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Many complex diseases (chronic disease onset, development and differentiation, self-assembly, etc.) are reminiscent of phase
transitions in a dynamical system: quantitative changes accumulate largely unnoticed until a critical threshold is reached, which
causes abrupt qualitative changes of the system. Understanding such nonlinear behaviors is critical to dissect the multiple
genetic/environmental factors that together shape the genetic and physiological landscape underlying basic biological functions and
to identify the key drivingmolecules. Based on stochastic differential equation (SDE)model, we theoretically derive three statistical
indicators, that is, coefficient of variation (CV), transformed Pearson’s correlation coefficient (TPC), and transformed probability
distribution (TPD), to identify critical transitions and detect the early-warning signals of the phase transition in complex diseases.
To verify the effectiveness of these early-warning indexes, we use high-throughput data for three complex diseases, including
influenza caused by either H3N2 or H1N1 and acute lung injury, to extract the dynamical network biomarkers (DNBs) responsible
for catastrophic transition into the disease state from predisease state. The numerical results indicate that the derived indicators
provide a data-based quantitative analysis for early-warning signals for critical transitions in complex diseases or other dynamical
systems.

1. Introduction

A sudden change of a system is a recurrent phenomenon
in many complex diseases, which often occurs at a critical
threshold, or the so-called “tipping point,” and can be
interpreted as the fact that the system shifts abruptly fromone
asymptotically stable equilibrium to another one [1]. During
the progression of many complex diseases, for example, in
chronical diseases such as cancer, the deterioration is abrupt
[2, 3]. In other words, there exists a sudden catastrophic
shift during the progress of gradual health deterioration that
results in a drastic transition to a disease state. Intuitively,
between the healthy state and the disease state, there is a
critical state which is the so-called “critical transition” [4, 5].
Therefore, in recent years, there has been a growing interest
in developing quantitative and qualitative approaches for
detecting early-warning signals to avoid such undesirable
transitions.Themodel-based andnetwork-based approaches,
respectively, have been used to extract warning signals from

observed time series.Therefore, a variety of empirical studies
based on analysis of time-series data have suggested that
some statistical signatures, such as variance, Pearson’s cor-
relation coefficient (PCC), autocorrelation, and coefficient of
variation (CV), may be used to predict the critical transition
[6–14]. To extend and generalize the proposed indicators
and find new statistical characteristics, in this study, we
use a generic stochastic differential equation (SDE) model
to represent the complex system based on time-series data
with noise and try to understand the critical transition
from a mathematical viewpoint. Combining the qualitative
theory of fast-slow dynamical systems, probability theory,
and statistical analysis, we theoretically prove that three
statistical indicators, that is, coefficient of variation (CV),
transformed Pearson’s correlation coefficient (TPC), and
transformed probability distribution (TPD), can distinguish
the early-warning signals of the critical transition in complex
systems. Finally, we use real high-throughput data for three
complex diseases, including influenza caused by either H3N2
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virus [15] or H1N1 virus [16] and acute lung injury induced
by carbonyl chloride inhalation exposure [17], to demonstrate
the applicability of these early-warning indexes for extracting
the dynamical network biomarkers (DNBs) responsible for
catastrophic transition into the disease state from predisease
state.

2. Methods

2.1. Preliminaries for Dynamical Systems and Stochastic Dif-
ferential Equations. The dynamics for the progression of a
complex system can be expressed by the following nonlinear
continuous-time equations (ODEs):𝑑𝑍 (𝑡)𝑑𝑡 = 𝑓 (𝑍 (𝑡) ; 𝑃) , (1)

where 𝑍(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡), . . . , z𝑛(𝑡))𝑇 ∈ R is an𝑛-dimensional state vector at time instant 𝑡 with 𝑡 ∈ R+ and𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑠)𝑇 ∈ R𝑠 is a 𝑠-dimensional parameter
vector or driving factors. 𝑓 : R𝑛 × R𝑠 → R𝑛 is an𝑛-dimensional nonlinear function vector. Suppose that the
bifurcation of the nonlinear dynamical system occurs at the
bifurcation point (𝑍∗, 𝑃∗), where 𝑍∗ = (𝑧∗1 , 𝑧∗2 , . . . , 𝑧∗𝑛 )𝑇 and𝑃∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑠 )𝑇. For system (1) near 𝑍∗, before 𝑃
reaches𝑃∗, the system is supposed to stay at an asymptotically
stable equilibrium 𝑍∗ and therefore all the real parts of the
eigenvalues are negative [18, 19].

