.2, 15q15.1 and 4q27.The second module generated by lmQCM (Q7) 
focused on epithelial cell development and mammary gland development process. In 
pathway analysis, this module mainly enriched on ERBB2- and ERBB4-related sign-
aling pathways. 4q31.21 and 1p33 were enriched in cytoband analysis. For modules 
generated by WGCNA, W2 was also enriched in cell cycle and mitotic processes. 
W13 was enriched in the process related to immune response: activation of T cell, 
lymphocyte and leukocyte were the most significant enriched biological processes. 
Cytokine, NF-Kappa B, chemokine and TNF signaling pathway were especially 
enriched pathways in pathway enrichment analysis. 1q31-q32, 1p36 and 1q23 was 
enriched in cytoband analysis.

Discussion
Choice of parameters

There are three parameters, i.e., dmin, r and σ , in our proposed TPSC algorithm. Here 
dmin is a parameter used for determining the number of modules. This parameter lim-
its the number of local maximum nodes under the assumption that central node of a 
module should have close relationships with other genes in that module. Obviously, 
increasing dmin forces local maximum nodes have a closer relationship with other genes 

Table 2  Summary of  enrichment analysis on  survival significant modules detected 
by different algorithms

Biological processes Pathways Cytobands

TPSC-w Cell cycle and mitotic process 
(G1, G12)

HTLV-I infection and Prostate 
cancer (G1)

3p21.3 and 8p12-p11 (G1)

P53 signaling, PI3K-AKt signaling 
and FOXO signaling pathway 
(G12)

7q21.3, 1q32 and 17q22-q23 
(G12)

17q11.2(G1, G12)

TPSC-1 Extracellular matrix and structure 
organization, blood vessel 
development, cell adhesion 
and motility (M6)

Extracellular matrix organiza-
tion, collagen formation and 
ensemble of genes encoding 
ECM-associated proteins (M6)

11q22.3 and 13q34 (M6)

Response to growth hormone 
(M16)

Pathways related to RHO 
GTPases (M21, M23)

17q11.2 and 6q22-q23 (M16)

Cell cycle and mitotic process 
(M21, M23)

Proteoglycans in cancer and 
circadian clock (M21)

1p32 (M23)

Antifolate resistance (M23)

WGCNA Cell cycle and mitotic process 
(W2)

P53 signaling, oocyte meiosis 
and PI3K-AKt infection (W2)

20q11.2 and 12q13.12 (W2)

Activation of T cell, lymphocyte 
and leukocyte (W13)

Cytokine, NF-Kappa B, 
chemokine and TNF 
signaling(W13)

1q31-q32, 1p36 and 1q23 (W13)

lmQCM Cell cycle and mitotic 
process(Q4)

RHO GTPases pathways, P53 
pathways, oocyte meiosis and 
HTLV-I infection (Q4)

12q13.12, 2p24.2, 15q15.1 and 
4q27(Q4)

Epithelial cell development and 
mammary gland development 
(Q7)

ERBB2- and ERBB4-related signal-
ing (Q7)

4q31.21 and 1p33(Q7)
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and then decreases the number of modules. Since gene co-expression network has local 
modularity structures, number of local maximum nodes detected should reach a pla-
teau while dmin increases, indicating a reasonable number of modules. Based on our 
search method, we will select the local maxima in descending order based on the topol-
ogy potential of each node. Once the number of local maximum nodes is determined, 
the selected nodes are also determined. Since these local maximum nodes will become 
the initial nodes for module detection, the detected modules should be similar. Figure 2 
illustrated this situation and the number of modules became stable when dmin was set 
between 5 and 9. We therefore empirically set dmin to be 5.

Both r and σ are parameters related to edge weight, so they can be determined by 
the property of edge weights. Since we used Pearson correlation coefficient (PCC) 
as weights, we will discuss the condition of using it. In the area of statistical analysis, 
for two variants, we think they have linear relationship if the absolute value of PCC is 
greater than a specific value. In the area of biological analysis, the empirical value is 0.3, 
so we set  r  and inverse of influence range of topology potential to 0.3. Since the influ-
ence range of topology potential can be calculated by 3σ/

√
2 , we can get the value of 

parameter σ as 1.57. No matter the selection of weight and cutoff threshold, we must 
keep  r and inverse of influence range of topology potential as a same value to maintain 
consistent of module detection and number of clusters determination.

