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Abstract: Methods of large-scale controllable production of uniform monodispersed spherical
nanoparticles have been one of the research directions of scientists in recent years. In this paper, we
report an azeotropic distillation-induced evaporation self-assembly method as a universal method,
and monodispersed hydrophobic ordered mesoporous silica nanospheres (MHSs) were successfully
synthesized by this method, using triethoxymethylsilane (MTES) as the silica precursor and hex-
adecyl trimethyl ammonium bromide (CTAB) as the template. SEM and TEM images showed good
monodispersity, sphericity, and uniform diameter. Meanwhile, SAXS and N2 adsorption–desorption
measurements demonstrated a highly ordered lamellar mesostructure with a large pore volume. The
model drug, curcumin was successfully encapsulated in MHSs for drug delivery testing, and their
adsorption capacity was 3.45 mg g−1, which greatly improved the stability of curcumin. The release
time when net release rate of curcumin reached 50% was extended to 6 days.

Keywords: drug delivery; curcumin; azeotropic distillation; self-assembly; hydrophobic; mesoporous
silica nanospheres

1. Introduction

In recent decades, drug delivery controlled by carrier systems has been demonstrated
to have successful applications in the diagnosis and treatment of various diseases [1–3].
Mesostructured spherical nanoparticles are promising intracellular delivery systems for
anticancer, immunomodulatory drugs and cell activity modulators, etc. [4,5]. The cellular
uptake of nanoparticles by living cells is strongly size-dependent [6]. Small nanoparticle
size (≈50 nm) is most efficient for the intracellular delivery [1,7]. The development of a
suitable nanostructured carrier system with good biocompatibility and selective delivery
of drugs to target cells is the central problem of nanomedicine. Curcumin is a natural
bioactive substance, which has been of great interest to researchers due to its wide range
of biological activities and pleiotropic therapeutic potential such as antioxidant, anti-
inflammatory [8–12], antibacterial, antifungal, antiviral, antiprotozoal, and antiparasitic
activities [11,13–15], but its application has been strictly limited because of its poor solubility
in water, short half-life, low bioavailability, and pharmacokinetic profile.

Compared to general organic carriers such as liposomes [16], micelles [17], PLGA [18],
cyclodextrin [19], viruses, etc., mesoporous silica nanoparticles have the significant ad-
vantage of sustained release profile [20,21], good biocompatibility, and large drug loading
capacity, which is largely depending on their tunable surface chemistry and particle size,
uniform pore size, high surface area. Therefore, mesoporous silica nanoparticles have
attracted great research attention as cargos for delivery and controlled release of vari-
ous drugs. Tang and co-workers found that mesoporous silica nanospheres modified
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by hydrophobic groups showed enhanced hydrothermal stability and delayed release of
hydrophobic drug [22]. Highly monodispersed mesoporous silica nanospheres are needed
to control the delivery rate [23]. While the method of large-scale controllable production
of uniform monodispersed spherical nanoparticles has been one of the research direc-
tions of scientists in recent years. Brinker and his co-workers succeeded in fabricating
mesoporous silica nanospheres by developed aerosol-assisted evaporation-induced self-
assembly (EISA) progress [24]. The monodispersed spherical silica nanoparticles can be
obtained after a few seconds of EISA progress, which greatly improves the production
efficiency. Various templates (CTAB, Brij-56, Brij-58, P123) have been used to control the
pore size and mesostructures of silica [25]. Then, they synthesized protocells by fusion
of lipid bilayers to the mesoporous silica nanospheres, and this structure was prominent
for drug delivery [1,3,5,26–29]. However, mesoporous silica nanospheres made using a
commercial atomizer (Model 3076, TSI, Inc., St Paul, MN, USA) have a wide size distri-
bution (~50–1000 nm), requiring separation. Although the electrospray aerosol generator
(Model 3480, TSI, Inc., St Paul, MN, USA) can produce high concentrations of monodisperse
submicron particles with diameters ranging from 2 nm to 100 nm [30], its yield is too low
(Liquid flow rate: 50 to 100 nL min−1). Large-scale controllable production of MHSs with
uniform particle size by aerosol-induced EISA is still a challenge.