Generally, there exist the noises in the real system [20,
21]. Thus, we add the white Gaussian noises to the original
ordinary differential system (1) and obtain the following
stochastic differential equations:𝑑𝑍 (𝑡)𝑑𝑡 = 𝑓 (𝑍 (𝑡) ; 𝑃) + 𝐻𝑑𝐵 (𝑡)𝑑𝑡 , (2)

where 𝐵(𝑡) = (𝐵1(𝑡), 𝐵2(𝑡), . . . , 𝐵𝑚(𝑡))𝑇 are 𝑚-dimensional
standard Brownian motion.

Consider the linearized equations of (1) with the pertur-
bations of white Gaussian noises near 𝑍∗. Namely, intro-
ducing new variables 𝑌(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡))𝑇 and
a transformation matrix 𝑆, that is, 𝑌(𝑡) = 𝑆−1(𝑍(𝑡) −𝑍∗) (see the detailed process in Supplementary Informa-
tion A1 in the Supplementary Material available online at
https://doi.org/10.1155/2017/7560758), we have𝑑𝑌 (𝑡)𝑑𝑡 = Λ (𝑃) 𝑌 (𝑡) + 𝐺𝑑𝐵 (𝑡)𝑑𝑡 , (3)

where Λ(𝑃) is a diagonal matrix which is the Jordan normal
form for the Jacobian matrix (𝜕𝑓(𝑍; 𝑃)/𝜕𝑍)|𝑍=𝑍∗ and

𝐺 = (𝑔11 𝑔12 ⋅ ⋅ ⋅ 𝑔1𝑚𝑔21 𝑔22 ⋅ ⋅ ⋅ 𝑔2𝑚... ... ...𝑔𝑛1 𝑔𝑛2 ⋅ ⋅ ⋅ 𝑔𝑛𝑚) ∈ R
𝑛×𝑚, (4)

with
𝑚∑
𝑙=1

𝑔𝑖𝑙𝑔𝑗𝑙 ̸= 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (5)

Actually, there are typically three cases arising in diagonal
matrixΛ(𝑃). For the sake of simplicity, here we only illustrate
case 1, that is, Λ(𝑃) = diag(𝜆1(𝑃), 𝜆2(𝑃), . . . , 𝜆𝑛(𝑃)) with
each 𝜆𝑖 negative. The other two cases are described in
Supplementary Information A1: a generic model in abstract
phase space and some preliminaries.

Among the eigenvalues of Λ in case 1, the largest one,
say 𝜆1, first approaches 0 when parameter 𝑃 → 𝑃∗.
This eigenvalue characterizes the rate of the system around
the steady state approximately and is called the dominant
eigenvalue. We can calculate the solution of the stochastic
differential equation (3):𝑦𝑖 (𝑡) = 𝑒𝜆𝑖(𝑡−𝑡0)𝑦𝑖 (𝑡0) + 𝑚∑

𝑘=1

𝑔𝑖𝑘 ∫𝑡
𝑡0

𝑒𝜆𝑖(𝑡−𝑡0)𝑑𝐵𝑘 (𝑠) ,𝑖 = 1, 2, . . . , 𝑛. (6)

It is easy to obtain that𝐸 (𝑦𝑖 (𝑡)) = 𝑒𝜆𝑖(𝑡−𝑡0)𝑦𝑖 (𝑡0) ,
var (𝑦𝑖 (𝑡)) = ( 𝑚∑

𝑘=1

𝑔2𝑖𝑘) 1 − 𝑒2𝜆𝑖(𝑡−𝑡0)−2𝜆𝑖 ,
cov (𝑦𝑖 (𝑡) , 𝑦𝑗 (𝑡)) = ( 𝑚∑

𝑘=1

𝑔𝑖𝑘𝑔𝑗𝑘) 1 − 𝑒(𝜆𝑖+𝜆𝑗)(𝑡−𝑡0)− (𝜆𝑖 + 𝜆𝑗) ,𝑖, 𝑗 = 1, 2, . . . , 𝑛.
(7)

Here when the dominant eigenvalue 𝜆1 → 0− because of the
change in the parameter values, var(𝑦1) → +∞, but var(𝑦𝑖)
is bounded for 𝑖 ̸= 1 because 𝜆𝑖 < 𝜆1 < 0, (𝑖 = 2, . . . , 𝑛). For
any 𝑖 ̸= 𝑗, cov(𝑦𝑖, 𝑦𝑗) tends to have a positive bounded value.

