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Abstract

Hydrogeochemical and stable isotope analyses and geochemical modeling were carried out

to identify the major geochemical processes controlling the groundwater chemistry and fluo-

ride contamination in the aquifers of the Yuncheng Basin, China, an area with complex

hydrogeochemical conditions and severe fluoride contamination of the groundwater. The

major findings of this case study include the following: 1) Cation exchange and salt effects

are vital controls on the enrichment of fluoride in groundwater in the area by reducing the

activity of Ca2+/F- in groundwater via ion complexation. Cation exchange increased the fluo-

ride concentration by 2.7 mg/L when the Na/Ca molar ratio increased from 0.24 to 9.0, while

the salt effect led to a ca. 5–10% increase in complex F- in groundwater due to the further

dissolution of fluoride-bearing minerals in the aquifers, as suggested by a model calculation.

2) Anthropogenic contamination from pesticide and fertilizer use and industrial waste dis-

charge is also a main source of fluoride in the groundwater. 3) Evaporation and ion effects

favor the enrichment of fluoride in groundwater by encouraging the removal of Ca via precip-

itation. 4) The desorption of fluoride from mineral/organic matter surfaces is enhanced

under alkaline conditions and a high HCO3 content in groundwater.

Introduction

Groundwater is becoming increasingly important for the drinking water supply, ecosystem

health and economic development as the global population grows. Groundwater is fairly ubiq-

uitous, but its conditions vary enormously, and exploitation is often undertaken with a limited

understanding of the hydrochemistry and without sufficient evaluation of the resource quality,

especially in developing countries. Potentially toxic elements, e.g., fluorine, may reach hazard-

ous concentrations in groundwater as a result of specific hydrogeochemical processes and con-

tamination due to human activities. Elevated concentrations of fluoride in groundwater that

exceeded the World Health Organization (WHO) limit of 1.5 mg/L in drinking water have
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been detected in many parts of the world [1–12]. The mechanisms of fluoride contamination

in groundwater systems in arid-semi arid regions, where groundwater may be the only or

most important water supply source, are of scientific, environmental and ecological

importance.

The dissolution of natural fluoride-bearing minerals, such as fluorspar, fluorapatite, amphi-

boles, hornblende, tremolite and biotite, is the common natural source of fluoride in ground-

water [13–23]. Ion exchange, evaporation, adsorption-desorption, ion competition, mixing,

salinization and anthropogenic pollution are geochemical processes that can form fluoride-

rich groundwater. However, the sources and processes of fluoride contamination can vary

with the geochemical and hydrochemical conditions [24–28]; thus, studies of the hydrogeo-

chemical processes in areas with groundwater highly contaminated by fluoride are important

for understanding the mechanisms involved. Most previous studies have focused on the

hydrogeochemical processes of fluoride in aquifers [29–34], while the identification of these

processes remains challenging in areas with complex hydrogeochemical or geo-hydrogeologi-

cal conditions.

The Yuncheng Basin, which is located in North China, contains severely fluoride-polluted

groundwater and has complicated hydrogeochemical conditions [5],[17],[35–38], was selected

for this study. Hydrogeochemistry and stable isotope analyses and geochemical modeling were

employed to understand the sources and mechanisms of fluoride contamination in this spe-

cific groundwater system. The aims of this study were (1) to investigate the major geochemical

processes controlling the groundwater chemistry in the Yuncheng Basin and (2) to identify the

mechanisms responsible for the fluoride contamination of the groundwater.

Hydrogeology

The Yuncheng Basin is situated in the southwestern region of Shanxi Province, with hills sur-

rounding it in three directions—north, east and south (Fig 1). The basin consists of several

aquifers and contains mainly thick, loose, Quaternary sediment rich in pores. The sediment

consists of mainly fine to coarse sand, gravel, pebbles, silt and clay and has a maximum thick-

ness of approximately five hundred meters.

Phreatic and artesian aquifers are the main water resources for exploitation in the study

area. Based on the distribution characteristics of the aquifers and the hydraulic features,

Quaternary groundwaters in the Yuncheng Basin were classified into two types in this study:

(1) phreatic aquifers (5–70 m), which are supplied by precipitation, canal seepage, irrigation

infiltration, reservoir seepage and lateral recharge and have discharge that is dominated by

artificial exploitation and, in some parts, evaporation, and (2) semi-confined/confined aquifers

(85–500 m), which are remotely recharged mainly by lateral runoff from mountain fronts and

leakage through aquitards and have discharge that is dominated by artificial exploitation. For

detailed geological and hydrological information, see Gao et al. [37] and Li et al. [38].

Sampling and methods

A total of seventy samples, including one precipitation, eight surface-water, nineteen shallow-

aquifer, and 42 deep-aquifer samples, were collected from different areas of the Yuncheng

Basin during August, 2013-September, 2015. Water samples were collected after the in situ

physicochemical parameters, including temperature, pH and electrical conductivity (EC),

were stable; all the parameters were measured by portable meters.