Here, we report a facile synthesis method based on azeotropic distillation-induced
self-assembly to prepare MHSs with good monodispersity and controllable uniform size.
This method is easy to operate, and can solve the deficiencies in the synthesis of MHSs by
aerosol-assisted EISA, such as wide size distribution, small specific surface area and pore
volume. In addition, it can be used for the synthesis of many functional nanomaterials,
and can be effectively applied to large-scale industrial production. In this report, the water,
ethanol, benzene and CTAB form a stable reverse microemulsion under stirring and MTES
has enough time to be hydrolyzed after adding to the system. The rising temperature
causes the solvent to evaporate as an azeotrope, then the water phase and benzene will
be condensed, the water phase can be separated by a water separator, and the benzene
can reflux back to the reaction system. Each MHS can be formed from one single aqueous
droplet in the microemulsion after evaporation and removal of water. The usual aerosol-
assisted EISA is not able to synthesis of hydrophobic ordered porous silica with MTES, due
to the fast evaporation and hydrolysis rate which cannot match with slow self-assembly
rate of MTES. As a result, the relatively slow evaporation rate of azeotropic distillation is
necessary for continuous self-assembly of MTES into highly ordered porous structures.

2. Results
2.1. Characterization of MHS Samples

Field emission scanning electron microscopy (FESEM) and transmission electron mi-
croscopy (TEM) images of the washed and dried MHS samples are shown in Figure 1. The
MHS samples are uniform in size and spherical in shape (Figure 1a,b,d), and their particle
size could be adjusted by the amount of CTAB/MTES mole ratio (Table 1). The particle size
of MHS-1 was about 30 nm, while the particle size of MHS-2 is about 132 nm, because of the
CTAB/MTES mole ratio of MHS-2 is lower. From the HRTEM image of MHS-1 (Figure 1c),
CTAB produces particles exhibiting a highly ordered lamellar mesostructure.

To determine the pore ordering of the synthesized MHS samples, Small Angle X-ray
Scattering (SAXS) analysis was performed from 0.8◦ to 12◦ (Figure 2). MHS-1 and MHS-2
showed sharp peaks at a low angle (2θ = 3.41◦) and two weak peaks at higher angles
(2 θ= 6.81◦ and 10.18◦) corresponding to the (100), (200), and (300) planes, respectively.
The SAXS curve of MHS-1 shows that the washed and dried particles have an ordered
lamellar structure. Compared to MHS-1, due to the decrease of CTAB/MTES mole ratio, it
is difficult for silica-surfactant liquid-crystalline mesophase to grow in an orderly fashion in
the process of self-assembly induced by azeotropic distillation, which leads the structural
order of MHS-2 to decrease.
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Figure 1. (a,b) FESEM images of MHS-1 sample (original magnification = 20,000×), (c) HRTEM im-

age of MHS-1 sample, (d) TEM image of MHS-2 sample. 

Table 1. Physicochemical characteristics of MHS samples a. 

Sample C/M MR MD (nm) PV (cm3 g−1) SABET (m2 g−1) PD (nm) 

MHS-1 2.75 30 1.208 477.002 4.3110 

MHS-2 0.183 132 0.654 257.452 12.4022 
a C/M MR: CTAB/MTES mole ratio, MD: Mean diameter, PV: Pore volume, SABET: BET surface 

area, PD: Pore diameter. 
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Figure 2. Small angle X-ray scattering (SAXS) curves of MHS-1 and MHS-2. 

Figure 1. (a,b) FESEM images of MHS-1 sample (original magnification = 20,000×), (c) HRTEM
image of MHS-1 sample, (d) TEM image of MHS-2 sample.

Table 1. Physicochemical characteristics of MHS samples a.

