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Abstract

To assess the relative impact of inherited and de novo variants on autism risk, we generated a 

comprehensive set of exonic single nucleotide variants (SNVs) and copy number variants (CNVs) 

from 2,377 autism families. We find that private, inherited truncating SNVs in conserved genes 

are enriched in probands (odds ratio=1.14, p=0.0002) compared to unaffected siblings, an effect 

with significant maternal transmission bias to sons. We also observe a bias for inherited CNVs, 

specifically for small (<100 kbp), maternally inherited events (p=0.01) that are enriched in CHD8 

target genes (p=7.4×10−3). Using a logistic regression model, we show that private truncating 

SNVs and rare, inherited CNVs are statistically independent autism risk factors, with odds ratios 

of 1.11 (p=0.0002) and 1.23 (p=0.01), respectively. This analysis identifies a second class of 
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candidate genes (e.g., RIMS1, CUL7, and LZTR1) where transmitted mutations may create a 

sensitized background but are unlikely to be completely penetrant.

INTRODUCTION

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder diagnosed in 

approximately 1/88 children 1 and manifests as deficits in social behavior and language 

development, as well as restricted or stereotyped interests. ASD is highly heritable with 

consensus estimates suggesting that ~50–60% of ASD etiologies are genetic in origin 2,3. In 

particular, de novo mutations have been implicated as an underlying genetic cause in autism, 

and these mutations have provided a rich source for understanding pathogenic genes and 

neurobiological mechanisms of ASD 4–10. However, de novo mutations are rare, and 

previous work suggests that they could account for the development of ASD in only 25–

30% of cases 9, a fraction of the cases likely to be genetic. This suggests that other genetic 

factors contribute to ASD, including both rare and common inherited genetic variation 2,11.

Previous reports have put forward genetic models for ASD in which rare, inherited copy 

number variants (CNVs) or disruptive single nucleotide variants (SNVs) are 

disproportionally inherited by affected probands when compared to their unaffected 

siblings 11–16. Specifically, it has been posited that autism risk factors must exist that are 

essentially non-penetrant in females but that are transmitted preferentially to affected sons. 

While CNVs show some evidence of this 12,17, conclusive evidence from SNVs has been 

lacking 18. We sought to test this by reanalyzing exome sequence data from a family-based 

study design, where there are sequence data from a single autism proband, unaffected 

sibling, and both parents. Our goals were to assess and quantify this SNV transmission 

disequilibrium, identify potential candidate ASD risk genes, and integrate both inherited and 

de novo factors to create a unified ASD risk model for rare, disruptive SNV and CNV 

mutations.

RESULTS

SNV discovery and quality control

In order to generate a standard callset of inherited variants for analysis, we reprocessed 

8,917 exomes sequenced at three different genome centers 4,5,7–9. The set includes 2,377 

families from the Simons Simplex Collection (SSC)—of which 1,786 consisted of exome 

sequence data from both parents, an affected child, and unaffected sibling (referred to here 

as “quads”). Combined, we identified a total of 1,303,385 transmitted variants called by both 

GATK HaplotypeCaller and FreeBayes and passing our quality filters (Table 1, Online 

Methods). Of these, 31% of the variants were not observed in dbSNP (v137). As a quality 

control, we generated a principal component analysis (PCA) of the transmitted variants and 

compared to the self-identified ethnicity of the samples (Supplementary Figure 1). As 

expected, the number of rare variant alleles in probands and siblings were highly correlated 

(Figure 1a, r2 = 0.99) with no significant difference in heterozygosity being observed 

between proband and sibling (Figure 1b). Using the FreeBayes and GATK intersection set, 

we found a median of 23,055 transmitted variants per exome for probands and siblings 
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(Figure 1c; 95% Confidence Interval [CI] 15,885–27,845). A median of 377 (95% CI 154–

692) sites per family were novel and not observed in dbSNP (v137); conversely, a median of 

98.6% of sites were in dbSNP and 99.7% of those were in agreement with respect to the 

alternate allele. The intersection set of variants had a median Ti/Tv ratio of 2.94 (95% CI 

2.79–3.03) for all sites, 2.95 (95% CI 2.83–3.04) for dbSNP sites, and 1.94 (95% CI 1.05–

2.75) for novel sites. In addition, we compared SNPs from exome calls with SNP calls from 

existing Illumina single nucleotide polymorphism (SNP) microarray data 19 (Sanders 

personal communication) and found the median genotype-level concordance to be 99.4% 

(for a median of 17,731 overlapping SNPs in 3,052 offspring in 1,796 families for which 

microarray data was available).

Although discovery of de novo events was not the primary goal of this study, our use of 

independent SNV callers allowed us to identify additional de novo mutations (Table 2). Our 

reanalysis pipeline predicted 1,544 de novo SNVs not previously reported (Supplementary 

Table 1). We selected a subset of 141 events for Sanger-based validation because they 

represented either new recurrences or likely gene-disruptive (LGD) events. Of these new 

sites, 55% (77) confirmed as de novo as well as an additional 132 events that had been 

called but not confirmed in previous studies (Supplementary Table 2). Post hoc analysis 

using three different classifiers (support vector machine (SVM), decision tree and random 

forest) suggested that the proband’s allele balance was the best individual predictor of de 

novo variant validation and that classification models could accurately predict which events 

would be most likely to validate (Supplementary Figure 2 and Online Methods). 

Extrapolating the proband’s allele balance across all untested candidate variants in probands 

(n = 771) suggests that there are 463 (60%) additional true de novo variants in probands (at 

an allele balance cutoff > 0.3); similarly, the predictions generated by the random forest 

model suggest 445 (58%) additional de novo variants in probands would validate.

