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Abstract: The theory of critical slowing down (CSD) suggests an increasing pattern in the time series of
CSD indicators near catastrophic events. This theory has been successfully used as a generic indicator
of early warning signals in various fields, including climate research. In this paper, we present an
application of CSD on water level data with the aim of producing an early warning signal for floods.
To achieve this, we inspect the trend of CSD indicators using quantile estimation instead of using
the standard method of Kendall’s tau rank correlation, which we found is inconsistent for our data
set. For our flood early warning system (FLEWS), quantile estimation is used to provide thresholds
to extract the dates associated with significant increases on the time series of the CSD indicators.
We apply CSD theory on water level data of Kelantan River and found that it is a reliable technique
to produce a FLEWS as it demonstrates an increasing pattern near the flood events. We then apply
quantile estimation on the time series of CSD indicators and we manage to establish an early warning
signal for ten of the twelve flood events. The other two events are detected on the first day of the flood.

Keywords: critical slowing down; water level; quantile; flood early warning system

1. Introduction

Various fields of scientific works are now suggesting the existence of early generic warning signals
as an indicator when systems are approaching their critical tipping points [1]. The climate is one of the
complex dynamical systems having tipping points. At those tipping points, the climate may experience
shifts to different dynamical regimes [2]. The suggested generic indicators, when the climate gets close
to its critical tipping point, are related to the theory of critical slowing down (CSD) [3]. The theory of
CSD explains that as a tipping point is approached, an increasing pattern in the time series of the CSD
indicators is expected to occur. Two possible CSD indicators of early warning signals are increased in
variance [4] and spectral density [5].

These generic early warning signals had captured the essence of shifts in tipping points in several
natural systems ranging from ecosystems [6,7] to climate [1,2,8] and financial systems [9–11]. All of
the above researches show that there is an increasing pattern in the time series of the indicators
near the tipping points. Previous studies [8,11] investigated the increasing pattern using Kendall’s
tau rank correlation, but their results showed inconsistency as the strength of the correlation varied
among events.

In hydrology, an early warning system (EWS) that will alert when the next flood is going to
happen is very crucial. As flood is a destructive natural disaster, it is responsible for a high number
of deaths and loss of property. Even though floods are unavoidable, a flood early warning system
(FLEWS) is important to anticipate a flood and its impacts. Hence, FLEWS should be developed using
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reliable methods for better prediction and flood preparation. Since flooding is defined in general as an
overflowing of water onto land that is generally dry, an understanding of observational and historical
water level data is essential as they provide climatic indicators for flooding.

Most research on FLEWS or flood forecasting is done by constructing models of hydrological
processes. Previous studies on FLEWS focused on rainfall–runoff models; see [12] for worldwide
EWS review and reference [13] for Malaysia EWS review. The current research trend is to integrate
new techniques into rainfall–runoff models. For example, artificial neural network modeling and
entropy theory have been used to gain enhanced rainfall–runoff models [14–17]. For some other
studies, physical models have been developed for flood forecasting [18,19].

In this paper, we consider the CSD approach to construct a FLEWS using water level data.
As a case study, we analyze the time series data of the daily water level at the Guillemard Bridge
station, Kelantan River, Malaysia, from 1 January 2000 to 13 October 2010. Based on the time series of
water level data, we calculate the CSD indicators and inspect the increasing pattern. Since the result
obtained through the standard analysis method of Kendall’s tau rank correlation is unfavorable for
our data set, we propose a new analysis method using quantile estimation. Quantile estimation is a
method used in extreme value theory that has been used by hydrologists to study rare events and
extreme values [20,21]. Through getting an optimum quantile, we will gain thresholds that will justify
the significant increase in the CSD indicators and date extraction for the EWS.

In Section 2, we provide a concise and informal review of CSD as an early warning signal with
the construction of EWS through Kendall’s tau rank correlation and quantile estimation. In Section 3,
we introduce our water level data. Section 4 presents our analysis and results and Section 5 concludes
the paper.