Each sample was collected in three bottles—one for anion analysis, one with added acid for

cation analysis and one stable isotope determination. The total alkalinity was measured on the

sampling day using the Gran titration method with an error of< ± 2% for triplicate analyses.
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The concentrations of F-, Cl−, SO4
2−, and NO3

− were determined using ion chromatography

(IC, Dionex 120, Dionex, Sunnyvale, CA, USA). The Dionex IonPac AS19-4μm column meets

the performance requirements specified in U.S. EPA Methods 300.0 and 300.1 for the determi-

nation of anion in groundwater. Certified anion standard solutions (1000 μg/mL, National

Institute of Metrology) and deionized water were prepared for the composite working stan-

dards. For cation analysis, reagent-grade HNO3 was added until the pH of samples was less

than 2. Major cations, K+, Na+, Ca2+ and Mg2+, were measured using inductively coupled

plasma-atomic emission spectrometry (ICP-AES, IRIS Intrepid XSP, Thermo Elemental,

Madison, WI, USA) with an analytical error of less than ± 2%. For water samples, the analytical

charge imbalances were within the standard limit of ±5%.

Oxygen-18 and deuterium analyses were performed in the laboratory of the Institute of

Karst Geology at the Chinese Academy of Geological Sciences. The δ18O values of the water

samples were determined by the CO2-H2O equilibration method [39] and measured using a

gas source mass spectrometer (MAT 253). The δD values of the water samples were obtained

by reduction to H2 over hot metallic zinc, as described by Coleman et al. [40], and measured

using a gas source mass spectrometer (MAT 253). The isotopic data are reported in the stan-

dard delta notation in parts per thousand relative to Vienna Standard Mean Ocean Water

(VSMOW) [41], and the δ18O and δD measurements had an overall precision of 0.2 and 2 ‰,

respectively.

Fig 1. Simple geomorphological map of the Yuncheng Basin, China. (Areas: I, mountain bedrock areas; II, Emei high

platform; III, Kaolao low platform; IV, loess hilly regions; V, piedmont plain; VI, alluvial plain; VII, fluvial depressions; VIII,

Yellow River terrace).! groundwater flow direction; pentagram, surface water; triangle, shallow groundwater; circle, deep

groundwater; Line AB, location of cross-section in Fig 2.

https://doi.org/10.1371/journal.pone.0199082.g001
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The mineral compositions of the sediment and base rock samples were analyzed using X-

ray diffraction (XRD, ZSX Primus II). Semi-quantitative XRD was carried out by using the ref-

erence internal standard method [42] with an analytical error of ±10% for major minerals and

±30% for minor minerals. Scanning electron microscopy (SEM, Hitachi SU8010) was coupled

with focused energy dispersive X-ray analysis for elemental semi-quantification. The samples

were prepared in graphite stubs and coated with gold before analysis. The detection limit of

the microprobe analyses was approximately 2.0% for fluorine.

To determine the contents of water-soluble fluoride and total fluorine, pesticides and fertil-

izers were first dissolved in DI water. In this study, the pesticides and fertilizers were all water

soluble, so the water-soluble fluoride and total fluorine contents were the same. The total fluo-

rine in the solid waste samples was analyzed by the method suggested by Gao et al. [43].

Water-soluble fluoride in the solid wastes was extracted by using DI water at a solid:liquid

ratio of 1:10 (1 g of solid in 10 mL of DI water) at 25 ˚C after allowing a half hour for equilibra-

tion. The fluorine concentration in the equilibrated solution was further analyzed by IC (Dio-

nex 120, Dionex, Sunnyvale, CA, USA). The analytical error of the total fluorine and water-

soluble fluoride measurements was less than ±10%. Geochemical modeling and calculation of

the saturation index (SI) of the minerals and fluoride species were performed with PHREEQC

software.

The authors state that no specific permissions were required for the locations/activities in

this research. This research is based on the National Natural Science Foundation of China

(41372251). The Yuncheng basin was chosen as the study area and this was clearly stated in

the project. So the specific permissions were not required. The authors state that the field stud-

ies did not involve any endangered or protected species.

Results and discussion

Complex hydrochemical conditions in the area

Groundwater samples were divided into two categories, shallow groundwater and semi-con-

fined/confined deep groundwater, based on the burial depth and regional hydrogeological

conditions. The major properties and the hydrochemistry of the shallow and deep groundwa-

ter are varied in the study area (Table 1, Fig 2). The concentration of sulfate (SO4
2-), which

ranged between 17.5 and 8,295 mg/L, was the most variable of the anions, followed by Cl-

(6.73–3,044 mg/L) and HCO3
- (66.45–1,053 mg/L) (Fig 2). The concentration of Na+, the

major dominant cation, varied over a wide range of 8.28–4,967 mg/L, while the concentrations

of other cations, including Ca2+, Mg2+, and K+, were relatively stable.