After validation, we identified 21 novel recurrently hit genes (Table 2). Notably, these 

validated mutations established recurrent de novo mutations for GIGYF2 and SSPO (a brain-

secreted protein involved in axon growth) as well as added a new LGD mutation to GIGYF1 

and ASH1L for a total of three LGD de novo mutations each.

SNV transmission disequilibrium

We tested for transmission disequilibrium between probands and siblings using Fisher’s 

exact and Mann-Whitney U tests and by logistic regression (where the dependent variable 

was the presence of a variant found in a proband or sibling). We considered only transmitted 

variants reported using both FreeBayes and GATK and defined private events as those 

unique to a single family. When considering all rare or private protein-altering mutations 

(LGD + missense) together, we observed no statistically significant difference in the overall 

burden between proband and sibling. Under the assumption that LGD mutations in genes 

intolerant to deleterious mutations would be more likely to be pathogenic, we repeated the 

analysis using residual variation intolerance score (RVIS) values 20,21. Restricting our 

analysis to private LGD mutations in genes in the lower 50% of RVIS values, we observed a 

significant enrichment in probands when compared to siblings (OR = 1.14, p = 0.0002, 

Fisher’s exact test) and at a family level (p < 0.0001, two-tailed paired t-test; Figure 2a).
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This signal persists for all LGD mutations in genes (regardless of frequency) with RVIS 

values < 50% (OR = 1.06, p = 0.03, Fisher’s exact test; p = 0.02, two-tailed paired t-test). 

Furthermore, the RVIS was a significant predictor of proband or sibling inheritance in a 

logistic regression model built on all LGD mutations (p = 0.028, OR = 1.01 per RVIS 

percentage point). As suggested by this model, the burden of private LGD mutations in 

genes with progressively lower RVIS values continues to increase (Figure 2b). At the 

extreme, the burden between probands and siblings in genes with the lowest 1% of all RVIS 

values reaches an odds ratio of 1.4 (although this comparison is not statistically significant 

due to the small number of mutations present at this threshold in the current dataset). When 

we examined the fraction of probands and siblings that inherited LGD SNVs in highly 

conserved genes (RVIS < 10th percentile), we found that 50.6% of probands (903/1,786 

quads) and 47.9% of siblings (855/1,786 quads) contained such events, respectively, a 

difference of 2.7%. Finally, we performed extensions of the rare variant-transmission 

disequilibrium test (RV-TDT) 22 at the individual gene level comparing transmission of rare 

variants to probands and siblings within the SSC families. Several promising candidate 

genes emerged (Supplementary Table 3) although none survived a multiple-testing 

correction (Online Methods).

We considered the relationship between the set of private LGD mutations in RVIS-restricted 

genes and phenotypic features of the SSC families (Figure 3). First, we examined how 

inherited burden correlated with the overall clinical diagnosis. For the 1,575 probands with a 

diagnosis of “autism” or “pervasive developmental disorder” (PDD), the odds ratio was 1.15 

and 1.18 (p = 0.001 and 0.05), respectively. In contrast, probands (n = 205) with a diagnosis 

of “Asperger’s” showed a lower odds ratio of 1.04 (p > 0.7; Figure 3a) for inherited gene-

disruptive mutations. Consistent with this, we found that probands with full-scale IQ 

between 70–100 had an odds ratio of 1.18 (p = 0.002), whereas those with an IQ above 100 

had a lower, non-significant odds ratio of 1.06 (Figure 3b). For probands in the SSC, IQ and 

clinical diagnosis are weakly correlated (Supplementary Figure 3; r2 = 0.18, p < 1×10−10), 

but we note that burden of private LGD mutations in RVIS-restricted genes in probands 

depends on both IQ and clinical diagnosis: for probands diagnosed with “autism” or “PDD” 

and a full-scale IQ above the median for the SSC probands at large (IQ = 84), the odds ratio 

was 1.1, while burden for “Asperger’s” probands of similar IQ was 1.03. Similarly, the odds 

ratio of this burden for probands with “autism” and IQ above 100 was 1.19, while that for 

“PDD” and “Asperger’s” at this threshold was less than 1 (Supplementary Table 4).

Our previous work with CNVs suggested that simplex families could be distinguished into 

two groups depending on their overall Social Responsiveness Scale (SRS) T-scores 23. 

Probands and siblings with very different SRS scores (“discordant SRS sib-pairs”) should 

show stronger transmission disequilibrium when compared to unaffected siblings showing 

elevated ASD symptomatology (“concordant SRS sib-pairs”; see Online Methods). Using 

our previous threshold definitions (see 12), we observed a stronger proband-sibling 

differential of 3.7% for private LGD SNVs in conserved genes (RVIS < 10) for SRS 

discordant quads only (484 probands with events of 923 discordant quads, siblings 450/923), 

while SRS concordant quads had only a 1.6% differential (probands 419/863 and siblings 

405/863).
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CNV discovery and validation

Because exome and SNP microarray data provide the opportunity to accurately detect a 

subset of smaller CNVs within exonic regions of genes 12, we also revisited the burden of 

both inherited and de novo CNVs with respect to autism. We characterized CNVs from 

1,266 quads with available SNP microarray data (validation shown in Supplementary Figure 

4) and tested an additional 50 samples with CNVs of interest by array comparative genomic 

hybridization (CGH). We focused in particular on validating smaller CNV events that 

affected genes recurrently hit by de novo SNVs, such as DSCAM, CHD2, ARID1B and 

TNRC6B (Supplementary Table 5). We identified a total of 2,891 CNVs with an excess of 

autosomal proband events compared to siblings (854 vs. 743; OR = 1.25, p = 0.006, 

binomial two-sided test). The overall ratio of duplications to deletions was 1.6, consistent 

with previous results for a smaller SSC dataset 12. Restricting the analysis to de novo CNVs, 

we identified, as expected, a more significant 2.4-fold excess (p = 6.7×10−5, paired t-test) in 

probands (n = 79) when compared to siblings (n = 33) driven primarily by deletions (p = 