Returning to the original variables𝑍whose elements can
be expressed by 𝑧𝑖 = ∑𝑛𝑗=1 𝑠𝑖𝑗𝑦𝑗 + 𝑧∗𝑖 , where 𝑠𝑖𝑗 is the element
of the linear transformation 𝑆, we have (Supplementary
Information A2)𝐸 (𝑧𝑖) = 𝑛∑

𝑗=1

𝑠𝑖𝑗𝐸 (𝑦𝑗) + 𝑧∗𝑖 ,
cov (𝑧𝑖, 𝑧𝑗) = 𝑠𝑖1𝑠𝑗1 var (𝑦1) + ⋅ ⋅ ⋅ + 𝑠𝑖𝑛𝑠𝑗𝑛 var𝑦𝑛+ 𝑛∑

𝑘=1

𝑛∑
𝑚=1,𝑚 ̸=𝑘

𝑠𝑖𝑘𝑠𝑗𝑚 cov (𝑦𝑘, 𝑦𝑚) ,
PCC (𝑧𝑖, 𝑧𝑗) = cov (𝑧𝑖, 𝑧𝑗)√var (𝑧𝑖) var (𝑧𝑗) .

(8)

Notice that variable 𝑦1 is related to the dominant eigen-
value 𝜆1. From the above equations, it is obvious that as 𝜆1 →



Computational and Mathematical Methods in Medicine 30−, the variance, that is, var(𝑧𝑖) = cov(𝑧𝑖, 𝑧𝑗), increases greatly,
or var(𝑧𝑖) → +∞ if 𝑠𝑖1 is not vanishing, and |PCC(𝑧𝑖, 𝑧𝑗)|
approaches 1 drastically if both 𝑠𝑖1 and 𝑠𝑗1 are nonzero. In this
case, variables 𝑧𝑖 and 𝑧𝑗 are directly affected by the dominant
eigenvalue. A group composed of such variables is called the
dominant group in the network. On the other hand, as 𝜆1 →0−, |PCC(𝑧𝑖, 𝑧𝑗)| between the dominant group (e.g., including𝑧𝑖) and others (e.g., including 𝑧𝑗, which does not belong to the
dominant group) reduces to zero if 𝑠𝑖1 ̸= 0 but 𝑠𝑗1 = 0.

In addition, from dynamical viewpoint, a system that
leads to critical transition is due to the change of the
dominant eigenvalue.This viewpoint can be understood from
the process of the theoretical derivation in Supplementary
Information A1. In other words, the fact that the eigenvalue
approaches zero when the critical transition occurs is very
important. Simultaneously, a very necessary question arises:
how can we describe the concept “related to the dominant
eigenvalue”? In order to achieve our goal, using the theory
of the Taylor expansion and the Jordan normal form of
matrix, the key point is that the model can be projected onto
the center manifold under the linear transformation. Then
by identifying the coefficient with respect to the dominant
eigenvalue being zero or not, we can determine which group
of variables can lead to critical transition. Therefore, all the
variables 𝑧𝑖 with 𝑠𝑖1 ̸= 0 form a group, which indicates
that a transition from a steady state to another steady state
will occur. It is easy to see that this group characterizes the
statistical features of the underlying system. Especially in
complex diseases, the molecules in this group are strongly
and dynamically correlated in the predisease state (see Sec-
tion 2.3), which can be viewed as DNBs for early-warning
signals.

2.2. Method for Identifying Dynamical Network Biomarkers
(DNBs) for Complex Diseases Based on Real Data. The evolu-
tionary process of the complex diseases can be generally cat-
egorized into three states: that is, a normal state, a predisease
state, and a disease state [20–25]. The normal state is a steady
state that represents a relatively healthy stage during which
the disease is under control.The predisease state corresponds
to the critical state before transition to the disease state. In
this stage, it may be reversible to the healthy stage under
appropriate and therapeutic interventions [26]. Therefore,
it is of great importance to identify DNBs representing an
early-warning signals of disease progression, or as a leading
biomarker that drives the system into the disease state. In this
paper, the identification of DNBs includes four steps. For a
given real dataset, the first step is to calculate the indicators
CV and TPD of each protein in the symptomatic group and
the asymptomatic group, respectively. Then, in second step,
the t-test method is used to select the significantly different
proteins of the indicators CV and TPD between symptomatic
and asymptomatic groups as candidates. In third step, we
choose the intersection of candidate of indicators CV and
TPD. In final step, the proposed TPC is calculated for above
candidates and the distinguished DNBs are selected.

2.3. Data Collection. Three gene expressing profiling datasets
were downloaded from the NCBI GEO database (GSE30550,
GSE52428, and GSE2565). Probe sets from these datasets
lacking the corresponding gene symbols were ignored in our
analysis. The expression values of the probe sets that mapped
to the same gene were averaged. The diseases from the first
two datasets were two influenza strains, H3N2 and H1N1,
whereas the other one dataset was for acute lung injury.