A rapid increase in the major ion concentration along the flow path was found in shallow

groundwater (Fig 3), and the shallow groundwater from the central discharge areas contained

the highest total dissolved solids (TDS) content of 17,452 mg/L, with Na+ as the dominant cat-

ion and SO4
2- and/or Cl- as the dominant anion(s) (Table 1). The shallow groundwater from

the northeastern piedmont plains (area A0) was generally classified as Na-HCO3/Na-Ca-HCO3

water, and that from the southern piedmont plains (area B0) was classified as Ca-HCO3 water,

with a low content of TDS and low ion concentrations (Fig 4). Shallow groundwater from

western areas (area C0) was of the Na-HCO3/Na-Ca-HCO3 and Na-/SO4 types and transi-

tioned to Na-SO4 or Na-Ca-SO4 water in the flow-through areas. In the discharge areas,

groundwater was typically of the Na-/SO4/Cl/SO4-HCO3 type in both shallow and deep

aquifers.

The deep groundwater was alkaline, with a pH range of 7.3–8.6. Most of the deep ground-

water samples consisted of freshwater with a TDS concentration below 1000 mg/L, belonging

to the Na-HCO3 (Fig 4, subgroups A, C and D), Ca-HCO3 (subgroups A and C) or Ca-HCO3-
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SO4 (subgroup B) types in the recharge areas. Some deep groundwater samples (subgroup A)

collected from the northeastern areas consisted of Ca-SO4/Na-Ca-SO4 water, which transi-

tioned to Na-Ca-SO4 and Na-HCO3 water in the flow-through areas. A gradual increase in the

ion concentrations was observed in deep groundwater along the flow path (Fig 3). The sources

of solutes in the deep water are aquifer mineral dissolution, saline lake water intrusion and

shallow groundwater leakage [37], [38], [44].

More than 70% of the shallow groundwater contained NO3
- in excess of 10mg/L. One

groundwater sample (YH31) contained NO3- in excess of the WHO standard for drinking

water. (50 mg/L). Because of the lack of natural nitrate in most geologic formations, NO3
-

concentrations > 5 mg/L are generally indicative of water contamination by animal waste, fer-

tilizer and/or effluent [45], [46]. The highest NO3
- content of 67.9 mg/L was observed in shal-

low groundwater, implying an unambiguous anthropogenic source of contaminants in this

area. High NO3 concentrations were also observed in some deep groundwater samples, which

indicates an exogenous input of contaminants from irrigation water and/or polluted shallow

groundwater.

Stable isotopes δD and δ18O were analyzed in selected shallow groundwater, deep ground-

water and surface water samples from the Yuncheng Basin. Table 1 summarizes the isotopic

compositions (δ18O and δD) of selected water samples collected from the Yuncheng Basin dur-

ing the study period. The surface water samples were more enriched in deuterium and 18O

than the shallow and deep groundwater samples, suggesting that the surface water and shallow

groundwater are systematically subjected to further fractionation by evaporation after rainfall

episodes.

Major geochemical processes

The mechanisms controlling groundwater chemistry and the functional sources of dissolved

ions can be assessed by Gibbs diagrams [47], by plotting the TDS content versus the ratio of

Table 1. Major physicochemical properties of water samples taken in the Yucheng Basin. (units, mg/L, except for the well depth, temperature, pH and isotope data).

Water Type Well

Depth(m)

Temperature

(˚C)

pH HCO3 F Cl SO4 NO3 Ca Mg K Na TDS δ18O δD

Rain water 18.2 6.24 72 0.32 3.97 5.25 1.17 3.2 db 0.42 24.6 74.5 - -

Surface water (n = 8) Max. - 29.0 9.14 1,939 15.36 52,598 34,487 163.6 163.1 765 31.20 49448 137,849 -48.0 -5.22

Min. - 5.1 7.75 181.9 0.32 10.57 70.72 1.39 24.04 3.12 2.24 17.56 289 -64.1 -7.68

Mean - 20.2 8.25 561.7 5.01 7,506 5,887 33.87 71.37 217.0 10.84 7,413 21,409 -57.07 -6.75

Median - 21.8 8.21 326.3 2.51 154 196 9.21 60.92 44.04 5.27 187 831 -59.1 -7.34

SD. - 7.0 0.46 580.4 5.72 18294 11,881 55.64 46.14 284.9 10.67 17,133 47,579 8.24 1.33

Shallow

groundwater

(n = 19)

Max. 70 23.4 8.6 1,053 12.65 3044 8295 67.88 428.9 605.2 14.08 4,967 17,452 -53.0 -6.57

Min. 9 15.8 7.1 148.3 0.53 10.86 18.51 3.1 4 6.96 0.30 8.28 362.4 -67.9 -9.40

Mean 39 18.0 7.8 539.6 4.18 489.9 1130 17.67 74.71 120.48 2.65 752.8 2,857 -62.4 -8.24

Median 35 17.8 7.8 467.9 3.06 110.9 279.8 13.88 35.87 60.72 1.75 275.8 951.2 -62.7 -8.32

SD. 20.2 1.62 0.4 246.5 3.92 804.0 2065 14.97 107.4 169.6 3.14 1,172 4,263 4.28 0.81

Deep groundwater

(n = 42)

Max. 350 24.7 8.6 830.9 3.15 1,402 2,106 23.96 268.5 470.4 10.05 1,074 5,254 -62.9 -8.33

Min. 85 16.5 7.3 66.4 0.10 6.73 17.51 1.17 8.21 10.92 0.971 16.25 228.8 -78.6 -10.84