4.2×10−5, paired t-test) and not duplications (p = 0.18, paired t-test) (Table 3). Overall, de 

novo CNVs were larger in probands than in siblings (p = 0.03, Wilcoxon) and carried genes 

with significantly lower total RVIS values (p = 0.02, Wilcoxon). Both FMRP and CHD8 

targets were enriched in de novo CNVs (OR = 3.1, p = 6.6×10−4 and OR = 2.7, p = 

1.7×10−3, Fisher’s exact test and p=1.4×10−4 and p=2.6×10−4, paired t-test, respectively) 

and this is likely due, in part, to the larger size of de novo events among probands.

The validated, inherited CNV dataset (frequency < 0.8%) consisted of a total of 1,485 events 

(n = 775 in probands, n = 710 in siblings) from 1,266 quads. We replicated the previously 

reported 12 transmission disequilibrium of CNVs to probands when compared to siblings (p 

= 0.03, paired t-test). This effect was driven almost exclusively by smaller (<100 kbp) 

maternally inherited events (p = 0.01, paired t-test). In contrast to de novo events, there was 

no difference in size of CNVs transmitted in probands versus those in siblings (p = 0.59, 

Wilcoxon). Similar to our observations of SNV mutations in conserved genes, we found that 

genes within proband CNV intervals had a borderline significantly lower average RVIS (p = 

0.05, Wilcoxon).

In order to more fully understand the potential biology of these inherited CNV events, we 

tested if the CNVs were enriched in either FMRP 24 or CHD8 targets 25. Although no 

overall enrichment of FMRP (p = 0.22) or CHD8 (p = 0.19) targets was observed among 

inherited CNVs, when we restricted the analysis to maternally inherited duplications a 

significant enrichment was observed for CHD8 targets (OR = 1.5, p = 0.02, Fisher’s exact 

test, p = 3.9×10−3, paired t-test). In particular, this enrichment was strongest for small 

duplications (<100 kbp) (OR = 1.5, p = 0.05, Fisher’s exact test, p = 7.4×10−3, paired t-test). 

Since truncating mutations of CHD8 have been associated with a subtype of autism 

characterized by macrocephaly 26, we tested whether patients carrying CNVs that 

intersected CHD8 target genes showed any deviation in head circumference. We specifically 

stratified the patient population into two groups: those containing a maternally inherited 

CNV with a CHD8 target and those that have a maternally inherited CNV without a CHD8 

target. We then tested whether or not there was an enrichment of macrocephalic or 

microcephalic patients in CNV carriers of CHD8 targets. Interestingly, we observed a 
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modest enrichment for macrocephaly in maternally inherited autosomal deletions containing 

CHD8 targets (OR = 2.9, p = 0.03, Fisher’s exact test), including smaller deletions (<100 

kbp, OR = 3.5, p = 0.04, Fisher’s exact test). The reciprocal was also observed with 

borderline significance for microcephaly in maternally inherited autosomal duplications 

containing CHD8 targets (OR = Inf, p = 0.04, Fisher’s exact test) (Supplementary Figure 5). 

As a control, we repeated the same analysis for inherited CNVs carrying FMRP targets, 

which we did not expect to have any relevance for head circumference and found no 

statistical enrichment for targets and head size.

SNV and CNV integration and gender bias

We jointly examined SNVs and CNVs at a gene level in order to identify potentially new 

ASD candidate genes (Supplementary Table 6). Based on our findings, we considered all de 

novo CNVs, private, inherited SNVs in genes with an RVIS lower than 50%, and rare, 

inherited CNVs where at least one gene had an RVIS lower than 50%; we then created a 

combined gene-level table identifying several candidate genes. In particular, the three 

highest ranked genes—RIMS1, CUL7 and CSMD1—each display brain-specific patterns or 

have identified neural functions (Supplementary Figure 6). The highest ranked gene, RIMS1, 

has two de novo LGD mutations and two private LGD-inherited mutations in probands. 

Additionally, there were six rare, inherited LGD mutations in probands (two are shared with 

siblings and one is found in a trio), and one mutation found in a sibling alone. CUL7 has two 

de novo and two LGD-inherited mutations in probands (none in siblings). Finally, CSMD1 

has three de novo missense mutations in probands, four LGD SNVs (one is shared with a 

sibling and one is found in a trio), and five rare, inherited CNVs (where one is shared with a 

sibling and one is found in a trio).

We quantified the risk for ASD by examining de novo and inherited CNVs and SNVs using 

a conditional logistic regression model (Figure 4; see Online Methods). In this model, the 

binary outcome of an ASD proband or unaffected sibling is predicted by four independent 

counts: 1) the number of de novo CNVs, 2) the number of LGD de novo SNVs, 3) the set of 

rare, inherited CNVs, and 4) the set of private LGD-inherited SNVs in genes in the lower 

50% percentile of RVIS values (Supplementary Table 6). Additionally, we accounted for 

familial stratification effects by adding a family-level stratum to the model. Using data from 

the 1,786 quads, we found robust effects for de novo events (Supplementary Table 7): each 

de novo CNV increased the risk for ASD by 2.05-fold, while each de novo SNV increased 

risk by 1.72-fold (p = 0.0004 and p < 1 ×10−7, respectively). In addition, the results from 

this analysis reveal a significant role for inherited mutations in ASD risk: rare, inherited 

CNVs contribute an increased risk of 1.23 (p = 0.01), and private LGD SNVs have an odds 

ratio of 1.11 (p = 0.0002). These results suggest that each of the four types of mutations 

modeled additively contribute to the risk of ASD and that they do so in a statistically 

independent manner.