The biological data GSE3055024 contained 17 healthy
subjects who received intranasal inoculations of influenza
H3N2/Wisconsin [15]. Nine of these 17 subjects developed
severe infection symptoms, and the other 8 subjects remained
in good health. Gene expression profiles were measured in
whole peripheral blood drawn from all subjects approxi-
mately every 8 hours postinoculation (hpi) through 108 hpi.
In total, 268 gene expression profiles were obtained for all
subjects at 16 time points, including baseline (−24 hpi). The
gene expression profiles of subject 8 at 21 hpi, subject 13 at
baseline and 36 hpi, and subject 17 at 36 hpi were missing.

The biological dataset GSE5242825 contained 24 healthy
subjects who received intranasal inoculations of influenza
H1N1/Brisbane [16]. 12 of these 24 subjects developed severe
infection symptoms and 11 subjects remained in good health.
One subject was excluded from all analyses because the
symptoms began late and were thought to be related to
infection acquired in the facility rather than from the
primary infection related to inoculation. Gene expression
profiles were measured as described for the biological dataset
GSE30550.

The biological dataset GSE256526 contained 6 control
samples (control group) and 6 case samples (case group)
[17]. CD-1 male mice were divided into two groups that were
exposed to air or phosgene. Lung tissues were collected from
air- or phosgene-exposed mice at 0.5, 1, 4, 8, 12, 24, 48, and 72
hours (h) after exposure.

3. Results

3.1. Statistical Characteristics near Critical Phase Transition.
In this paper, we focus on the following three statistical
indexes.

For the convenience of the following statements, we will
introduce some symbols and equations mentioned in the
“Methods”; that is,𝑑𝑌 (𝑡)𝑑𝑡 = Λ (𝑃) 𝑌 (𝑡) + 𝐺𝑑𝐵 (𝑡)𝑑𝑡 , (9)

where 𝑌(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡))𝑛 ∈ R𝑛, Λ(𝑃) ∈ R𝑛×𝑛,𝐺 ∈ R𝑛×𝑚, and 𝐵(𝑡) = (𝐵1(𝑡), 𝐵2(𝑡), . . . , 𝐵𝑚(𝑡))𝑇 are 𝑚-
dimensional standard Brownian motion.

In addition,𝑧𝑖 (𝑡) = 𝑛∑
𝑗=1

𝑠𝑖𝑗𝑦𝑗 (𝑡) + 𝑧∗𝑖 , 𝑖 = 1, 2, . . . , 𝑛, (10)
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where 𝑍 (𝑡) = (𝑧1 (𝑡) , 𝑧2 (𝑡) , . . . , 𝑧𝑛 (𝑡))𝑇 ∈ R
𝑛,𝑍∗ = (𝑧∗1 , 𝑧∗2 , . . . , 𝑧∗𝑛 )𝑇 ∈ R

𝑛,𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑠)𝑇 ∈ R
𝑠,𝑃∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑠 )𝑇 ∈ R
𝑠,𝑆 = (𝑠𝑖𝑗)𝑛×𝑛 ∈ R

𝑛×𝑛.
(11)

(1)The Coefficient of Variation CV. For a given variable𝑋, we
have the following equation for CV:

CV (𝑋) = √var (𝑋)𝐸 (𝑋) , (12)

where var(𝑋) and 𝐸(𝑋) are the variance and mean value for𝑋, respectively.

(2) Transformed Pearson’s Coefficient (TPC). As we know,−1 ≤ PCC(𝑋, 𝑌) ≤ 1, where PCC(𝑋, 𝑌) is Pearson’s
correlation coefficient (PCC) between the random variables𝑋 and 𝑌. To make it more effective in practice, we can define
an indicator with respect to PCC as follows:

TPC (𝑋, 𝑌) = − ln (1 − |PCC (𝑋, 𝑌)|) . (13)

(3) Transformed Probability Distribution (TPD). Obviously,𝑧𝑖 (𝑡) ∼ 𝑁 (𝜇𝑖 (𝑡) , (𝜎𝑖 (𝑡))2) , 𝑖 = 1, 2, . . . , 𝑛, (14)

where 𝜇𝑖 (𝑡) = 𝐸 (𝑧𝑖 (𝑡)) ,𝜎𝑖 (𝑡) = √var (𝑧𝑖 (𝑡)). (15)

Thus, the probability density of the random variable 𝑧𝑖(𝑡) is𝑝𝑖 (𝑥) = 1√2𝜋𝜎𝑖 𝑒−(𝑥−𝜇𝑖)/2𝜎2𝑖 . (16)

Then, we can define the indicator TPD as

TPD𝑖 ([𝑎, 𝑏]) = − ln(∫𝑏
𝑎
𝑝𝑖 (𝑠) 𝑑𝑠) , (17)

where 0 < 𝑎 < 𝑏.
The theoretical results for these indicators are presented

in parts below.