Mean 203 20.2 8.0 399.2 1.23 145.4 286.2 7.02 44.23 53.76 3.10 230.2 969.5 -71.2 -9.67

Median 200 19.8 8.1 371.8 1.18 50.31 130.4 5.8 26.95 31.74 2.46 198.1 643.3 -69.65 -9.79

SD. 73.3 2.03 0.3 164.7 0.66 279.3 449.0 4.64 50.59 79.14 2.19 208.1 1,034 5.93 0.86

Db, below detection limit; SD, the standard deviation.

https://doi.org/10.1371/journal.pone.0199082.t001
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Cl/(Cl + HCO3) for anions and of (Na+K)/(Na+K+Ca) for cations. Gibbs diagrams illustrate

the natural mechanisms controlling groundwater chemistry, including rock weathering domi-

nance and evaporation and precipitation dominance. Based on the Gibbs diagram (Fig 5),

most deep groundwater samples were influenced by rock weathering, with a TDS content

below 1000 mg/L. Most shallow groundwater samples and some deep groundwater samples

were evaporation dominant, indicating the important role of evaporation and/or the dissolu-

tion of evaporites, such as halite (NaCl), gypsum (CaSO4 � 2H2O) and mirabilite (Na2SO4)

[37], [48], in shallow groundwater chemistry. A few of the shallow groundwater samples, col-

lected mainly from recharge and runoff areas, were rock weathering dominant, illustrating the

significant impact of water-rock interactions on the chemistry of this groundwater. No sam-

ples were classified as precipitation dominant, suggesting a limited input of solutes from the

atmosphere.

Cross-plots provide further insight into the possible ion sources in the groundwater of the

Yuncheng Basin and are presented in Fig 6. Strong correlation existed between the major cat-

ions (Cl, SO4, Na, Ca and Mg) and TDS with coefficients (R2) of 0.56–0.99 (Fig 6a–6d), which

is a clear indication of the contribution of these ions to the overall mineralization degree. A

significant positive correlation was observed in the cross-plot of TDS versus HCO3 (Fig 6f),

which may originate from carbonate or silicate dissolution. Some groundwater samples with

high TDS contents (TDS > 3 g) did not show notable increases in the HCO3 concentration,

which may be highly affected by evaporation or evaporite dissolution. In the cross-plot of TDS

Fig 2. Box plots of the groundwater concentrations of the major ions in the Yuncheng Basin. (a), shallow groundwater;

(b), deep groundwater. The concentrations of Ca, Mg and NO3
- refer to the right axis.

https://doi.org/10.1371/journal.pone.0199082.g002
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versus K (Fig 6g), the shallow groundwater samples were separated into two subgroups: 1)

increased K concentration with a low TDS content, indicating silicate weathering, and 2) low

K concentration (< 0.1 mM) with an increased TDS content, which can be explained by evap-

oration or evaporite dissolution. The deep groundwater samples fell into the area between the

silicate weathering line and the evaporite dissolution line (Fig 6g), suggesting a combined

effect of the dissolution of these minerals.

The significant impact of silicate weathering on groundwater chemistry was also indicated

by the bivariate plots of HCO3 versus Na + K and Na + K versus total cations (Fig 6h and 6i).

Most of the groundwater samples fell over the 1:2 line on the bivariate plot of HCO3 versus

Na + K. Falling below the 1:1 line on the bivariate plot of Na + K versus total cations suggests

that silicate weathering was a dominant process of introducing major ions in the groundwater

(Fig 6i and 6j). In the plot of Na + K versus Cl (Fig 6h), most of the data clusters around the 1:1

line, illustrating the strong influence of the dissolution of evaporites, such as halite, on the

groundwater chemistry. Hence, the ionic input into the groundwater system was most likely a

consequence of geologic sources: natural water-rock interactions in sediment aquifers, espe-

cially the weathering dissolution of minerals in aquifers.

To identify the relative contributions of the major weathering/dissolution mechanisms (sili-

cate, carbonate, and evaporite) to the ion concentrations in groundwater, the Na-normalized

molar ratio model (Ca/Mg/HCO3) suggested by Gaillardet et al. [49] was employed (Fig 7). In

this model, waters draining carbonates (carbonate end member) in Ca- and Mg-dominated

reservoirs have Ca/Na ratios close to 50, Mg/Na ratios close to 10, and HCO3/Na ratios close

to 120; waters draining silicates (silicate end member) have lower Na normalized ratios, Ca/Na

ratios of 0.35±0.15, Mg/Na ratios of 0.24±0.12, and HCO3/Na ratios of 2±1; and the evaporite

Fig 3. Schematic diagram of the distribution of major aquifers, hydrochemical facies and ion concentrations in groundwater. Q1,

Lower Pleistocene; Q2, Middle Pleistocene; Q3, Upper Pleistocene.

https://doi.org/10.1371/journal.pone.0199082.g003
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Fig 4. Piper diagrams of groundwater samples from the Yuncheng Basin. Subgroups: (a) shallow groundwater—A0,

samples from the northeastern areas; B0, samples from the southern mountain areas; and C0, samples from the western

areas; (b) deep groundwater—A, samples from the northeastern areas; B, samples from the southern mountain areas;

C, samples from the western areas; and D, samples from the Emei high platform areas. Symbols: triangle, shallow

groundwater; circle, deep groundwater.

https://doi.org/10.1371/journal.pone.0199082.g004
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end member (waters draining evaporites), which is difficult to constrain due to the diversity of

salt rocks, is deplete in HCO3 ions relative to Ca and Mg ions, resulting in a downward devia-

tion of their representative points from the silicate-carbonate line (Fig 7) [49].