Finally, by calculating the attributable fraction in the population (Supplementary Figure 7), 

we were able to identify the contribution of each variant type as follows: de novo LGD 

SNVs (6.62% [4.18%, 8.99%]), private, inherited LGD SNVs (8.54% [−24.23%, 32.66%]), 

de novo CNVs (2.92% [1.37%, 4.44%]), and rare, inherited CNVs (3.18% [−3.71%, 9.6%]). 
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Whereas these values give high confidence for de novo events, the inherited events are less 

clear. By stratifying by inheritance and RVIS for private, inherited LGD SNV events, the 

results become much tighter and show a clear contribution for maternal events (7.15% 

[−0.25%, 14.01%]) and not for the paternal events (1.01% [−6.56%, 8.04%]). The same was 

found for maternal duplications (2.99% [−0.45%, 6.31%]) especially those under 100 kbp 

(2.65% [−0.16%, 5.38%]).

Specifically, we extended the work to investigate the role of maternally transmitted events to 

males and females. First, we assessed the attributable fractions in all quad families and 

subsequently in male proband and separately female proband quads. For the LGD SNVs, we 

were able to identify the maternally private, inherited LGD SNVs with RVIS < 50 as the 

category with the highest attributable fraction (estimated) in the population (8.32% [0.56%, 

15.48%]) in the male proband families whereas the female proband families had a value of 

−2.33% [−29.06%, 18.87%] in this same category. No effect was observed for paternally 

inherited LGD events. This is in stark contrast to de novo LGD events, which contribute to 

5.7% [−2.26%, 13.04%] of the attributable fraction in females (Supplementary Figure 7). 

While larger sample sizes will be required, these findings are consistent with the maternal 

bias observed for large and small CNVs and now extend the observation to maternal SNVs. 

To further examine this difference, we examined all four possible quad types based on 

gender: male proband / male sibling, male proband / female sibling, female proband / male 

sibling, and female proband / female sibling. These observations for maternal LGD SNVs 

held true regardless of sibling gender (Supplementary Figure 7, Supplementary Table 8) 27.

DISCUSSION

In this study, we have explored the effect of rare, inherited variation on the risk of autism. 

Our results provide some of the first genetic evidence that private, inherited SNVs that 

truncate proteins are enriched in autism probands. Remarkably, this effect is only observed 

for truncating SNVs that disrupt genes intolerant to functional variation and shows bias in 

transmission from mothers to their sons. The effect becomes more pronounced the more 

intolerant the gene is to mutation consistent with the notion that such genes are subject to 

strong selective pressure. While the effect is strongest for individuals with a diagnosis of 

autism, it is most significant for SRS-discordant quads and probands with an IQ between 70 

and 100. Extending previous work 12–14 on the role of rare, inherited CNVs, we report that 

smaller maternally inherited duplications show the largest bias towards transmission to 

probands, and these duplications are enriched for gene targets of CHD8. The reciprocal shift 

in macrocephaly and microcephaly when comparing CHD8 target gene duplications and 

deletions, respectively, is intriguing but warrants further investigation. In addition, the 

application of two SNV callers identified 77 additional de novo SNVs previously missed 9. 

The recurrent hits highlight potentially new pathways such as the insulin-like growth factor 

protein-interaction network (Figure 5). This is interesting because variable levels of IGF1 

are considered a biomarker of autism 28 and are of potential therapeutic relevance 29.

In some cases, inherited and de novo mutations of both SNVs and CNVs converge on the 

same gene (Supplementary Table 6). RIMS1 has been previously suggested as an ASD 

candidate as a result of recurrent de novo truncating mutations 4,32. In this analysis, we also 
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find a nominally significant transmission disequilibrium of private, disruptive events of 

RIMS1 to probands (p = 0.013, TDT-Combined Multivariate and Collapsing (CMC) 

analytical 22) but not siblings (p = 0.841) (Supplementary Table 3). The gene displays brain-

specific brain expression, and disruption of the gene in mice leads to increased postsynaptic 

density and impaired learning. CUL7 has two de novo and two LGD-inherited mutations in 

probands (none in siblings); functionally, it is an E3 ligase with high cerebellar brain 

expression and a selective role in neural dendrite patterning and growth 33. For the highly 

conserved gene CSMD1, there are three de novo missense mutations, one shared inherited 

LGD SNV, and four rare, inherited focal CNVs (one shared with siblings). Overall, there are 

eight events in ASD probands and two in siblings clustered at the exon-dense 3′ end of 

CSMD1, a region nearly devoid of exonic CNVs in the Database of Genomic Variants 

(DGV, Supplementary Figure 8). Functionally, CSMD1 exhibits strong and specific brain 

expression; this gene has been associated with schizophrenia 34 and damaging variants of 

the gene segregated in two ASD families with distantly related probands 35.

We also identified candidate genes for which no de novo events have yet been reported 

despite evidence of over-transmission of private LGD events to affected probands within the 

SSC families (Supplementary Tables 6 and 3). Using the RV-TDT on rare, inherited events, 

we identified candidates that have not yet reached locus-specific significance, including 

LZTR1 (commonly deleted in DiGeorge syndrome30) and CENPJ (gene with autosomal 

recessive mutations known to cause microcephaly and intellectual disability31). While these 

genes and genes like RIMS1 may represent important risk factors for ASD, the fact that 

gene-disruptive events are inherited from normal parents and/or occasionally transmitted to 

unaffected siblings argues that they are not necessary and sufficient to cause autism. This 

stands in contrast to other genes such as ADNP, CHD8 or DYRK1A where de novo LGD 

mutations have been observed almost exclusively in probands. In fact, genes enriched for de 

novo LGD mutations have significantly fewer inherited LGD mutations than expected from 

randomly sampled gene sets (empirical p < 1 × 10−4, see Online Methods and 

Supplementary Figure 9) suggesting that inherited and de novo mutation risk factors may 

often target different genes.