Coverage and module size

Coverage of input gene list and module size generated are important factors in a module 
detect algorithm. If a method cannot cover enough genes, it may lose information when 
generating modules. Additionally, modules whose size are too large or too small may 
not be informative for the downstream analysis. For instance, large modules will include 
too many genes which will dilute the information and obscure important findings, while 
small modules may not contain enough information to reveal its underlying biological 
meaning. Thus, moderate module size and sufficient coverage are two essential factors 
for a module detection algorithm.

In our research, our proposed TPSC algorithm found that the module (i.e., M6) 
related to extracellular matrix and structure organization does not identified by both 
lmQCM and WGCNA algorithm. We compared the overlap of this module and mod-
ules that generated by lmQCM and WGCNA. Only eight genes were found in the 
modules detected by lmQCM, due to its limitation. For WGCNA, we found there are 
22 (38.6%) genes included in the W7, which has 1678 genes. Though overlap between 
M6 and W7 is not significant ( p = 0.6740 ), this giant module included lots of pathways 
and obscured specific pathways of interest. In addition, the module also had 15 genes 
overlapped with W17 ( p = 4.747× 10−8 ), but W17 didn’t have significant difference on 
survival because it also showed great overlap with M13 ( p = 6.322× 10−10 ) and M22 
( p = 5.079× 10−19 ) in our proposed TPSC-1 algorithm. This is the problem of granu-
larity which we will discuss in the following section.

In Fig.  3, modules generated by our proposed method had uniform module sizes. 
For scale-free networks, if we just use node degree as centralization metric, the sizes of 
detected modules should follow a power law distribution. However, when we include 
information other than the topology property of the network, such as the GDA score 
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adopted in this paper, the distribution would change. In addition, as discussed by pre-
vious research [22], biological network including gene co-expression network is not a 
completely scale-free network. it obeys to power law distribution in global but subject to 
modularity locally. This condition also affects the size of detected modules. These condi-
tions turn the module size distribution into uniform. Actually, balanced module size is 
advantageous for discovering functions and pathways enriched to the modules. Modules 
with only several genes are hard to analysis due to the lack of information, and huge mod-
ules will hide the valuable results under a great number of useless ones. These properties 
of modules make our proposed method a strong alternative to WGCNA and lmQCM.

Biological interpretation of the modules

Module detection algorithms can generate gene modules as output, but they do not 
have the capacity to interpret the modules. Nevertheless, interpreting the modules for 
their biological significance is crucial in bioinformatics. Enrichment analysis is a widely 
adopted approach to reveal the biological relevance of the detected modules by compar-
ing the overlap between modules and known gene lists (such as pathways, Gene Ontol-
ogy terms, literatures, and chromosomal locations such as cytobands). These known lists 
can be acquired from some various databases (such as Gene Ontology [23], KEGG [24], 
DAVID [25] and Reactome [26]). In addition, we can also use survival analysis to identify 
the modules that are strongly associated with patient prognosis and further establish the 
link between biological relevance (e.g., enriched pathways or biological process terms) 
with patient outcome.