Sample C/M MR MD (nm) PV (cm3 g−1) SABET (m2 g−1) PD (nm)

MHS-1 2.75 30 1.208 477.002 4.3110
MHS-2 0.183 132 0.654 257.452 12.4022

a C/M MR: CTAB/MTES mole ratio, MD: Mean diameter, PV: Pore volume, SABET: BET surface area, PD:
Pore diameter.
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Figure 3 shows the N2 adsorption–desorption isotherms and the pore size distribution
curve for washed and dried MHS-1 and MHS-2 samples. The samples were outgassed
at 250 ◦C for 10 h before measurements. The MHS-1 (Figure 3a) exhibited a typical type
IV isotherm with a H4 hysteresis loop, giving a large pore volume (1.208 cm3 g−1) and
a narrow pore size distribution (centered at 4.3110 nm) (Table 1). In Figure 3b, MHS-2
showed a type III isotherm with a H3 hysteresis loop, indicating that the pore size is
non-uniform, and compared with MHS-1, its pore volume (0.654 cm3 g−1) and the surface
area (257.452 m2 g−1) drastically decreased (Table 1). This was attributed to the fact that
the CTAB/MTES mole ratio decreased, and the structural order of MHS-2 decreased.
This is consistent with the results of SAXS analysis. All results mentioned above further
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demonstrate that MHS-1 with a smaller size, uniform pore size and higher specific area is
more suitable for hydrophobic drug storage and release.
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1 sample and (b) MHS-2 sample.

The surface properties of washed MHS-1 and MHS-2 samples with different heat
treatment temperatures were measured by the contact angle test in Figure 4. Tablets of
MHSs were prepared using a cylindrical stainless-steel die with a diameter of 1 cm. A
pressure of 15 bar was applied for 10 min using a manual hydraulic press. The contact angle
results of washed MHS-1 and MHS-2 dried at 60 ◦C were 121.2◦ and 120.5◦ (Figure 4a,c),
which showed that the silica has good hydrophobic property. The contact angle of the
particles increased to 126.3◦ and 129.9◦ (Figure 4b,d) after increasing drying temperature
to 300 ◦C, indicating that the free water and hydroxyl groups on the surface of MHS
samples decreased with the increase of temperature. The thermal, chemical and physical
properties of MHS-1 and MHS-2 were measured at different atmosphere by simultaneous
thermogravimetry and differential scanning calorimetry (TG-DSC) in N2 (Figure 5a,c) or air
(Figure 5b,d) at a constant heating rate of 10 ◦C min−1 in the temperature range between
30 ◦C and 800 ◦C. Compared with the data under N2 conditions, one strong exothermic
peak appeared at 420 ◦C under air conditions, suggesting oxidation of methyl groups by
oxygen. This result demonstrated a high thermal stability for MHSs. The mesopores were
covered by lipophilic-CH3 groups, enabling curcumin molecules to easily enter and stay in
the pores.
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2.2. Adsorption and Release Experiment of Curcumin

After loading with curcumin, MHS-1 and MHS-2 were accordingly marked as MHSAC-
1 and MHSAC-2, respectively. Figure 6 showed the FTIR spectra of MHS-1, MHSAC-1,
MHS-2, MHSAC-2 and curcumin samples. The FTIR peaks in the ranges of 1026–1125 cm−1,
772–801 cm−1 and 434–441 cm−1 correspond to the asymmetric, symmetric stretching
and bending modes of the Si-O-Si [31], respectively (I and III in Figure 6). A sharp peak
appearing at 2974 cm−1 can be assigned to -CH3 group and an absorption peak at 1275 cm−1

belongs to Si–CH3 stretching vibrations [31]. The FTIR peaks at 3468 cm−1 belong to OH
groups of Si-OH on the surface of the MHS samples. In the FTIR spectra for curcumin (V
in Figure 6), a sharp peak at 3511 cm−1 is assigned to the phenolic O-H stretching with
a broad band at a range from 3100–3400 cm−1, which is due to the -OH group (in enol
form). The strong peak at 1627 cm−1 is associated with mixed C=O and C=C species of
curcumin. Another strong band at 1603 cm−1 is attributed to the symmetric aromatic ring
stretching vibrations C=C ring. The 1509 cm−1 peak is assigned to the C=O, and the C-O-C
stretching peak of ether at 1027 cm−1 [32]. After curcumin was adsorbed, a new absorption
band belonging to the heptadiene-dione chromophore group of curcumin appeared in the
range of 1429–1627 cm−1 (II and IV in Figure 6). Other FTIR peaks belonging to MHS
samples had no obvious shift. These results suggested that curcumin molecule had been
adsorbed to hydrophobic silica [33]. It was also found that the absorption band intensity at
1429–1627 cm−1 of MHSAC-1 sample was much stronger than that of MHSAC-2 sample as
a result of more curcumin loaded in MHSAC-1. All these results demonstrate that curcumin
was successfully encapsulated in the as-synthesized MHS-1 samples.