We hypothesize the second class of inherited-LGD genes simply predisposes an individual 

to ASD, requiring additional genetic or non-genetic factors to reach a disease state. Notably, 

the largest effect appears to be for maternal transmission to sons consistent with other recent 

findings17 and models of autism11. Such oligogenic models have been proposed previously 

for CNVs 36 as well as other forms of severe mutation associated other human diseases 37,38. 

The availability of CNVs and SNVs from exome sequence data is the first step to obtaining 

a more complete genetic picture at an individual level in the context of autism. In this light, 

it is interesting that our analysis uncovered a paternally inherited two-exon intragenic 

deletion of NRXN3 and a de novo missense mutation of NLGN2 in proband 13367.p1 

(Supplementary Figure 10). Both of these genes have been identified as ASD risk factors, 

but crucially, they are also protein-protein interacting partners. The neuroligin-neurexin 

interaction has long been hypothesized to be a key underlying pathway in ASD pathology 

but, to our knowledge, this is the first identification of a case with mutations in both binding 

partners. As the genetic profile of the SSC becomes more complete through full genome 
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sequencing, it is likely that examples of an oligogenic model for ASD will become more 

prevalent and informative to our understanding of the genetic etiology.

ONLINE METHODS

Datasets

We analyzed exome data from 2,377 ASD families (2,391 before quality control) from the 

Simons Simplex Collection or SSC 39, including 1,786 quads and 591 trios (total 8,917 

exomes). These exomes were recently analyzed for de novo variants 4,5,8,9 but were 

reanalyzed here to increase sensitivity and to create a unified callset for private variants 

(Table 1). The raw sequence data for these exomes are available in the National Database 

for Autism Research (NDAR) at DOI: 10.15154/1151812, and the reanalyzed data, 

including the complete variant call format (VCF) files from the SNV callset, and 

bioinformatics pipelines for this study are available (see URLs). We used Illumina 1M, 

1MDuo or Omni2.5 SNP microarray data for 1,266 complete quads for CNV validation 19 

(Sanders personal communication). Relevant phenotype scores were extracted for both the 

SRS (parent-assessed T-scores 23) and the full-scale IQ (as in Krumm et al. 2013 12) from 

the SSC Simons Foundation Autism Research Initiative (SFARI) Base. Normalized head 

circumference scores were determined as previously described 40. Published databases of 

FMRP 24 and CHD8 target genes 25 were used to assess enrichment of targets within CNVs. 

The institutional review board (IRB) of the University of Washington approved this study 

(IRB # 46179).

Sequence data processing

Reads from all 8,917 exomes were realigned using BWA-MEM 41 (v0.7.5a, options -k 17) 

to the 1000 Genomes Phase 1 reference genome (hg19/GRCh37). We mapped all available 

libraries for samples, including single-ended and paired-end where appropriate. Mapped 

BAMs were processed according to GATK 42 best practices, including duplicate marking 

and mate fixing. We applied GATK (v. 2.7–4) Indel Realignment in a family-aware manner, 

ensuring that each member of a family was realigned at the same positions across the family. 

Base qualities were recalibrated using GATK. Next, we used QPLOT 43 and computed 24 

read- and exome-level statistics (Supplementary Table 9) for QC assessment. Finally, to 

ensure we did not have any sample, family or data mix-ups, we used a custom-developed 

(Sanders, personal communication) tool to identify and match 287 polymorphic SNPs in 

each exome to an existing database of “SNP fingerprints” derived from Illumina SNP 

microarray data 19 and 96 SNP fingerprints collected by the Rutgers sample distribution 

center. We excluded 14 families for sample identity issues and concordance by center is 

shown in Supplementary Table 10.

SNV discovery

To identify SNVs, we batched families into groups of 16–20 families, or approximately 70 

exomes, in order to ensure better sensitivity for events. We called SNVs and indels with 

both GATK HaplotypeCaller (v 2.7–4) and FreeBayes 44 (v0.99) to within 20 bp of the 

NimbleGen EZ-SeqCap v2.0 targets. Family-level VCF files from FreeBayes and GATK 

were merged into a union set. Merged VCF files were annotated using SnpEff 45 (v 3.4i), 
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dbNSFP 46 (v2.1), CADD score 47, dbSNP (v137), tandem repeats and segmental 

duplications. Allele frequency was estimated by counting non-reference alleles across all 

parents (n = 4,754).

We called SNVs and indels with both GATK HaplotypeCaller (v 2.7–4) and FreeBayes 

(v0.99) to within 20 bp of the exon targets; calls were annotated using SnpEff and merged 

into union and intersection sets. Allele frequency was estimated by counting non-reference 

alleles across all parents (n = 4,754). For de novo events, we applied a minimum read-depth 

of six alternate alleles in offspring and a depth of >10 reference reads in parents and allowed 

for no more than two low-quality bases of the de novo variant. Because FreeBayes and 

GATK SNV-calling routines report only the number of high-quality reads supporting the 

alternate or reference allele, we queried the original BAM files at each site to include the 

count of low-quality bases in these filters. To exclude common artifacts, we only considered 

de novo sites that were private to a family. Inherited events were derived from the 

intersection set of both algorithms, with a minimum depth filter (DP > 20) and quality filter 