2. Materials and Methods

This section provides an introduction for EWS using the theory of CSD and method of analysis for
the detection of increasing patterns in the time series of CSD indicators, Kendall’s tau rank correlation
versus quantile estimation.

2.1. Early Warning System Using Critical Slowing Down

EWS is a tool consisting of a series of mechanisms and procedures for detecting hazards, monitoring
indicators, warning communications, and alarms. A study has been conducted to provide efficient
EWS [12,13]. However, developing an EWS based on real data is challenging and may lead to
false-positive results as well as false-negative results. False-negatives are situations in which a sudden
shift occurred, but no early warning signal could be detected before the shift. While a false-positive
occurs if a supposed early warning signal is not the result of an approaching hazard, which is also called
a false alarm. Hence, the development and implementation of EWS need to enhance its performance.

Various scientific works suggested CSD as an indicator of EWS. This type of slowing down is
measured as increases in variance [4] and spectral density [5] can be shown to be a typical characteristic
of a system approaching its tipping points. In the earth system, an irregular shift in ocean circulation
and climate may occur. The proposed explanations for this abrupt climate change usually invoke the
existence of thresholds in external conditions, where the climate system reached its tipping point. In a
recent analysis [8], a significant increase in each of the eight ancient abrupt climate changes shows
that they were all preceded by the characteristic of CSD in the fluctuation starting well before the
actual shift.

Note that hydrologists have a long history of research using indicators such as autocorrelation,
variance, and power spectrum to study hydrological data [22,23] even though not for critical slowing
down or early warning system purposes. We also found one paper [24] that uses the theory of critical
slowing down in the hydrological field to quantify the long-term hydrological shifts based on river
discharge, however, the authors just used one indicator which was autocorrelation for their analysis.
Further, throughout this study, the term of an early warning signal is meant by any signal that is
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determined before the day of the flood event. By this definition, signals detected on the day of the
event are not considered an early warning signal but labeled as detection on the first day. Of course,
signals detected after the events are considered a false alarm.

2.2. Kendall Tau Versus Quantile Estimation

The standard way to investigate whether there is an early warning signal on the CSD indicators
is to test the trend over time for significance using Kendall’s tau rank correlation [8,10,11]. In this
study, the usage of Kendall’s tau rank correlation is a replication of the work by Guttal et al. [10].
Kendall’s tau rank correlation measures the correlation of the time series of CSD indicators with an
increasing sequence. The value of Kendall’s tau ranges between [−1, 1] and will determine whether the
CSD indicators show an increasing or decreasing pattern. A positive value of Kendall’s tau indicates an
increasing pattern of the CSD indicators, while a negative value indicates a decreasing pattern. A high
value of Kendall’s tau suggests a strong trend. In the presence of CSD, one expects to find a significant
increase trend as indicated by a significantly positive value of Kendall’s tau, 0.9 and above. However,
some studies [10,11] show that the result of Kendall’s tau obtained is inconsistent. Their result shows
that all the trends were significant (positive value) as measured by Kendall’s tau, but the strength of
the correlation varied among events.

Therefore, here we propose a different approach for the analysis of an early warning signal from
the CSD indicators to tackle the issue of inconsistent detection through Kendall’s tau rank correlation
method. After observing the increasing pattern on the time series of the indicators, we attempt to find
the threshold that justifies the trend. As the increasing patterns of the indicators are happening because
of the extreme values in the time series, we use quantile estimation to come out with the threshold
value that will justify the patterns. This threshold value will tell us that the data that exceeded the
value are considered extreme and responsible for the increasing pattern. Quantile estimation is a
method in extreme value theory to study extreme values and rare events. Hydrologists also have used
this method to study anomalies in hydrological data [20,21].