Coefficient of Variation (CV). According to the definition
of CV, we can consider case 1 described in Supplementary
Information A1 for which Λ is diagonal.

Theorem 1. Suppose that Λ in (9) is diagonal; then

lim
𝑡→+∞

lim
𝑃→𝑃∗

CV (𝑧𝑖 (𝑡)) = {{{+∞ 𝑠𝑖1 ̸= 0,
A finite number 𝑠𝑖1 = 0. (18)

Proof. A detailed proof is given in Supplementary Infor-
mation A2.1.

We recall that 𝑧𝑖(𝑡) = ∑𝑛𝑗=1 𝑠𝑖𝑗𝑦𝑗(𝑡) + 𝑧∗𝑖 , 𝑖 = 1, 2, . . . , 𝑛.𝑠𝑖1 ̸= 0 implies that 𝑧𝑖 = ∑𝑛𝑙=1 𝑠𝑖𝑙𝑦𝑙(𝑡) + 𝑧∗𝑖 is related to
the dominant eigenvalue. 𝑠𝑖11 ̸= 0 and 𝑠𝑖21 = 0 mean that𝑧𝑖1 = ∑𝑛𝑙=1 𝑠𝑖1𝑙𝑦𝑙(𝑡) + 𝑧∗𝑖1 may lead to the critical transition and𝑧𝑖2 = ∑𝑛𝑙=2 𝑠𝑖2𝑙𝑦𝑙(𝑡) + 𝑧∗𝑖2 may not lead to the critical transition.
For the convenience to discuss in the following sections, we
denote 𝑧𝑖1(𝑡) and 𝑧𝑖2(𝑡) as a biomarker and a nonbiomarker,
respectively. Then, we can prove the following corollary.

Corollary 2. As the parameter 𝑃 approaches the bifurcation
value 𝑃∗, that is, the system is close to the critical transition,

(1) there are no drastic changes for the coefficient of
variation CV of nonbiomarkers;

(2) the coefficient of variation CV for biomarkers is much
larger than the coefficient of variation CV for non-
biomarkers;

(3) the coefficient of variation CV for biomarkers drasti-
cally increases.

Proof. A detailed proof is given in Supplementary Informa-
tion A2.1.

Transformed Pearson’s Correlation Coefficient (TPC). Accord-
ing to the definition of TPC, we can derive the following
theorem.

Theorem 3. Suppose that Λ in (9) is diagonal; then

lim
𝑡→+∞

lim
𝑃→𝑃∗

TPC (𝑧𝑖 (𝑡) , 𝑧𝑗 (𝑡))
= {{{{{{{{{

+∞ 𝑠𝑖1 ̸= 0, 𝑠𝑗1 = 0,0 𝑠𝑖1 = 0, 𝑠𝑗1 = 0,
A finite number 𝑠𝑖1 = 0, 𝑠𝑗1 = 0.

(19)

Proof. A detailed proof is given in Supplementary Informa-
tion A2.2.

Based onTheorem3,we can prove the following corollary.

Corollary 4. As the parameter 𝑃 approaches the bifurcation
value 𝑃∗,

(1) there are no drastic changes for the indicator TPC
between nonbiomarkers;

(2) the indicator TPC between biomarkers is much larger
than TPC between nonbiomarkers;

(3) the indicator TPC between a biomarker and a non-
biomarker is much smaller than TPC between non-
biomarkers;

(4) the indicator TPC between biomarkers drastically
increases.
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Table 1: DNBs for H3N2, H1N1, and lung with respect to the indicators CV, TPC, and TPD.

Data for diseases Number for CV Number for TPD DNBs

H3N2 264 116

22
APOL6, CASP1, CNP, CXCL10, DHX58, DRAP1,
DYNLT1, FAM46A, GEMIN4, GORASP1, IFITM1, IRF7,
PLSCR1, RTP4, SAMD9, SAMHD1, SIGLEC1, TAF1C,
TLR7, TNFAIP6, TREX1, ZBP1

H1N1 32 6

22
ACP6, BTG1, CCNA1, DDX18, DKC1, H2AFV,
HMGN1, IRF7, ITK, LAX1, NPAT, NR2C1,
NUCB1, PFN2, POLR1C, RBM4B, RPS2, SEPT4,
SLBP, SP110, STMN1, VPRBP

Lung 34 104

60
Abcd3, Actn1, Adcy8, Adss, Anxa1, Aplp2,
Aqp1, Atp6v1d, Capn1, Clstn1, Csf1r, Dapk1,
Ddx39, Ensmusg00000050347, Ereg, Faf1, Fzd2, G6pd2,
Gimap4, Glrx, Gnb1, Gp49a, Grem2, Gtf2i,
H1f0, Hhip, Hist2h2bb, Hnrnpd, Hprt1, Htra1,
Kcnq1, Klhl13, Lox, Lrg1, Macf1, Mcee,
Mmp19, Nagk, Ncl, Nr2f6, Nrp1, Phlpp,
Pla2g15, Prelp, Prpf40a, Psma1, Psma7, Psmb5,
Psmc3, Psmd13, Psmd4, Psme4, Rad17, Rad23b,
Sin3b, Stxbp1, Thbs3, Tjp2, Ulk2, Wbp1

Proof. A detailed proof is given in Supplementary Informa-
tion A2.2.