The bivariate mixing plots (Fig 7) of Na-normalized HCO3 versus Ca and Na-normalized

Mg versus Ca show that most of the deep well groundwater samples and some of the shallow

groundwater samples were within or very close to the global average silicate weathering

domain, which indicates a significant contribution of silicate mineral weathering dissolution

to the groundwater chemistry of these samples. However, some of the shallow groundwater

and deep groundwater samples plotted in the transitional area between the carbonate end

member and silicate weathering zone, illustrating a combined effect of carbonate and silicate

dissolution. Resulting from the dissolution of evaporites, which are deplete in HCO3 ions, a

downward deviation of some shallow and deep groundwater samples from the silicate-carbon-

ate mixing line was observed in the bivariate mixing plots (Fig 7), which indicates a significant

contribution of evaporite dissolution to the groundwater chemistry of these samples. This

interpretation is supported by the findings of our field investigation and other studies, in

which soluble evaporites, such as halite, bloedite, and gypsum, are widely distributed in Middle

Pleistocene sediments in the Yuncheng Basin [37], [48].

Evaporation, as suggested by the Gibbs diagram (Fig 5), is another geochemical process that

potentially affected the groundwater chemistry in the area. The effect of evaporation on

groundwater chemistry is confirmed by the significant deviation of the δ18O and δD values of

most shallow groundwater samples about the global meteoric water line (GMWL) (Fig 8). The

groundwater samples that plotted along the GMWL were separated into several subgroups

according to their positions. Subgroup A, located in the left lower corner of the Fig with more

negative δD and δ18O values, is representative of groundwater recharged by high-altitude pre-

cipitation in the southeastern and northern mountain areas (Fig 1). Subgroup B, located above

the GMWL, was composed of groundwater samples recharged by rainwater in a lower altitude

area. Subgroup C, consisting of surface water, shallow groundwater and several deep ground-

water samples, deviated to the right of the GMWL, which is indicative of water typically sub-

jected to evaporation, being enriched in 18O and deuterium and resulting in a lower slope

(Y = 4.92X − 21.99). It is impossible for deep groundwater to undergo evaporation due to the

Fig 5. (a) Plots of TDS versus Na/(Na+Ca) and (b) TDS versus Cl/(Cl+HCO3) illustrating the dominant processes that control the groundwater

chemistry in the study area. Triangle, shallow groundwater; circle, deep groundwater.

https://doi.org/10.1371/journal.pone.0199082.g005
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large burial depth. The presence of some deep groundwater samples in this group suggests a

possible recharge from surface water or shallow groundwater that had been affected by evapo-

ration. Subgroup D, lying parallel to the GMWL, was composed of several deep groundwater

samples and is indicative of the effect of extensive water-rock interactions (horizontal arrow).

Fig 6. Cross-plots of the TDS and major ions in groundwater. Triangle, shallow groundwater; circle, deep

groundwater; TSG, trend line for shallow groundwater; TDG, trend line for deep groundwater.

https://doi.org/10.1371/journal.pone.0199082.g006
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Fluoride contamination of groundwater

Occurrence of fluoride. The fluoride concentrations in precipitation, surface water and

groundwater were analyzed in this case study. Precipitation had a low fluoride content due to

the absence of mineral inputs (Table 1). Generally, seawater spray and atmospheric pollutants

Fig 7. Molar ratio bivariate plots of (a) Na-normalized Ca and HCO3 and (b) Na-normalized Ca and Mg. The dashed circles

represent the ranges of approximate compositions of the silicate and carbonate end members, and a dashed box represents the

evaporite end member. Most deep groundwater samples fell in the area of silicate end member area, indicating that the majority of

ions originated from silicate mineral weathering. Triangle, shallow groundwater; circle, deep groundwater; solid red dot, Salt Lake

saline water.

https://doi.org/10.1371/journal.pone.0199082.g007

Fig 8. Scatterplot of δ18O versus δD for selected water samples. Triangle, shallow groundwater; circle, deep groundwater; X-

shape, surface water; Subgroup A, groundwater recharged by high-altitude precipitation in the mountain areas; Subgroup B,

groundwater recharged by rainwater in a lower altitude area; Subgroup C, waters subjected to evaporation; Subgroup D,

groundwater affected by extensive water-rock interactions.

https://doi.org/10.1371/journal.pone.0199082.g008
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are the major sources of fluorine in precipitation. Atmospheric pollution is likely the source of

fluoride in rainwater in the Yuncheng Basin because it is an inland catchment located far from

the ocean.