(QUAL > 50) for all events (Figure 1, Supplementary Figure 11). In addition, we applied a 

batch exclusion filter, which filtered variants found at high frequency exclusively in one 

batch (three or more times among 16–20 families). Using the FreeBayes and GATK 

intersection set, we found a median of 23,055 transmitted variants per exome for probands 

and siblings (Figure 1c; 95% CI 15,885–27,845) and a median of 26,920 transmitted 

variants per family (95% CI 23,394–31,401). A median of 377 (95% CI 154–692) sites per 

family were novel and not observed in dbSNP (v137); conversely, a median of 98.6% of 

sites were in dbSNP and 99.7% of those were in agreement with respect to the alternate 

allele. Overall, 81% of all transmitted variants were found by both FreeBayes and GATK, 

12% by FreeBayes alone, and 7% by GATK. The intersection set of variants had a median 

Ti/Tv ratio of 2.94 (95% CI 2.79–3.03) for all sites, 2.95 (95% CI 2.83–3.04) for dbSNP 

sites, and 1.94 (95% CI 1.05–2.75) for novel sites. Of all inherited mutations in the 

intersection set, an average of 341 (95% CI 133–632) sites were novel and not observed in 

dbSNP (v137); 98.6% of sites were in dbSNP with a concordance rate of 99.7% (for all 

transmitted variants, 93.4% of variants were found in dbSNP and 99.5% were concordant). 

In addition, we compared SNPs from exome calls with SNP calls from existing Illumina 

SNP microarray data 19 (Sanders personal communication) and found the median genotype-

level concordance to be 99.4% (for a median of 17,731 overlapping SNPs in 3,052 offspring 

in 1,796 families for which microarray data was available).

Modeling de novo SNV validation efficiency

We utilized the Sanger sequencing validation results from our 141 tested de novo SNV 

events to better understand which SNV calls would be the most likely to validate. In this 

post-hoc analysis, we constructed a feature matrix of 77 validated (truly de novo) and 63 

“invalidated” (which turned out to be inherited, or otherwise not present) events, along with 

event- or site-level quality data emitted by GATK and/or FreeBayes (Supplementary Table 

1). This quality information included data such as the QUAL (phred-scale quality score for 

the assertion made for the alternate allele), BaseQRankSum, MQ (mapping quality), MQ0 

(number of reads with mapping quality equal to 0 covering the variant), MQRankSum (Z-

score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities), as well as 
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sample-specific data for allele depths, allele quality, GATK-specific fields such as the PL 

(phred likelihood score) score. As many of the invalidated events were found to present in 

one of the parents (i.e., they were inherited heterozygous SNVs), we also included the 

maximum (or minimum, when appropriate) values of both parents for PL and GQ (genotype 

quality). For values that were not outputted by both FreeBayes and GATK, we imputed 

values based on the mean of all values not missing.

Using this feature matrix, we investigated three types of classifiers present in the Python 

Scikit-Learn package 48: a support vector machine (SVM), a decision tree, and a random 

forest. We estimated all accuracy statistics by cross-validation (scores are reported average 

from cross validation; Supplementary Table 11). Using these data, the random forest had the 

best overall performance across most performance metrics, though the SVM had slightly 

better recall. For the decision tree and random forest methods, we were able to compute 

matrices corresponding to individual feature importance (Supplementary Table 12; Note: 

this is not possible using the SVM implementation). For both classifiers, we found that the 

most important feature was the proband’s allele balance and this was recapitulated when 

observing the AB values directly (Supplementary Figure 2).

CNV discovery

We used the CoNIFER 49 and XHMM 50 algorithms to discover copy number variation 

from exome data at a single-exon resolution. Identification with CoNIFER was done as 

described in Krumm et al. 2013 12. Briefly, we split reads into 36mers and aligned using 

mrsFAST 51 to the NimbleGen EZ-SeqCap v.2 targets and flanking sequence. Using 

CoNIFER, we processed all samples with the specific setting of --components-removed 

equal to 40). CNV calls were made using the CoNIFER tools package, which implements 

DNAcopy 52. In parallel, XHMM was applied using best-practice guidelines. GATK was 

used to calculate depth-of-coverage (from BWA-MEM alignments) for each individual and 

then all individuals were combined into one composite file. The XHMM-specific steps 

included hard filtering of samples and targets, PCA on the data, filtering based on PCA 

results, and discovery of CNVs. Post-discovery CNVs were genotyped by family and 

ultimately a score cutoff of 10 was used for determining inheritance in families based on SQ 

and NQ values 50.

Using the union of XHMM and CoNIFER callsets, we first genotyped all loci across family 

members to recover false negative calls and then identified transmitted and de novo CNVs. 

CNVs were clustered into copy number variable regions or CNVRs (as previously described 

in Krumm et al. 2013 12) and then annotated with family frequency across the entire cohort. 

In order to focus our analysis on those CNVs most likely relevant to ASD pathogenesis, we 

restricted our analysis to rare CNVs found at < 0.8% frequency (<10 events/1,266 families) 

mapping outside of repetitive genomic elements (Supplementary Figure 12).

Validation experiments

Our reanalysis pipeline identified 1,544 novel candidate de novo SNVs not detected by 

previous analyses of the same dataset (Supplementary Table 1). Using Sanger sequencing, 

we attempted validation of 141 (of the 1,544) previously unidentified de novo variants, 
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including all novel LGD (stop-gain, frameshift and splice-site) events as well as recurrent 

missense mutations in autism candidate genes 55. We were able to validate 77 new sites 

(55%). These SNVs included various functional classes: 1 codon change plus codon 

deletion, 11 frameshift, 51 missense, 3 splice-site acceptor, 4 splice-site donor, 6 stop-

gained, and 1 stop-lost. In addition, we also validated by Sanger sequencing another 132 

previously called 9 but not confirmed events, resulting in a total of 209 validated de novo 

SNVs and indels (Supplementary Table 2). This new analysis identified 21 novel recurrently 

hit genes not identified in previous studies (Table 2). We did not attempt validation of any 

inherited SNVs but rather used the intersection of FreeBayes and GATK to get the highest 

quality variants events (all rare SNVs shown in Supplementary Dataset 2).