3. Data

The Malaysian climate is governed by two main regimes: the southwest and northeast
monsoons [25]. The southwest monsoon occurs between May and August and is responsible for the
dry period for the whole country. The northeast monsoon usually starts in November and ends in
February, which is responsible for the wet period (heavy rains) on the east coast of Peninsular Malaysia
and frequently causes monsoon flooding.

Kelantan is one of the states that is located on the east coast of Peninsular Malaysia and is often
affected by monsoon flooding. Kelantan River is located in the northeast of Peninsular Malaysia
between the latitudes 4◦40′ and 6◦12′ north, and longitudes 101◦20′ and 102◦20′ east. It is the
longest river in Kelantan at 248 km and drains an area of 13,100 km2. The total area of Kelantan is
15,022 km2. Furthermore, approximately 68.5% of the population lives in the Kelantan River basin.
The Kelantan River originates from the Tahan mountain ranges and flows into the South China Sea
moving northwards. The Kelantan River has two tributary rivers: the Galas River, and the Lebir River.
The Galas River has two main tributaries (the Nenggiri River and the Pergau River), while the Lebir
River has one major tributary (the Relai River).

Annual precipitation over the Kelantan River basin ranges from 0 mm in the dry season from
March to May to 1750 mm in the rainy or monsoon season from November to January. For this region,
the estimated runoff is 500 m3 s−1. The Kelantan catchment has various types of soil but is dominated
by sedentary soils on hills and mountains, while on riverine floodplains and low riverine terraces,
alluvial soil appears. Agriculture (paddy, rubber, and oil palm) for midstream and downstream and
upstream forests (i.e., near Gua Musang) are the main land uses of this region.

The Kelantan River frequently overflows when the northeast monsoon reaches Kelantan with
heavy rains, triggering an almost annual recurrence of monsoon flooding [26]. Furthermore, rapid
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land use changes were reported from the 1970s to the 2000s, especially concerning deforestation (due
to logging activities) and conversion to agricultural land (rubber and oil palm) [27,28]. A recent
study [29] reported that land use and climate change (i.e., precipitation) have a substantial effect on
hydrological processes in the Kelantan monsoon catchment, but that precipitation changes are the
main driver for the downstream catchment, which is more vulnerable to flooding, with related possible
socio-economic impacts.

The River Kelantan has become increasingly susceptible to flood disasters, and this is potentially
due to meteorological factors such as climate change, rapid changes in land use, and weaknesses in
development planning and monitoring. The River Kelantan is important because it is subject to the
most severe monsoon flooding in Malaysia. In Malaysia, the first recorded major flood event occurred
in 1886 and had caused extensive damage in Kelantan, Malaysia [25]. Based on the report by the
Department of Drainage and Irrigation, DID [30], on the flood events at Kelantan, starting with the
year 2000, the first severe flood that hit Kelantan was reported in December 2001 due to the unusual
tropical cyclone Vamei. Afterward, in the years 2007 and 2009, heavy rainfall again had triggered major
floods in Kelantan. To date, the worst flood reported in Kelantan was at the end of 2014, commonly
known as the Kelantan Big Yellow Flood 2014 [31].

Therefore, in this research, our analysis focuses on water levels in the Kelantan River. The daily
water level data of Kelantan River recorded at the Guillemard Bridge station (measured in meters, m)
were obtained from the DID. The DID has assigned a water level of 16 m as the danger of the Kelantan
River at the Guillemard Bridge station as an indicator of a flood. Figure 1 shows a time series plot of
the daily water level data of the Kelantan River obtained from 1 January 2000 until 13 October 2010.
Some important statistical parameters of the time series are shown in Table 1. Table 2 lists the dates in
which the water level data exceeded the danger level (16 m); these dates will be used as benchmark
dates for flood events.
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Figure 1. Time series plot of daily water level data of Kelantan River at the Guillemard Bridge station
from 1 January 2000 until 13 October 2010.

Table 1. Statistics for the time series of daily water level data of Kelantan River at the Guillemard
Bridge station from 1 January 2000 until 13 October 2010.