The surface water fluoride concentration ranged from 0.32 to 15.36 mg/L, with an average

of 5.01 mg/L. The fluoride concentration was low in the surface water samples collected from

the mountain areas and piedmont plain areas. The surface water samples with a high fluoride

concentration were all collected from areas with heavy human activity, such as saline lakes and

reservoirs. This suggests that human activities may be partly responsible for the increase in the

fluoride concentration in natural water systems; similar conclusions were drawn by Machen-

der et al. [50], Pathak [51], and Ravichandran et al. [52].

Groundwater in the Yuncheng Basin suffers from heavy fluoride pollution (Figs 1 and 9).

Approximately 60% of the shallow wells had fluoride contents above the WHO provisional

drinking water limit of 1.5 mg/L. The concentration of fluoride in groundwater is not uniform

in the study area, varying between 0.53 mg/L and 12.65 mg/L, with an arithmetic mean of 4.18

mg/L (Table 1). The lowest fluoride concentration was detected in shallow groundwater from

the piedmont plain area, where the groundwater was mainly recharged by precipitation and

fissure water (Figs 1 and 9). A high fluoride content was observed in shallow groundwater

from the central basin area. This groundwater normally has a low to moderate calcium content

and medium to high TDS content.

The deep groundwater samples were characterized by low to medium F− concentrations

that ranged from 0.1 mg/L to 3.15 mg/L (Table 1). Approximately thirty percent of the deep

wells had fluoride contents that exceeded 1.5 mg/L (limit recommended by the WHO). The

wide distribution of the fluoride concentration in deep and shallow groundwater suggests that

the fluoride pollution in this area is non-point source pollution.

The spatial variation of the fluoride concentration is presented in Figs 1 and 9. Physiogra-

phically, the high-fluoride groundwater is more concentrated in the central areas than in the

margins along the flow path of groundwater movement.

The hydrochemistry of fluoride-polluted groundwater (F> 1.5 mg/L) is shown in Fig 10.

The fluoride-rich groundwater was typically alkaline (7.0< pH < 9.0) with a medium to high

HCO3 content (mean of 539.6 mg/L in shallow groundwater and 399.2 mg/L in deep ground-

water), medium to high SO4 and Cl contents, high Na content (mean of 752.8 mg/L in shallow

water and 230.2 mg/L in deep groundwater), and low to medium Ca content. These results

Fig 9. Distribution of fluoride in groundwater with depth along profile AB in the Yuncheng Basin. Areas of circles or triangles represent the

concentration of fluoride in groundwater, as in Fig 1. triangle, shallow groundwater; circle, deep groundwater.

https://doi.org/10.1371/journal.pone.0199082.g009
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indicate that alkaline conditions, competitive adsorption, cation exchange, salt effects and the

removal of Ca by precipitation are vital factors controlling the enrichment of fluoride in

groundwater in the study area.

Geochemical processes controlling groundwater fluoride contamination. Sources of

fluoride. The typical fluorine-rich rocks are syenites, granites, quartz monzonites, granodio-

rites, felsic and biotite gneisses, and alkaline volcanics, with fluorite (CaF2), fluoroapatite

(Ca5(PO4)3F), micas, amphiboles, cryolite (Na3AlF6), villiaumite (NaF) and topaz (Al2(SiO4)

F2) as the major fluoride-bearing minerals [53–61]. The fluoride concentration is positively

correlated with the pH and the TDS, Cl, SO4, HCO3 and Na concentrations (Fig 9) in the

groundwater samples, indicating a natural mineral weathering dissolution source of fluoride

in groundwater.

In the Yuncheng Basin, the major fluoride-bearing minerals were identified to be micas

and amphibole in Quaternary sediments (Table 2) and biotite in metamorphic rock (Fig 11).

The total fluorine content ranged between 220–1,300 mg/kg in sediments and rocks (Table 3).

Biotite schist had the highest fluoride content, with biotite as the major fluoride-bearing min-

eral, which is the major weathering mineral source of fluorine to the subsurface environment.

The clay and silt sediments also had high fluoride contents of 1,118 and 1,106 mg/kg, respec-

tively (Table 3). Due to the high adsorptivity of fluoride on clay minerals, the exchangeable

fluoride and the fluoride in the mineral matrix may account for a significant portion of the

Fig 10. Scatterplot of the fluoride concentration versus the concentrations of major ions, the TDS content and the pH of groundwater in

the Yuncheng Basin. Δ, shallow groundwater; �, deep groundwater.

https://doi.org/10.1371/journal.pone.0199082.g010
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total fluorine in these materials. The adsorbed fluoride could be easily released from the clay/

silt sediments in certain environments, such as alkaline conditions or soda-rich water. The

release of fluoride from sediment may be a major source of fluoride in groundwater [62], [63].

Processes controlling fluoride contamination. In general, fluoride is preferentially adsorbed

onto sediment mineral surfaces under neutral conditions. Abundant research indicates that

pH is one of the major factors that governs the liberation and mobility of fluoride into ground-

water. A significant positive correlation was observed between the pH and fluoride concentra-

tion in groundwater (Fig 10g) in the Yuncheng Basin. The mechanisms of this pH control may

Table 2. Summary of the major minerals in sediments (n = 50) from the Yuncheng Basin.