We used SNP microarray data (available for 1,266 quads) for validation of CNV events 

discovered using CoNIFER and XHMM. Probe-level copy number estimates were generated 

for each array sample using the Corrected Robust Linear Model with Maximum Likelihood 

Classification (CRLMM) software 53,54. A permutation-based method examined the mean 

copy number of all probes in each CNVR versus random sampling of the same number of 

probes from the genome (n = 10,000) in order to assess event confidence. Events with a 

permutation p-value < 0.01 and with a percentile rank < 30 or > 70 were considered 

validated deletions and duplications, respectively (full validated events for all quads and 

trios are shown in Supplementary Table 13). To further validate and genotype de novo 

events, we employed the CRLMM method to recall genotypes in trios and were able to 

recover events that were truly de novo as well as those inherited from a parent but missed in 

the exome analysis. Our final CNV dataset for all statistical testing consisted of validated 

events in the 1,266 quads for which SNP microarray data were available. We further tested 

an additional 50 de novo CNVs in individuals lacking SNP microarray data by array CGH 12 

using a customized Agilent microarray. In this design, we targeted events and flanking 

genomic regions (up to 5 kbp or 3 exons) where probe density ranged from 150 bp to 5 kbp 

spacing, depending on the size of the event. Of these CNV events, 26 CNVs were validated, 

of which 21 were confirmed to be de novo while 5 CNVs were transmitted events 

(Supplementary Table 5).

Statistical analyses

We tested for transmission disequilibrium between probands and siblings in aggregate with 

a Fisher’s exact test (by comparing summed proband and sibling variant counts for LGD 

versus non-LGD events) and at the level of each proband-sibling pair using the Mann-

Whitney U test (by comparing the variant counts in each proband-sibling pair). In addition, 

we utilized a logistic regression model in which the dependent variable was the presence of 

a variant in a proband (True or False), and independent variables were characteristics of the 

variant (such as its frequency or conservation score; see “SNV transmission 

disequilibrium”). Note that we applied a different conditional logistic regression to assess 

the risk by variant class to affected and unaffected individuals within the families). We 

utilized the RVIS 20 to identify genes that were not tolerant of functional or deleterious 

mutation in control populations (defined here as RVIS percentile < 50) and hypothesized 

that the score may have similar relevance to ASD genes (see also 21). We examined the 

RVIS profile of genes in a protein-protein interaction network of based on published de 
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novo mutations in ASD 55 and found that these ASD-related genes have an average RVIS 

percentile of 26.3. This average was significantly lower than randomly picked sets of genes, 

suggesting that the RVIS percentile is a relevant predictor of ASD genes (p < 1×10−6, 

permutation testing, Supplementary Figure 13). In order to integrate both CNV and SNV 

data for specific genes, events were tabulated based on variation type (SNV/CNV) and 

inheritance class as presented throughout this manuscript. In particular, we counted all de 

novo CNVs and LGD or missense SNV events, private LGD-inherited SNVs in genes with 

an RVIS < 50%, and rare, inherited CNVs in which at least one gene had an RVIS < 50%. 

From these values, we calculated p-values for de novo SNVs 7 and inherited SNVs and 

CNVs (binomial test). Genes were ranked based on a Fisher’s combined p-value test (see 

Supplementary Table 6; family-based aggregation shown in Supplementary Table 14). We 

also applied the RV-TDT 22 using trio data (parents and either the affected proband or the 

unaffected sibling) to test for an association between rare, inherited LGD events in 

conserved genes (RVIS <50 and 20th percentile) and ASD.

Combined gene-level ranking

For each gene (Supplementary Table 6), we calculated the difference in counts between 

proband and sibling delta score in their number of de novo LGD and missense SNVs. The 

delta score was adjusted for gene size and gene-specific mutation rate as described 

previously 6. Due to the rarity of de novo CNVs and the difficulty in assigning gene-specific 

p-values to large CNVs, we did not include de novo CNVs in this calculation. For inherited 

SNVs, we also calculated the proband-sibling delta score based on private LGD SNVs and 

used a simple binomial test to rank genes. The de novo- and inherited-specific p-values were 

integrated using Fisher’s combined p-value test.

Conditional logistical regression

We estimated the contribution of genetic risk to ASD for both inherited and de novo CNVs 

and SNVs using an additive conditional logistic regression model, and adding a strata for 

families (or proband-sibling pairs). This model took the form:

Each term is composed of the total number of events in each individual. We included all de 

novo CNVs, all LGD de novo SNVs, the set of private LGD-inherited SNV mutations in 

genes with RVIS values < 50%, and the set of rare, inherited CNVs with a minimum RVIS 

of 50% or lower. We counted only autosomal events for all domains. The model was run 

with the survival.clogit function in the R language.

To test for nonlinear—or exponential—effects, we contrasted two simplified logistic 

regression models. In the first, we predicted proband (ASD) or sibling (unaffected) status 

based simply on the summed number of mutations defined above (and again including 

family-level stratums). The OR for each mutation (regardless of type) in this model was 1.17 

(p < 1×10−8). In the second model, we added a term consisting of the total number of 

mutations squared. In this model, the simple sum was again significant (OR = 1.20, p = 

0.002), but the squared sum term was not (OR = 1.00, p = 0.59).
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Overlap between genes enriched for de novo and inherited events

We examined if genes enriched for de novo mutations were also enriched for the class of 

inherited, private LGD mutations. Using data from Supplementary Table 6, we ranked all 

genes by their enrichment for de novo mutations (via the ‘de.novo.SNV.p.value’ column). 