Statistics Daily

Number of data 3939
Average 9.52

Max 20.44
Min 8

Standard deviation 1.26
Skew 3.29

Kurtosis 15.64
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Table 2. List of dates of the water level data that exceeded the danger water level (16 m) of Kelantan
River at the Guillemard Bridge station from 1 January 2000 until 13 October 2010.

No. Date of Flood Events No. Date of Flood Events

1. 23/11/2000 7. 12/02/2006–13/02/2006
2. 24/12/2001–25/12/2001 8. 08/01/2007
3. 10/12/2003–11/12/2003 9. 08/12/2007–18/12/2007
4. 11/12/2004–14/12/2004 10. 30/11/2008
5. 24/11/2005 11. 04/01/2009–05/01/2009
6. 18/12/2005 12. 06/11/2009–07/11/2009

4. Results and Discussion

This section is divided into two parts. The first part will discuss the results of CSD indicators
from the water level data of Kelantan River. The purpose of this part is to visualize the trend of the
indicators. In the second part, we will analyze the trend of the CSD indicators to produce a FLEWS
using Kendall’s tau rank correlation (standard way) and quantile estimation (proposed method).

4.1. Critical Slowing Down for Early Warning Signal

To produce an EWS, here we use the water level data in hand as a basis and compute the CSD
indicators to come out with early warning signals for the flood. We employ twenty days’ size of the
sliding window with a time step of one day to calculate the moving average, variance, and average
spectral density at low frequencies for each window of the water level data. This twenty days’ size of
the sliding window used to calculate the CSD indicators is suitable as it manages and provides us with
the increasing pattern in the time series of indicators. Even if we change the window size to ten days’
size, we will still manage to obtain the increasing pattern on the CSD indicator time series. Therefore,
this size of the sliding window is not really sensitive as long as we can get the increasing pattern on
the CSD indicators so we can proceed with the EWS. Figure 2 shows the time series of the moving
average and the obtained time series of the indicators, variance, and the average spectral density at low
frequencies for each window of the water level data. This figure visualized the trend of the moving
average and the CSD indicators. Figure 2 indicates that at the end of each year or the beginning of the
following year (wet period from November to February), there is an increasing pattern on the moving
average and both indicators. It proves that the CSD indicators produce a significant warning signal for
the flood events of each year.

Figure 3 shows the close up of the CSD indicators for all twelve flood events at Kelantan River from
1 January 2000 until 13 October 2010 (Table 2) and their respective water level time series. It shows that
both indicators are increasing with fluctuation patterns near flood events of every year. Simultaneously,
the increasing pattern shows that both indicators agree with the water level data. The increasing
pattern as observed in the time series of the CSD indicators can be used to produce a FLEWS.
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Figure 2. Time series of moving average and critical slowing down (CSD) indicators: (a) the time series 
of twenty days’ moving average of the water level data of Kelantan River; (b) the variance of the water 
level data of Kelantan River; (c) the average spectral density at low frequencies of the water level data 
of Kelantan River. 

Figure 2. Time series of moving average and critical slowing down (CSD) indicators: (a) the time series
of twenty days’ moving average of the water level data of Kelantan River; (b) the variance of the water
level data of Kelantan River; (c) the average spectral density at low frequencies of the water level data
of Kelantan River.
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Figure 3. Trend of the time series of water level and the time series of the critical slowing down
indicators, variance, and the average spectral density at low frequencies for all twelve flood events at
Kelantan River from 1 January 2000 until 13 October 2010.