Transformed Probability Distribution (TPD). According to the
definition of TPD, we haveTheorem 5.

Theorem 5. Suppose that Λ in (9) is diagonal; then

lim
𝑡→+∞

lim
𝑃→𝑃∗

TPD𝑖 ([𝑎, 𝑏])
= {{{+∞ 𝑠𝑖1 ̸= 0,

A finite number 𝑠𝑖1 = 0, (20)

where 0 < 𝑎 < 𝑏.
Proof. A detailed proof is given in Supplementary Informa-
tion A2.3.

Similarly, we can easily obtain the corresponding corol-
lary.

Corollary 6. As the parameter 𝑃 approaches the bifurcation
value 𝑃∗,

(1) there are no drastic changes for the indicator TPD of
nonbiomarkers;

(2) the indicator TPD for biomarkers is much larger than
TPD for nonbiomarkers;

(3) the indicator TPD for biomarkers drastically increases.

3.2. Results for Predicting DNBs in Real Datasets for Complex
Diseases. Three real datasets for complex diseases, that is,
H3N2, H1N1, and acute lung injury, respectively, are used to
illustrate the above theoretical results. According to the steps
proposed in the above part “Method for Identifying Dynami-
cal Network Biomarkers (DNBs) for ComplexDiseases Based
on Real Data,” we calculate three indicators CV, TPD, and
TPC for these datasets. The obtained DNBs are listed in
Table 1. The second column 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑜𝑟 CV and third
column 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑜𝑟 TPD represent the numbers of proteins
chosen byCV andTPD, respectively.The last column denotes
the final selected DNBs by combining CV, TPC, and TPD. In
the following, we only present the application on the dataset
of the complex disease H3N2 as an example. The detailed
descriptions of the results on the other two datasets H1N1
and lung are given in Figures S1–S9 and Figures S10–S17 in
Supplementary Information B, respectively.

To further present the results for the H3N2, the change
curves of two indicators CV and TPD for the chosen 22
proteins are depicted in Figures 1 and 2, respectively. From
these two figures, we can observe that as the critical transition
occurs, that is, the time evolves towards 𝑡 = 45 h (see the
vertical black line), the CV and TPD for 22 proteins above
are significantly increasing in the symptomatic group. But
they have no obvious change in the asymptomatic group.
Therefore, these 22 proteins can be viewed as DNBs for early-
warning signals.

To explore the biological link between arbitrary two
proteins, the analysis for the indicator TPC is implemented
on these identified DNBs according to the coefficient of
variation CV using the gene expression datasets, respectively.
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Figure 1: The change of the coefficient of variation CV for 22 proteins: APOL6, CASP1, CNP, CXCL10, DHX58, DRAP1, DYNLT1, FAM46A,
GEMIN4, GORASP1, IFITM1, IRF7, PLSCR1, RTP4, SAMD9, SAMHD1, SIGLEC1, TAF1C, TLR7, TNFAIP6, TREX1, and ZBP1. The 𝑥-axis
denotes the time (unit: h). It indicates that as the critical transition occurs, that is, the time evolves towards 𝑡 = 45 h (see the vertical black
line), the coefficient of variation CV for 22 proteins above significantly increases in the symptomatic group and has no obvious change in the
asymptomatic group. Therefore, these 22 proteins can be viewed as DNBs for early-warning signals.

Figure 3 shows the change of the indicator TPC of a small
part of the protein pairs from the DNBs from Figure 1 for the
disease H3N2. The TPC of other protein pairs for H3N2 is
presented in Supplementary Information B. It is obvious that
the identifiedDNBs form a strongly correlated subnetwork to
provide the significant warning signal near the critical state
(45 h).