Granularity

For biological processes that have significant survival difference, there exists a group of 
pathways that contribute to it. However, not all these pathways have similar direction of 
influence. Some pathways are up-regulated while others are down-regulated. If a module 
detection algorithm can distinguish different directions of pathways that contribute to 
the same biological process instead just giving out one big module that contain all the 
pathways, we consider the algorithm can be more granular with more concrete biologi-
cal insight. Our experimental results showed that TPSC is more granular than WGCNA 
and lmQCM. All the four methods in our study identified modules related to cell cycle 
and mitosis (G1, G2, M21, M23, Q4 and W2). Our methods (both TPSC-1 and TPSC-w) 
found two modules related to cell cycle and mitosis, of which one is up-regulated and the 
other one was down-regulated. In contrast, under the same condition, both WGCNA 
and lmQCM only identified one cell cycle related module. From the perspective of over-
lap between modules generated by different algorithms, we found that both M21 and 
M23 have substantial overlaps with Q4 ( p = 1.603× 10−12 and 3.105× 10−3 ) and W2 
( p = 1.399× 10−11 and 1.260× 10−43 ). This result suggests that our proposed method 
can yield more granular modules than WGCNA and lmQCM. On the other hand, mod-
ule W17 detected by WGCNA has significant overlap with M6 ( p = 4.747× 10−8 ), 
suggesting extracellular matrix related pathways are included in W17. But unlike M6, 
genes in W17 were not able to stratify the patients into groups with significant differ-
ences in survival time. This is due to the fact that W17 also has great overlap with M13 
( p = 6.322× 10−10 ) and M22 ( p = 5.079× 10−19 ). These extra genes covered pathways 
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not related to patient survival time and thus obscured the signal. These results demon-
strate that our proposed algorithm is more granular than WGCNA and lmQCM in find-
ing gene co-expression modules.

Data integration

As noted in [15], introducing prior-knowledge to network-based analysis may hold 
promise for comprehensively examining the interactions between genes underlying 
the pathogenesis of complex diseases. Fortunately, since there is a mass element, topol-
ogy potential could integrate prior knowledge naturally. Compared with our proposed 
method, WGCNA and lmQCM cannot integrate prior knowledge when detecting co-
expression modules. We weighted the nodes using the GDA scores provided by Dis-
GeNET (https​://www.disge​net.org/). The weights on the nodes resulted in less modules 
compared to not using prior knowledge. This result is due to the fact that the module 
identification process becomes more concentrated on genes that have stronger gene-dis-
ease associations. The TPSC identified two modules, G1 and G12, which had significant 
survival differences between patient groups. These two modules were both enriched 
in the cell cycle process. From the perspective of module merging, G1 merged part of 
M21 and M23 which are both cell cycle related survival significant modules detected by 
TPSC-1. In addition, module M1 was completed included in module G1. Although M1 
was not survival significant, it also enriched to cell cycle processes. This fact revealed 
that by introducing prior knowledge, modules with similar functions trend to be merged. 
Module G12 mainly merged module M16 and part of M23 which have the strongest 
significance among all survival significant modules. Both M16 and M23 were survival 
significant modules detected by TPSC-1 but M16 did not significant enrich to any path-
ways related to cell cycle process. By introducing GDA information, we can infer that 
M16 is also a cell cycle related module. These results reflects the nature of prior knowl-
edge, in which cell cycle-related genes have higher GDA scores and is known to be an 
essential biological process in cancer cells [27]. The results suggest that our proposed 
topology potential based method can filter out modules with deep biological meanings 
by introducing prior knowledge.

Enriched cytobands

In cancer data, gene co-expression are highly confounded by locations due to extensive 
existence of CNVs. And we can take advantage of this phenomenon to infer potential 
CNV events from transcriptomic data. In this paper, since we began with CNV informa-
tion, it is not surprising that some genes are located on the same cytoband. In Table 2, 
we can find some cytobands enriched in modules detected by different methods. Around 
these positions, some of them are frequently identified, such as chromosome 1p31-32, 
1q31-32, 17q11[28–32].

Conclusion
In this paper, we provided a novel approach for detecting co-expressed modules in gene 
co-expression network based on topology potential and spectral clustering algorithms. 
The method improved upon a previous method for full-connected network and asym-
metric Laplacian matrix. By testing our method on the TCGA-BRCA dataset, modules 

https://www.disgenet.org/
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with a significant difference in overall survival time were detected by our method to have 
better coverage on input genes, more balance on module size and finer granularity. In 
addition, by coding prior knowledge as node weights, our proposed method can identify 
more related modules. This allows researchers to detect pathways or cytobands affected 
by specific clinical information.

Though we only applied our algorithms on mining gene co-expression network, our 
proposed method is designed for general use in mining any fully-connected weighted 
network with weights on both edges and nodes.