We took the top 100 genes in this sorted list and compared the summed gene counts for all 

inherited CNVs and SNVs in this group against 10,000 iterations of 100 randomly selected 

genes (without replacement) from the list. Observation of the resulting histogram and 

observed values suggests that genes enriched for de novo mutations do not overlap with 

genes enriched for inherited LGD mutations or disruptive rare CNVs (Supplementary Figure 

9).

Population attributable risk

We assessed the contribution of different variant types to risk in the population. Included in 

the variant types were SNVs of the following classes: inheritance (de novo, private 

inherited), RVIS (no cutoff, 50, 20), and transmission (all, maternal, paternal). CNV classes 

tested included: inheritance (de novo, rare (<0.8%) inherited), type (deletion, duplication), 

and size (no cutoff, <100 kb). To assess the attributable fraction (estimated) in exposed and 

attributable fraction (estimated) in the population, we used the epi.2by2 function in epiR 56. 

We calculated population attributable risk using the method detailed in Taylor et al. 1977 27. 

For a given variant type, the attributable fraction in the exposed gives the fraction of cases 

with the variant type that have autism because of that variant type, the attributable fraction 

in the population is the number of cases with the variant type who have autism because of 

the variant type, and the population attributable risk is the proportion of autism relevant to 

the variant type 27. Complete results for all categories are listed in Supplementary Table 8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SNV quality assessment
SNVs were identified based on the intersection of FreeBayes and GATK variant callers. The 

panels display a) proband-sibling concordance for number of private SNVs (Pearson’s r2 > 

0.99) and stratified by population (calculated by PCA using EIGENSTRAT on SNV 

markers); b) the number and distribution of private, heterozygous genotypes that do not 

differ significantly between mothers, fathers, probands or siblings (p-values > 0.3 for all 

comparisons); c) the number of transmitted SNVs per exome in dbSNP (blue) or novel 

(green); d) concordance between exome and SNP microarray calls 19 (Sanders unpublished); 

e) fraction of events per exome found in dbSNP; f) genotype concordance of SNVs found in 

dbSNP, per exome.
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Figure 2. Transmission disequilibrium of SNVs in ASD
a) Private, inherited LGD (red bars) SNVs in genes not tolerant to functional variation were 

significantly enriched in probands. The analysis examines only SNVs in genes with an RVIS 

in the lower 50%. Non-private, rare variants or missense-inherited (gray bars) SNVs are not 

enriched in probands. Bar heights are Fisher’s exact test odds ratio and whiskers represent 

95% confidence interval bounds. b) The RVIS is a critical determinant for enrichment in 

probands. Burden was highest (reaching OR = 1.4) for private, inherited LGD SNVs 

amongst genes with the lowest RVIS values (<1%). MAF = minor allele frequency.
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Figure 3. Transmitted mutations and their effect on phenotype
a) Private, inherited LGD SNVs enriched in probands with autism and pervasive 

developmental disorder (PDD) diagnoses, but not Asperger’s syndrome (AS). b) Private, 

inherited LGD SNVs primarily enriched in probands with lower IQ than average (<100). c) 

We observe transmission disequilibrium of rare, inherited CNVs in SRS (Social 

Responsiveness Scale) discordant families (proband SRS score > 75, sibling < 50) but not in 

families where the SRS score is mild or more balanced between proband and sibling. d) 

Rare, inherited CNVs are enriched in probands (versus their siblings) with IQ < 70, but the 

effect is not significant in probands with IQ > 70. All tests and reported p-values are paired 

t-tests based on proband-sibling pairs. All analyses were restricted to genes with RVIS < 50.
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Figure 4. Combined risk model for SNVs and CNVs: inherited and de novo
Integrative risk model for ASD, based on de novo and inherited events, and covering both 

SNVs and CNVs. The model used is a stratified logistic regression model, which utilizes 

proband-sibling pairs to estimate the odds ratio (i.e., risk of ASD) for each type of event (see 

also Supplementary Table 7).
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Figure 5. Networks and pathways
A highly interconnected network was identified based on novel de novo mutations identified 

in this study (Note: one additional de novo missense mutation was recently identified in 10). 

Gene ontology annotation of the genes in this network suggests involvement of the insulin-

like growth factor signaling pathway (GIGYF1, GIGYF2, GRB10; accession GO:0048009), 

which has been previously implicated in the development of ASD 29. Furthermore, GIGYF2 

and ZNF598 form part of the m4EHP mRNA binding complex and have widespread 

translational repression roles, especially in the brain and lungs 57. Red stars: de novo LGD 

mutations (frameshift, stop-gained, splice-site); Blue stars: de novo missense mutations; 

Purple star: CNV deletion.
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Table 1

SNV and CNV discovery.

Variants Quads (n=1,786) Trios (n=591) All (n=2,377)

All 1123040 614190 1737230

SNVs 1060422 581154 1641576

Indels 56008 31501 87509

Private SNVs/Indels 52279 12634 64913

CNVs 6610 1535 8145

Deletions 2289 492 2781

Duplications 4321 1043 5364

<500 kbp 6369 1480 7849

>500 kbp 241 55 296

Summary of SNVs, indels, and CNVs from exome sequence data from 2,377 (1,786 quads, 591 trios) families from the Simons Simplex Collection 
(SSC), including transmitted SNV and indel calls from the intersection of GATK HaplotypeCaller and FreeBayes and all CNVs with orthogonal 
validation. Note: All events in each category are given as the sum of quad and trio numbers resulting in ~1.6 million SNVs and indels (the unique 
independent sites is ~1.3 million).
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