Minerals

(weight percent)

Max. Min. Mean SD.

Quartz 68.25 19.71 40.02 9.40

Chlorite 14.14 0.26 4.12 2.95

Mica 31.52 0.86 11.71 6.69

Calcite 44.38 0.24 8.79 5.83

Albite 41.09 1.58 23.10 8.26

K-feldspar 43.26 0.17 8.96 7.61

Amphibole 5.50 0.45 2.15 0.95

Dolomite 9.60 0.09 1.50 2.10

https://doi.org/10.1371/journal.pone.0199082.t002

Fig 11. SEM and XRD analyses of rock/sediment samples from the Yuncheng Basin. (a) XRD pattern of a rock sample,

(b) XRD pattern of a sediment sample, (c) SEM pattern of a rock sample, (d) SEM pattern of a sediment sample and

chemical components of point one in Fig 8d. Biotite/micas were identified as major fluoride-bearing minerals in both rock

and sediment samples.

https://doi.org/10.1371/journal.pone.0199082.g011
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include the following: (1) High pH could affect the ionic charge of F- and the properties of

solid surfaces and further promote the desorption/adsorption of anions [64–66]. (2) Consider-

able OH- in groundwater could cause Ca2+, Fe3+ and Al3+ to precipitate, preventing F- from

complexing with cations, which results in a high release of F- in groundwater. (3) Under alka-

line conditions, OH- could exchange with F- adsorbed on clay minerals, humus and soil col-

loids [67–70]. Thus, the interaction between pH and fluoride partly explains the distribution

of fluoride in groundwater.

Competitive adsorption by other anions, such as HCO3, could cause the desorption of fluo-

ride from mineral/organic matter surfaces within the groundwater system [71], [72]. A

decrease in fluoride adsorption of 32.2% with an increase in the bicarbonate concentration

of 300 mg/L was reported by Alagumuthu et al. [73], reflecting the great ability of bicarbonate

to compete with fluoride for active sites. In this case study, a slight positive correlation was

observed between the HCO3 and fluoride concentrations in groundwater, and the groundwa-

ter samples highly contaminated with fluoride ([F] > 4.0 mg/L) all had high bicarbonate con-

centrations between 454.6 and 1,053 mg/L, illustrating the intense competitive adsorption

between fluoride and HCO3 at the active sites (Fig 10h).

Evaporation/evapotranspiration is another important process that increases the fluoride

concentration in groundwater in arid and semi-arid regions [18]. A significant linear relation-

ship between the fluoride and Cl (a conservative element) concentrations (Fig 10a) suggests

that evaporation is one of the major processes occurring in the groundwater of the Yuncheng

Basin. The effect of evaporation and condensation on the fluoride contamination in shallow

groundwater was confirmed by the δD and δ18O scatterplots (Fig 8), where a right deviation of

δD and δ18O from the GMWL and an increased fluoride concentration were observed. Most

of the shallow groundwater samples fell on the evaporation line, illustrating the significant

effect of evaporation on groundwater chemistry. Elevated fluoride concentrations were

detected in these shallow groundwater samples in subgroup C (samples greatly affected by

evaporation), illustrating that evaporation could partly contribute to the contamination of

fluoride in these groundwaters. The mechanisms by which evaporation increases the fluoride

concentration may include the following: 1) Evaporation could directly remove water from

shallow aquifers [74], [75], elevating the fluoride concentration in groundwater [16]. 2) Evapo-

ration could increase ion concentrations, leading to the precipitation of some major minerals

[33], [76], [77], e.g., calcite and dolomite, reducing the Ca concentration and favoring the dis-

solution of fluorite and the enrichment of fluoride in groundwater. Deep groundwater is not

affected by evaporation due to the great burial depth; therefore, the appearance of three deep

Table 3. Fluoride content (mg/kg) in rock/sediment samples (n = 3) from the Yuncheng Basin.

Rock/sediments Average content of F (mg/kg) SD

Rock type Biotite schist 1300 200.0

Granite porphyry 803.0 69.35

Granodiorite porphyry 553.0 29.57

Dolomite 260.0 22.52

Biotite granite 437.0 84.25

Basalt 520.0 85.06

Calcite 220.0 50.01

Sediment type Clay 1118 112.0

Silt 1106 68.15

Fine sand 535.0 71.63

Medium sand 426.7 36.42

https://doi.org/10.1371/journal.pone.0199082.t003
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groundwater samples in subgroup D group is perhaps due to the leakage of shallow groundwa-

ter, irrigation return water and/or surface water that had been subjected to evaporation.