Methods
Module detect algorithm

In this part, we introduce our proposed module detection method based on topology 
potential and spectral clustering method (TPSC). There are two variants of TPSC, i.e., 
TPSC-1 and TPSC-w. The only difference between them is whether the nodes have 
weights. Since they have same workflow, we will introduce them together. The TPSC 
method, as an improvement of the method provided by [16], can handle full-connected 
weighted networks. The steps of TPSC algorithm is displayed in Algorithm 1.

Compared with the original algorithm in [16], our method altered the technique of deter-
mining the number of clusters to make it suitable for fully connected weighted networks. 
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In addition, we also adjusted the approach of normalizing Laplacian matrix to avoid the 
problem of asymmetry when node property is assigned. Next, we introduce the concept of 
topology potential.

Topology potential and energy

The theory of topology potential is a branch of field theory, which is used to describe 
the interaction and association among network nodes. Given a network G(V ,E) , where 
V = {vi|i = 1, . . . , n} is the set of nodes, |V | = n ; M = {mvi |vi ∈ V } is the set of mass of 
the nodes; and  E = {

(

vi, vj
)

|vi, vj ∈ V } is the set of edges. Topology potential ϕ of any node 
vi ∈ V  can be defined as:

where dij is the distance between node vi and vj . For fully-connected weighted networks, 
dij can be calculated by weighting using appropriate methods such as inverse of correla-
tion coefficient. σ is an impact factor to control the influence range of nodes. Contribu-
tion of vj to topology potential of vi will decay to 0 rapidly if the distance between them is 
greater than 3σ√

2
 [33].

In the original method, the author proposed a concept called potential component to 
quantitatively describe the relationship between two nodes. Potential component produced 
by node vi at position vj is defined as:

Obviously, if mvi  = mvj , pi,j will not equal to pj,i . This violates the definition of a metric 
and will cause asymmetry of the normalized Laplacian matrix if the mass of each node 
is different. To solve this problem, we defined a novel metric, topology potential energy, 
to provide the same function as the potential component. Topology potential energy of 
node vj in the potential field of node vi is defined as:

In particular, epi,j = 0 if i = j . If the mass of each node is not assigned (i.e. mass of all 
nodes equal to 1), epi,j is equivalent to pi,j.

Topology potential energy‑corrected normalized Laplacian matrix

The Laplacian matrix can be treated as matrix representation of a network, which can be 
used to find many useful properties of that network. Traditionally, the Laplacian Matrix 
L of simple network is defined as:

(1)ϕ(vi) =
∑

vj∈V \{vi}
mvi × exp

(

−
(

dij
σ

)2
)

(2)pi,j = mvi × exp

(

−
(

dij
σ

)2
)

(3)ep,i,j = mvimvj × exp

(

−
(

dij

σ

)2
)

(4)
L = D − A
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where D is degree matrix and A is adjacency matrix. For weighted networks, D is 
replaced by weighted degree matrix and A is replaced by weight adjacency matrix. Its 
normalization version can be defined as:

To add additional structural information to the network, we will redefine Laplacian 
matrix L by replacing weighted degree matrix D with weight adjacency matrix A . Com-
pared with traditional Laplacian matrix, the redefined one transformed the weight of 
edges by topology potential and include the prior knowledge.

Weight adjacency matrix A will be replaced by potential energy distribution matrix Ep . 
Ep is an n-dimensional symmetry matrix. Diagonal element of Ep is all zero and the other 
elements are potential energy of two nodes calculated by Eq. (3).

Weighted degree matrix D is replaced by the total potential energy matrix E� . E� is 
an n-dimensional diagonal matrix, whose diagonal element e�i is the sum of topology 
potential energy of node vi in potential field of any other nodes. e�i can be calculated by:

After all, topology potential energy-corrected normalized Laplacian matrix can be 
defined by:

Determination of number of clusters

Number of clusters k in spectral clustering can be determined by k nontrivial eigenval-
ues whose eigenvector elements present a ladder distribution. However, if the commu-
nity structure is not clear, the distribution of eigenvector elements will not show obvious 
ladders, which prevent us to get proper number of clusters[34]. In order to solve this 
problem, [16] provided a local maximum topology potential based method, but directly 
using this metric in a fully connected network is not possible since there is no local max-
imum topology potential nodes but a global one. We need downgrade the network to a 
simple one to search for local maximum nodes. This work can be done by hard-thresh-
olding on the weight.