Curcumin was encapsulated in hydrophobic mesopores by repeated heating and
cooling of curcumin solution (Vwater:Vethanol = 1:1) and MHS samples [34]. The remaining
curcumin solutions after removal of MHSAC-1 and MHSAC-2, were accordingly marked
as C-1 and C-2, respectively. Figure 7a shows the UV-vis spectra of 3.94 mg L−1 curcumin
solution, C-1 and C-2. A sharp absorption peak of curcumin in a mixed solution of water
and ethanol (Vwater:Vethanol = 1:1) appeared at 432 nm. A series of curcumin solutions with
different concentration were prepared, and their absorbance at 432 nm was measured to
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obtain the standard curve of curcumin solution (Figure 7b). After curcumin was adsorbed,
the intensity of the absorption peaks for C-1 and C-2 decreased as a result of attachment of
curcumin to the MHS-1 and MHS-2. C-1 exhibited a much lower absorption peak than C-2,
indicating that higher adsorption capacity of MHS-1 due to larger specific area and pore
volume under the same conditions. After calculation, the curcumin adsorption capacity of
MHS-1 was 3.45 mg g−1, while it was only 0.91 mg g−1 for MHS-2. It was proved that a
mesoporous carrier with a high specific surface area, large pore volume, and appropriate
pore size (larger than the kinetic diameter of the drug) would be beneficial for improving
the adsorption capacity.
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C-2, (b) standard curve of curcumin.

As shown in Figure 8a, the in vitro sustained release process of curcumin was inves-
tigated by means of UV-vis spectroscopy. Curcumin was released from MHSAC-1 for
21 days in phosphate-buffered saline (PBS, water, pH = 7.4). Figure 8b shows the in vitro
release kinetics of curcumin from MHSAC-1 samples in PBS (water, pH = 7.4), which was
calculated according to the standard curve of curcumin in Figure 7b. As shown, 70.6%
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of absorbed curcumin released slowly from MHSAC-1 samples in PBS, which lasted for
21 days. On about the sixth day, the net release rate of curcumin just reached 50% and
then then rate of release became slow. It was important to extend the release time for
practical controlled release. These results proved that the MHS nanospheres with a small
size, larger specific area and pore volume (MHSAC-1) displayed a sustained release of
curcumin and have great application potential in the study on the controllable slow release
of hydrophobic drugs.
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3. Discussion

Usually, because the atomization process is uncontrollable, the diameter distribution
of aerosol droplets obtained by commercial atomizers (such as Model 3076, TSI, Inc., St Paul,
MN, USA) is wide. Therefore, it is difficult to achieve uniformity of as-synthesized particle
size. Some scholars have added a microwave radiation zone at the back end of commercial
atomizers to cause aerosol droplets to break up due to overheating under microwave
radiation. Due to the surface tension of droplets, it will make the aerosol droplets in the
carrier gas maintain the maximum total contact area and minimize the Gibbs free energy,
so that the particle size of the droplets entering the drying zone tends to be uniform.