From Figures 1–3, it is easy to find that during the
predisease state, for DNBs, there are significant differences
between the members of the symptomatic group and those
of the asymptomatic group which behave in a considerably
different manner in terms of three indicators CV, TPD, and
TPC that are theoretically derived. However, after the system

is driven into the disease state, interestingly the members of
both the symptomatic group and the asymptomatic group
appear to behave in a manner similar to each other (see the
curve after the time 𝑡 = 45 h). Therefore, we can conclude
that during the normal state and the disease state, for each
protein, the stochastic behaviors for the symptomatic group
and the asymptomatic group display similarity. Then, the
significant differences for the stochastic behaviors for the
symptomatic and asymptomatic groups of DNBs only occur
during the predisease state. From this statement, we know
that the stochastic signals, such as the indicators CV, TPD,
and TPC, make sense for predicting the impending critical
transition.
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Figure 2: The change of the indicator TPD for 22 proteins: APOL6, CASP1, CNP, CXCL10, DHX58, DRAP1, DYNLT1, FAM46A, GEMIN4,
GORASP1, IFITM1, IRF7, PLSCR1, RTP4, SAMD9, SAMHD1, SIGLEC1, TAF1C, TLR7, TNFAIP6, TREX1, and ZBP1. The 𝑥-axis denotes the
time (unit: h). It indicates that as the critical transition occurs, that is, the time evolves towards 𝑡 = 45 h (see the vertical black line), the
indicator TPD for 22 proteins above significantly increases. Therefore, these 22 proteins can be viewed as DNBs for early-warning signals.

3.3.The Criteria to Predict DNBs in Real Datasets for Complex
Diseases. Through theoretical analysis presented in Corol-
laries 2, 4, and 6 in Section 3.1, we obtain three statistical
indicators CV, TPC, and TPD that can distinguish the
biomarkers from nonbiomarkers. To validate the theoretical
results, we calculate these three indicators for three real
datasets. Figures 1–3 demonstrate that these three indicators
can clearly distinguish the biomarkers and nonbiomarkers
when they reach the predisease state. These results can help
us to detect the early-warning signals for complex diseases.
From Figures 1–3, we can also observe that three indicators
exhibit different behaviors after critical transition.That is, the
values of the indicators CV andTPConly display a peak at the
critical transition point (see 𝑡 = 45 h) while the value of the

indicator TPD keeps a high value after the critical transition
compared to the value before the critical transition (see𝑡 = 45 h). We can give their explicit explanations intuitively
from the perspectives of the qualitative theory of ordinary
differential equations and statistics. First, far before 𝑡 = 45 h,
the system is in the normal state or in an asymptomatically
stable state from the perspective of the ordinary differential
equation.That is, there exist only stablemanifolds, or the state
has strong attraction or strong robustness. In statistics, this
corresponds to the phenomenon that the system fluctuates
weakly. Thus, in this state, the fluctuation is weak. Just far
after 𝑡 = 45 h, the system is in the disease state or in another
asymptomatically stable state. Due to the same reason, in
this state, the fluctuation is weak. However, at the bifurcation
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Figure 3:The change of the indicator TPC for 23 protein pairs: APOL6-CNP, APOL6-DRAP1, APOL6-DYNLT1, APOL6-GORASP1, APOL6-
IFITM1, APOL6-PLSCR1, APOL6-SAMD9, APOL6-TNFAIP6, APOL6-TREX1, APOL6-ZBP1, CASP1-FAM46A, CASP1-GORASP1, CASP1-
SAMHD1, CASP1-TLR7, CXCL10-DYNLT1, CXCL10-GORASP1, CXCL10-TNFAIP6, DHX58-GEMIN4, DHX58-GORASP1, DHX58-RTP4,
DHX58-SAMD9, DHX58-SAMHD1, and DHX58-SIGLEC1. The 𝑥-axis denotes the time (time: h).

point, the center manifold occurs. Thus, near 𝑡 = 45 h or
in the predisease state, compared with the normal state or
the disease state, the system is in a less stable state and has
weaker attraction?Thus, in this state, the fluctuation becomes
stronger (before 𝑡 = 45 h) or becomes weaker (after 𝑡 = 45 h).
In addition, this kind of phenomenon is verified bymany real
experiments.

Second, in fact, the indicator TPC(𝑋, 𝑌) = −(1 −|PCC(𝑋, 𝑌)|) describes the linear correlation relationship
between two random variables 𝑋 and 𝑌 or the similarity
relationship between two random variables. Far before 𝑡 =45 h, the system is in the normal state or in an asymptomat-
ically stable state. In this state, each element of the state
variable has different recovery rate, and thus the similarity

of their behaviors is weak. Correspondingly, in statistics,
the linear correlation relationship is weak. Similarly, we can
understand the case in the disease state or after 𝑡 = 45 h.
However, near 𝑡 = 45 h or in the predisease state, the
dominant eigenvalue is the largest eigenvalue for the Jacobian
matrix and often is unique. As we know, the biomarkers
are related to the dominant eigenvalue, and their recovery
rate can be described by the dominant eigenvalue. Thus, the
behaviors of the biomarkers are similar.Thus, in this state, the
linear correlation relationship becomes stronger and stronger
(before 𝑡 = 45 h) or becomes weaker (after 𝑡 = 45 h). In
addition, this kind of phenomenon is verified by many real
experiments.
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Third, as mentioned above, we know that