For co-expression networks, co-expressed nodes are all adjacent. Hence, we only focus 
on first order neighbors of nodes and not the higher order ones, which can be used to 
simplify the local maximum node search process. We display the pseudocode of this pro-
cedure in Algorithm 2. In our algorithm, we used a greedy-based method which selects 
for the maximum potential node and remove its neighbor iteratively. In addition, the 
degree of nodes can also be considered since nodes with low degrees contribute less to 
co-expression modules. The iteration process can be terminated early by degree thresh-
old (step 14). Local maximum nodes can be treated as the initial center of a spectral clus-
ter. Algorithm 2 displayed the pseudocode of determination of number of clusters.

(5)Lnormalized = D− 1
2 LD− 1

2 = I − D− 1
2AD− 1

2

(6)e�i =
∑

vj∈V
epi,j = mvi

∑

vj∈V \{vi}
mvj × exp

(

−
(

dij
σ

)2
)

(7)Lnormalized = I − E
− 1

2
� EpE

− 1
2

�
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Application of TPSC to gene expression data

BRCA gene expression data was obtained from TCGA. The dataset contained 1,098 
cases with multiple types of samples, such as primary tumor, recurrent tumor and nor-
mal tissue etc. We selected 999 primary tumor samples with corresponding patient 
survival data for our analysis. For our pre-processing step, we removed genes with an 
expression value of 0 in more than 50% of the samples. Genes with the lowest 20% of 
mean values and lowest 10% variance were also be removed.

To identify disease related pathways, we selected genes that have an association with 
disease to construct gene co-expression network. These genes were obtained from the 
DisGeNET database [35], the largest publicly available collection of genes and variants 
associated with human diseases. In the DisGeNET database, Gene-disease associations 
(GDA) were ranked by a GDA score ranged from 0 to 1 that considers the number and 
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type of sources (e.g., level of curation, organisms), as well as the number of publications 
supporting the association. For a pair of specific disease and gene, if GDA score between 
them is greater than 0, there exists a known gene-disease association. In DisGeNET, 
there are 4,962 genes reported to be associated with Breast Carcinoma (C0678222) and 
4,125 of them were found in our gene expression data. We used genes with a GDA score 
greater than 0 in our analysis, and GDA score is used as weight of genes while using 
TPSC-w algorithm.

Analysis of weighted gene co‑expression network

We used Pearson correlation coefficients (PCCs) to construct a co-expression network. 
Specifically, we computed PCCs between each pair of genes as weight. The distance 
between two genes was defined by the inverse of their PCC. For TPSC-w, weights of 
genes were set as gene disease association scores provided by DisGeNET. Weight cutoff 
threshold was set to 0.3 as while larger PCC value indicates higher correlations between 
different genes. The threshold for degree was set to 5. We also performed comparative 
analysis with the well-known WGCNA and our previous lmQCM algorithm. All param-
eters in these two methods were set as recommended in the corresponding papers. 
Overlaps of modules detected by different algorithms were tested by Fisher’s exact test 
with the R package ‘GeneOverlap’ [36].

To assess the association between co-expression modules and patient survival infor-
mation, overall survival (OS) analysis was performed based on the eigengene of modules. 
Eigengene was calculated to represent the expression of co-expressed gene modules, 
with a positive value defined as the module being up-regulated and a negative value 
defined as the module being down-regulated [37]. Thus, we can divide all the patients 
into two groups by the sign of eigengene entries for each module. Then the Kaplan–
Meier estimator was used for patient stratification and log-rank test was applied to com-
pare the survival difference between two groups with the R package ‘survminer’ [38].

The biological relevance of the network modules was obtained by carrying out enrich-
ment analysis using the online tool ToppGene [39]. We focused on the modules that 
showed significant survival difference between patient groups and used the ToppGene 
suites to find significantly enriched gene oncology (GO) terms, pathways, and cytobands 
that are associated with these survival significant modules.
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