The self-assembly induced by azeotropic distillation is designed based on this principle.
On the one hand, it has some similarities with aerosol-assisted self-assembly, beginning
with a homogeneous solution of soluble silica and surfactant prepared in ethanol/water
solvent with c0 << critical micelle concentration (cmc). CTAB as a stabilizer [35] can disperse
the water phase into small droplets with uniform size in the oil phase. Additionally, due
to the surface tension of the droplets, this stirred and heated system tends to maintain
the maximum total contact area, which can cause the Gibbs free energy to be the lowest.
The hydrolysis of MTES in the droplets is controlled, which limits the excessive growth
of silica particles. With the slow separation of the water phase in the azeotrope and the
reflux of benzene, the evaporation of the solvent creates a radial gradient of surfactant
concentration from surface of each droplet to inside that steepens in time [36]. As the
surfactant on the droplet surface first reaches the critical micelle concentration (cmc) [24],
the ordered silica-surfactant liquid-crystalline mesophase grows radially inward from the
surface. Finally, as the solvent continues to decrease, the silica-surfactant mesophase dries
and shrinks to a sphere. For all the nanoparticles that can be synthesized by aerosol-assisted
self-assembly, the self-assembly induced by azeotropic distillation can be applied, and the
uniformity of particles can be ensured.

On the other hand, it is also different from aerosol-assisted self-assembly. Azeotropic
distillation can adjust the evaporation rate of azeotrope by controlling the temperature of
the system. In a typical synthesis, it takes about 0.5 h to get 0.5 mL of condensed azeotrope,
and all ethanol and water in the system can be separated for as long as several hours (It
only takes a few seconds for ethanol and water to evaporate in the process of aerosol-
assisted self-assembly). This ensures that there is sufficient time for ordered self-assembly
of MTES and CTAB liquid crystal mesophase. Therefore, this method can also be used
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to synthesize some nanoparticles with special morphology, such as cube shape [37] and
rod shape. Of course, the self-assembly process induced by azeotropic distillation also has
some shortcomings. The system is an inverse microemulsion system which depends on
stirring to achieve uniform dispersion. Stirring speeds that are too violent or too slow may
lead to irregular morphology of the final particles.

The MHSs prepared by self-assembly induced by azeotropic distillation show a good
ability to control the sustained release of hydrophobic drugs. The release time at which the
net release rate of curcumin reached 50% was extended to 6 days, which was much slower
than curcumin-conjugated silica nanoparticles (7 h) [33], L- methionine encapsulated by
hollow mesoporous silica nanoparticles (50 min) [34], and curcumin loaded by mesoporous
silica nanoparticles (functionalized by 3-aminopropyltriethoxyorthosilane) (50 h) [38].
These results prove that this material can also be expected to be used in the encapsulation
of other fat-soluble drugs, such as taxol, methotrexate, doxorubicin, etc.

4. Materials and Methods
4.1. Reagents and Instruments

All reagent-grade chemicals were used as received without further purification, and
ultra nanopure distilled water (18.25 MΩ·cm) was used in all experiments. Curcumin,
triethoxymethylsilane (MTES) and hexadecyl trimethyl ammonium bromide (CTAB) were
purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Ethanol, isopropyl alcohol, and benzene were bought from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China).

X-ray powder diffraction (XRD) patterns were recorded on a Rigaku Ultima IV powder
diffractometer with a Cu Kα radiation source (λ = 1.5406 Å, 40 kV, 100 mA). Field emission
scanning electron microscopy (FESEM, SIGMA Zeiss, Germany) and transmission electron
microscopy (TEM, FEI Tecnai 30, 300 kV, Philips) were applied for characterization of the
morphology of the samples. Fourier transform infrared spectroscopy (FTIR) were measured
with a Tensor-II spectrometer (Bruker Co., Germany) by averaging 64 scans with a spatial
resolution of 4 cm−1. UV-vis absorption spectra were measured by Shimadzu UV-3600
UV-Vis-NIR spectrophotometer. The contact angles were measured by the XG-CAMA static
contact angle tester. Thermal behavior of the samples was analyzed by thermogravimetry
and differential scanning calorimetry (TG/DSC) (NETZSCH STA 409 PC, Germany). Labsys
Evo simultaneous thermal analyzer was used to test the thermal stability of mesoporous
hydrophobic silica. BET-surface area was measured by N2 adsorption–desorption at liquid
nitrogen temperature using an Autosorb-iQ2-MP (Quantachrome) gas sorption system.
Specific surface areas were calculated using the Brunauer–Emmett–Teller (BET) model, and
the pore size distributions were evaluated from the adsorption branches of the nitrogen
isotherms using the Barrett–Joyner–Halenda (BJH) model.