4.2. Kendall’s Tau Versus Quantile Estimation for Early Warning System

Here, we examine the increasing pattern of the CSD indicators from the water level data
using Kendall’s tau rank correlation and quantile estimation for a more effective and efficient EWS.
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Even though we can see in Figure 3 that near the flood events, both indicators are increasing
simultaneously, after we calculate Kendall’s tau value, the strength of the correlation is varied for both
indicators. For the calculation of the Kendall’s tau rank correlation, here we applied ten days’ window
size to calculate the Kendall’s tau rank correlation. This is a sensitive window size because it will affect
our EWS if chosen wrongly as it determines the number of early warning signals and false alarms
gained. We already considered smaller and bigger window sizes to calculate this Kendall’s tau value,
but the result obtained shows inconsistency as a smaller window size will give us more windows with
a strong correlation, resulting in more false alarms. A bigger window size will affect our detection of
the flood events. For example, flood frequently happens in Malaysia. The big window size will detect
two flood events as one, not separately.

However, based on the results obtained by Kendall’s tau rank correlation analysis, the dates with
a significantly strong correlation are different for both indicators. Table 3 shows the result of the EWS
from the water level data determined by Kendall’s tau exceeding a threshold value of 0.9 for each CSD
indicators’ variance and average spectral density at low frequencies. Note that for this label for the
result through Kendall’s tau rank correlation, we label the outcome following Guttal et al. [10] based
on the strength of the correlation on the time series of CSD indicators. The nearest warning signal will
be assigned to respective flood events. If there are warning signals with no corresponding flood events,
then they are considered false alarms.

Table 3. Results of the early warning system (EWS) from the water level data determined by Kendall’s
tau exceeding a threshold value of 0.9 for each CSD indicators’ variance and average spectral density at
low frequencies.

Flood Events Variance Spectral Density

None 21/06/2000 (False alarm) None

None 09/08/2000 (False alarm) None

23/11/2000 18/11/2000 (EWS 5 days) 18/11/2000 (EWS 5 days)

24/12/2001–25/12/2001 04/03/2001 (EWS 9 months) 19/06/2001 (EWS 6 months)

None None 07/07/2003 (False alarm)

10/12/2003–11/12/2003 06/10/2003 (EWS 2 months) 26/11/2003 (EWS 14 days)

None None 21/03/2004 (False alarm)

11/12/2004–14/12/2004 14/08/2004 (EWS 4 months) 21/12/2004 (Late 10 days)

24/11/2005 20/03/2005 (EWS 8 months) No Signal

18/12/2005 No Signal No Signal

12/02/2006–13/02/2006 13/04/2006 (Late 2 months) 25/05/2006 (Late 3 months)

None None 05/11/2006 (False alarm)

08/01/2007 16/08/2006 (EWS 4 months) 01/01/2007 (EWS 7 days)

None None 28/05/2007 (False alarm)

08/12/2007–18/12/2007 No signal 13/09/2007 (EWS 3 months)

30/11/2008 24/06/2008 (EWS 5 months) No signal

04/01/2009–05/01/2009 No signal 12/03/2009 (Late 2 months)

06/11/2009–07/11/2009 29/05/2010 (Late 6 months) 14/11/2009 (Late 8 days)

None None 06/07/2010 (False alarm)

None None 28/09/2010 (False alarm)

Based on the results from Table 3, the variance succeeded in performing an early warning signal
for seven of twelve flood events. However, some signals cannot be detected during actual flood
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events. Surprisingly, some of them are falsely detected during the dry period of May until August:
flood events December 2004 and January 2007. In other cases, there are no signals and some with a late
signal took between two to six months to be detected: December 2005, February 2006, December 2007,
January 2009, and November 2009. The result of the EWS based on the CSD indicators of the average
spectral density at low frequencies succeeded in performing five of twelve early warning signals for
flood events. Nevertheless, the issue stays the same as some signals happen too early during the
dry period, some are late, and some are not detected: flood events December 2001, December 2004,
November 2005, December 2005, February 2006, November 2008, January 2009, and December 2009.