TPD𝑖 ([𝑎, 𝑏]) = − ln(∫𝑏
𝑎
𝑝𝑖 (𝑠) 𝑑𝑠) , (21)

where 𝑝𝑖(⋅) is the probability density of the random variable𝑧𝑖(𝑡) and 𝑎, 𝑏 can be taken as the maximum and minimum
values of the real data at the initial time instant. We know
that the critical transition can be understood as the fact that
the system state abruptly switches from one asymptotically
stable equilibrium to another one at a critical threshold
as the complex disease evolves. In general, we can think
that the asymptotically stable equilibrium corresponds to a
probability distribution in statistics. Far before 𝑡 = 45 h, the
system state is stable keeping the value between themaximum
value and the minimum value due to the weak fluctuations,
and thus the indicator displays little change. As the critical
transition occurs (before 𝑡 = 45 h), the values of some
of the proteins gradually evolve beyond the interval [𝑎, 𝑏]
due to the stronger and stronger fluctuations, and then the
indicator TPD becomes larger and larger. After 𝑡 = 45 h or
in the disease state, the values of the biomarkers are all not
in the interval [𝑎, 𝑏]. That is, in this state, the system state is
another asymptotically stable state. Because this attractor is
asymptotically stable, the values of biomarkers cannot return
to the interval [𝑎, 𝑏]. Thus, after [𝑎, 𝑏], the indicator TPD
displays little change and always keeps a high value.

3.4. Functional Analysis of DNBs. To verify the biological
significance of the DNBs identified by our method, DAVID
was used to carry out functional enrichment analysis, respec-
tively, for the three diseases [27]. The results of function
annotation for three datasets showed that the DNBs were sig-
nificantly enriched in diseases-related biological processes. In
H3N2 infection, someDNBs are involved in defense response
(e.g., SIGLEC1, TNFAIP6, IRF7, SAMHD1, TLR7, DHX58,
and CXCL10) and inflammatory response (e.g., SIGLEC1,
TNFAiP6, IRF7, TLR7, and CXCL10). In H1N1 infection,
4 DNBs (SEPT4, NPAT, STMN1, and CCNA1) participate
in cell cycle. In the lung injury study, we found that 2
DNBs (Erge and Aplp2) are associated with the regulation
of epidermal growth factor receptor activity and epidermal
growth factor receptor signaling pathway. At the pathway
enrichment level, some pathways were also highly related
to complex diseases. For example, for H3N2 influenza, 5
of 22 DNBs (IRF7, TREX1, CASP1, ZBP1, and CXCL10) are
observed in the cytosolic DNA-sensing pathway, which plays
an important role in initiating innate immunity and adap-
tive immunity [28]. In addition, another two significantly
enriched pathways include RIG-I-like receptor signaling
pathway with 3 DNBs (IRF7, DHX58, and CXCL10) and Toll-
like receptor signaling pathway with 3 DNBs (IRF7, TLR7,
and CXCL10). For H1N1 influenza, 2 DNBs (IRF7, POLR1C)
are also observed in the cytosolic DNA-sensing pathway. For
acute lung injury, 7 DNBs (Psmb5, Psma1, Psmd13, Psmc3,
Psmd4, Psme4, and Psma7) are observed in the pathways
of regulating by proteasome mediated degradation, which
played a key role in regulating many processes of cellular
biology [29, 30].

4. Discussion and Conclusions

To detect the predisease state of complex diseases or identify
DNBs, we analyzed a series of statistic indicators, such as
CV, TPC, and TPD. Although the previous works relevant
to DNBs have proposed how to detect the predisease state of
complex diseases by using the statistical methods [8, 22, 31],
the rigorous mathematical derivation is not given and the
networks based on real data are needed to be constructed. In
our viewpoints, we improved the mathematical approaches
by using a continuous-time dynamical system. Based on
a general dynamical model, we theoretically derive the
statistical indicators to detect specific early-warning signals
for the predisease state to complex diseases. Furthermore,
we have also conducted numerical experiments to identify
the DNBs based on high-throughput data for three complex
diseases.The function analysis verified themeaningfulness of
the detected DNBs. In our paper, some statistical indicators,
such as skewness and kurtosis, are not theoretically analyzed
[10, 14]. It does not mean that the skewness and kurtosis are
not statistical characteristics which are useful for us to detect
early-warning signals. The analysis whether they can be used
as indicators would be important topic in the future.
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