4.2. Synthesis of MHS Samples

MHS samples were synthesized by azeotropic distillation-induced self-assembly, as
defined in Scheme 1. In a typical synthesis, MHS-1 was prepared as follows: 1 g CTAB was
dissolved in a solution of 7.5 mL deionized water, 18.5 mL ethanol and 74 mL benzene.
The mixture was poured into a 250 mL three-necked flask mounted with a Dean-Stark
trap followed by stirring at room temperature for 30 min to form a reverse microemulsion.
Then 0.2 mL MTES was added into the above solution, which was kept at 45 ◦C for 2 h.
With the hydrolysis of MTES molecules and formation of silanols, silica species became
more hydrophilic and enriched in the aqueous droplets as a result of phase equilibrium.
With constant hydrolysis of MTES and the enhanced hydrophilic of silica precursors, silica
species continuously diffused from the benzene phase into water–ethanol droplets due to
decreased solubility. Evaporation of water and ethanol from the droplets by azeotropic
distillation at 64.9 ◦C (azeotrope composition: ethanol 18.5%, benzene 74% and water 7.5%)
increased the concentrations of the silica species and CTAB, which led to self-assembly of the
micelles into liquid crystalline mesophase. Meanwhile, hydrophilic inorganic precursors
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were also condensed into ordered porous silica with the liquid crystal as templates. The
solution was then heated to 115 ◦C to remove the solvent. Subsequently, the samples were
cooled to room temperature, collected and washed with a solution (deionized water and
isopropyl alcohol, the volume ratio of 1: 1) to remove the CTAB, and further dried at 60 ◦C
for 6 h. The preparation process for MHS-2 is the same as for MHS-1 except for adding
3 mL MTES instead of 0.2 mL MTES.
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4.3. Adsorption and Release Experiment of Curcumin

MHSAC-1 was prepared as follows: 0.1 g MHS-1 was dissolved in 100 mL 3.94 mg L−1

curcumin solution (Vwater:Vethanol = 1:1), followed by repeated heating and cooling several
times until the color of the solution did not change. The samples were collected by cen-
trifugation at 13000 rpm for 10 min and dried at 60 ◦C for 1 h. The preparation process
for MHSAC-2 is the same as for MHSAC-1. The in vitro release kinetics of curcumin from
MHSAC was as follows: Sixteen MHSAC samples of 0.01 g each were dissolved in 10 mL
phosphate-buffered saline (PBS, water, pH 7.4). Then these samples were stirred at 100 rpm
with a magnetic stirrer at 37 ◦C. After a period of time, the solution was centrifuged at
7000 rpm for 3 min to separate curcumin from the bottom of phosphate-buffered saline. The
separated curcumin was dissolved in 10 mL mixed solution (Vwater:Vethanol = 1:1, pH 7.0)
then the UV-vis absorption spectra were recorded.

5. Conclusions

In summary, ordered mesoporous hydrophobic silica nanoparticles (MHSs) with a
uniform size were successfully one-step synthesized by an azeotropic distillation-assisted
method with MTES as precursor and CTAB as an ordered mesoporous template. The
obtained MHSs exhibited high monodispersity, good sphericity, and large pore volume,
with a highly ordered lamellar mesostructure, while the particle size can also be adjusted.
This method solved the deficiencies in the synthesis of MHSs by aerosol-assisted EISA,
such as wide size distribution, and small specific surface area and pore volume. Curcumin
was successfully encapsulated in MHSs, and their adsorption capacity was 3.45 mg g−1,
greatly improving the stability of curcumin. The release time after which net release rate
of curcumin reached 50% was extended to 6 days. Curcumin can be released slowly from
MHSs, guaranteeing that curcumin has enough time to reach and inhibit cancer cells,
bacteria, fungus, etc. MHSs also have great application potential in the study on the
encapsulation of other hydrophobic drugs for drug delivery such as taxol, methotrexate,
doxorubicin, etc.
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6. Patents

There was a patent (Patent number: CN104876230B) resulting from the work reported
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