All the errors show that flood events cannot be detected on the exact dates even though it can be
clearly seen from Figure 3 that there is an increasing pattern in the CSD indicators during the flood
events. These results suggest that the measurement of Kendall’s tau rank correlation is inconsistent
with detecting the increasing pattern in the CSD indicators for our data set. Therefore, we proposed
a new analysis method to verify the increasing pattern of the CSD indicators to come out with a
better EWS. We use a method in extreme value theory known as quantile estimation to come out
with a threshold that justifies the significant increasing pattern. This quantile will provide us with
threshold values of the CSD indicators so that when we peak over the thresholds, we will get dates
consisting of the extreme values that are responsible for the increasing pattern. As we can see from
Figure 2, the peaks for both indicators are arriving almost at the same time and this indicates the same
flood events in the water level data. Therefore, in this study, we use the same number of the quantile
for both indicators (to prevent more signals detected for different indicators), and the dates of the
signal for flood events extracted should exceed the thresholds for both indicators at the same time (to
prevent false alarms that are created through the signal from just from one of the indicators). Hence,
the result of an early warning signal obtained should interpret that the increasing pattern occurs on
both indicators at the same time.

To obtain the suitable or optimum quantile to extract the dates with extreme values, here we list
down all possible values of the quantile and look for the best result of the EWS. Table 4 lists down the
results of the EWS from the water level data for different values of the quantile with their respective
weights. We can see that as the quantile value increases, the number of early warning signals obtained
also increases together with the number of false alarms, while the number of late signals decreases.
We explored many numbers for this quantile value. In addition, it seems that the range 10% to 20% is
the suitable value for the optimum quantile. For an explanation, Table 4 shows that at 10%, the quantile
number of the EWS obtained is two and it already shows a less efficient EWS. So, there is no need to
lower the number of the quantile value as it will only come out with a less effective EWS. At the quantile
20%, the number of false alarms is nine, which is more than half of the total number of flood events
(twelve flood events). This number of false alarms also shows a less efficient EWS. If we continue to
increase the quantile value, it will only create an EWS with more false alarms.

Table 4. Results of EWS from the water level data for different values of the quantile with their
respective weights.

Events/Quantile 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20%

EWS (0.5) 2 4 6 6 7 10 10 10 10 11 11

Late (0.3) 10 8 6 6 5 2 2 2 2 1 1

False (−0.2) 3 3 3 5 6 6 7 7 8 9 9

Total weight 3.4 3.8 4.2 3.8 3.8 4.4 4.2 4.2 4.0 4.0 4.0

At the quantile 15%, the number of early warning signals obtained starts to be stationary for
quite some time together with the number of late signals, while the number of false alarms continues
to rise. This indicates that the quantile 15% is the optimum quantile to gain the best result for the
EWS. This result is further verified by assigning weight to each outcome of the EWS (0.5 for an early
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warning signal, 0.3 for a late signal, and −0.2 for a false alarm) and calculating the total weight of
the outcome for each quantile. We found the highest weight of 4.4 is at the optimum quantile 15%,
and this proves the result obtained. Regarding the weight applied, the biggest weight of 0.5 is assigned
to the outcome of early warning signals as it shows the effectiveness of the EWS. For a late signal
(or detection), we assigned the weight 0.3 as this outcome is expected for some flood events. Lastly,
we take the weight −0.2 for false alarms, as these false alarms have a negative impact in terms of the
efficiency of the EWS.

Table 5 shows the result of the FLEWS at the optimum quantile of 15% with threshold values of
0.4742 for the time series of the variance and 0.7909 for the time series of the average spectral density at
low frequencies. This threshold value gives us eighteen signals. Twelve of the signals show that this
framework succeeds in detecting all twelve of the events: ten events with an early warning signal,
while two other events are detected on the first day of the flood. The other six signals correspond to
false alarms, with rates of 33.33%. Note that for this quantile estimation approach, we label the outcome
of the signal depending on the interception of the signal with the dates of the flood events. Based on the
date of the signal, we will decide whether there is an early signal or late signal (or detection). If there
are no corresponding flood events during the warning signal, then it is considered a false alarm.

Table 5. Results of EWS from the water level data with the optimum threshold at the quantile 15%.

Flood Events Signal Detected EWS

23/11/2000 22/11/2000 Early 1 day

None 19/01/2001 False alarm

None 16/11/2001 False alarm

24/12/2001–25/12/2001 16/12/2001 Early 8 days

None 17/12/2002 False alarm

10/12/2003–11/12/2003 30/11/2003 Early 10 days

None 30/01/2004 False alarm

11/12/2004–14/12/2004 10/12/2004 Early 1 day

24/11/2005 23/11/2005 Early 1 day

18/12/2005 15/12/2005 Early 3 days

12/02/2006–13/02/2006 12/02/2006 First day detection

08/01/2007 21/12/2006 Early 18 days

None 04/11/2007 False alarm

08/12/2007–18/12/2007 07/12/2007 Early 1 day

None 29/02/2008 False alarm

30/11/2008 29/11/2008 Early 1 day

04/01/2009–05/01/2009 02/01/2009 Early 2 day

06/11/2009–07/11/2009 06/11/2009 First day detection

In detail, for the early warning signals, a different number of days with a range between one
and eighteen days was established in this study for the floods’ early warning. This range of early
warning is more significant for flood compared to early warning that takes months, produced via
Kendall’s tau rank correlation in Table 3. One-day early warning signals are obtained for flood events
November 2000, December 2004, November 2005, December 2007, and November 2008, while early
warning signals for the rest of the flood events are between three and eighteen days (flood event
January 2007). There is no event that occurs without a signal, and the lowest is the detection on the
first day of the flood from flood events February 2006 and November 2009. This FLEWS also created
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six false alarms, in which during these false alarms, signals were obtained in the time series of CSD
indicators while there were no flood events during the time period (i.e., signal on 19/01/2001 and
16/11/2001).

In conclusion, after we change the method of analysis from the standard method of Kendall’s tau
rank correlation to quantile estimation, we found that the FLEWS created becomes more significant.
This is because the early warning signals were obtained just a few days before the flood events or on
the same date, not up to six or nine months, and for some cases late warnings were observed through
Kendall’s tau rank correlation. Further, all the early warning signals are shown on both CSD indicators,
which shows consistency compared to the FLEWS through Kendall’s tau rank correlation where some
of the signals are just shown on one of the indicators. Other than that, using the proposed method,
all flood events are detected compared to the standard method that was not able to detect three flood
events (December 2005, December 2007, January 2009) (see Table 3). However, the number of false
alarms created is still the same—six false alarms.

5. Conclusions

In this work, we successfully applied the theory of CSD to the hydrological field to analyze water
level data for the early warning of flood disasters at Kelantan River. The increasing pattern in the time
series indicators of CSD (variance and average spectral density at low frequencies) is a symptom of the
warning signal. We also proposed the method of quantile estimation to analyze the increasing pattern
to find the threshold that justifies the significant rising trend of the CSD indicators since the standard
way of analysis using Kendall’s tau rank correlation is not favorable for our data set.

In a case study on water level data from Kelantan River, we found that the time series of water
level data exhibit CSD by demonstrating the increasing pattern near the flood events. From the
quantile estimation, the optimum results are at the quantile 15% with threshold values 0.4742 for the
time series of variance and 0.7909 for the time series of average spectral density at low frequencies.
These thresholds succeeded in detecting all twelve flood events and producing ten early warning
signals for the floods events and the other two flood events were detected on the first day of the flood.
These thresholds also created six false alarms.

In conclusion, this study suggests that the theory of CSD is a reliable indicator to perform a
FLEWS at Kelantan River. The method for finding the threshold using quantile estimation also shows
consistency to detect all the increasing patterns on the CSD indicators near all the flood events and
produce an early warning signal for the majority of the flood events. The drawback of this study,
which can be strengthened for future studies, is that the analysis could be achieved by first splitting the
data into calibration and validation sets to measure how the method’s performance in future floods will
be. Besides, more research should be conducted to see the full performance of the proposed methods
under different climate conditions or watershed sizes.
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