In addition to evaporation in shallow groundwater, cation exchange, ion effects and salt

effects are important geochemical factors that cause fluoride pollution by reducing the Ca con-

tent in groundwater. Cation exchange occurs widely in sedimentary aquifers and involves of

the replacement of the bivalent cations Ca and Mg in the aquifer matrix with the monovalent

cations Na and K in groundwater [78]. Bivariate plots of Ca, Mg, and Ca+Mg versus HCO3;

Ca+Mg versus Na+K; and Ca+Mg-SO4-Cl versus Na+K-Cl (Fig 12a–12d) were employed to

show the influence of cation exchange in which the monovalent cations Na and K in ground-

water replaced the bivalent cations Ca and Mg in the aquifer matrix. Most of the groundwater

samples fell over the 1:2 line on the bivariate plot of HCO3 versus Ca, Mg and Ca+Mg, suggest-

ing cation exchange as a dominant process in groundwater chemistry, in addition to silicate

weathering. The bivariate plot in Fig 12e confirmed the influence of cation exchange—the

trend line with slope of ca. -1 indicates that cation exchange probably has a strong influence

on the groundwater chemistry of the study area. In this way, the concentration or molar ratio

of Ca is apparently reduced in groundwater, consequently promoting the dissolution of

Fig 12. Bivariate plots of the major ions in groundwater. (a) Ca + Mg versus HCO3; (b) Ca versus HCO3; (c) Mg

versus HCO3; (d) Ca + Mg versus K+Na; (e) (Ca+Mg)-(SO4+HCO3) versus K+Na-Cl. triangle, shallow groundwater;

circle, deep groundwater.

https://doi.org/10.1371/journal.pone.0199082.g012
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fluoride-bearing minerals in aquifers and increasing the fluoride concentration in groundwa-

ter. A rough estimation of the contribution of cation exchange to fluoride contamination was

obtained by calculating the increase in the fluoride concentration with the increase in the Na/

Ca molar ratio in simulated solutions (calculation performed with PHREEQC V2.0.1.8). Two

groundwater solutions, one Na-HCO3 water with a Na/Ca molar ratio of 1.17 and one Ca-

HCO3 water with a Na/Ca molar ratio of 0.24, were used as the initial solutions in the simula-

tions. The simulation results show that an increase in the Na/Ca molar ratio from 0.24 to 9.06

caused an increase of 2.7 mg/L fluoride in solution one, and an increase in the Na/Ca molar

ratio from 2.0 to 8.99 caused an increase of 2.82 mg/L fluoride in solution two by equilibration

with fluorite.

Ion effects were induced by the dissolution of deposited evaporites, especially gypsum, in

the aquifer sediments in the study area. The dissolution of gypsum introduces additional cal-

cium into the groundwater system and causes the precipitation of calcite and dolomite from

the groundwater [79], [80], by which groundwater maintains a low level of calcium and a con-

stant dissolution capacity for fluorite. The saturation of groundwater with respect to gypsum,

calcite and dolomite is illustrated in Fig 13. The mineral phase of gypsum is undersaturated in

the groundwater, indicating that the mineral phase will tend to dissolve. Calcite and dolomite

are distributed around the saturation/equilibrium or oversaturation areas in the scatterplot.

The mineral phases that are oversaturated (SI� 0.1) will precipitate out of solution. However,

an increase in the SI of calcite, dolomite and gypsum in Fig 13 implies dissolution of the min-

erals. The dissolution of gypsum and dolomite and the subsequent exchange between cations

lead to the precipitation of calcite, as shown by the constant SICalcite value with the increase in

SIDolomite and SIGypsum (Fig 13). The removal of Ca from groundwater by calcite precipitation

occurs within the groundwater system and increases the HCO3 concentration via further dis-

solution of dolomite. The constant increases in SIFluorite of groundwater indicate the further

dissolution of fluorite and consequent increase in the fluoride concentration in the groundwa-

ter. This elevated fluoride concentration is attributed to the ion effects in groundwater.

Salt effects promote the dissolution of most fluoride-bearing minerals in aquifers by reduc-

ing the activity of fluoride in groundwater via ion complexation. A positive correlation

between F and Cl, SO4, Na and TDS (Fig 10a–10d) suggests that salt effects could be one of the

Fig 13. A bivariate plots of SIDolomite/SICalcite versus SIGypsum in shallow groundwater (a) and deep groundwater (b). Meaning of symbols: the

green solid triangle, SIDolomite of shallow groundwater; the blue hollow triangle, SICalcite of shallow groundwater; the big solid red triangle, SIFluorite

of shallow groundwater; the small solid red circle, SIDolomite of deep groundwater; the big hollow red circle, SICalcite of deep groundwater; the big

solid red circle, SIFluorite of deep groundwater.

https://doi.org/10.1371/journal.pone.0199082.g013
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main factors controlling the presence of fluoride species in the groundwater of the Yuncheng

Basin. The source of salt may be either evaporite (such as halite, gypsum, mirabilite and bloe-

dite) dissolution or saline lake water intrusion, as previously reported by Gao et al. [37]. A

rough calculation of the contents of the fluoride species in the groundwater shows that com-

plex fluoride accounts for up to 6.02–19.38% of the total fluorine in saline groundwater but

only 1.33–8.16% in fresh groundwater (Table 4). MgF+ was the most abundant complex fluo-

ride species in both fresh and saline groundwater, and the highest percentage of MgF+ was

found in saline groundwater (15.92%). NaF0 was the second most abundant fluoride species

(up to 4.31%) in saline groundwater, while CaF+ was the second most abundant species in

fresh groundwater, indicating an increased formation of Na+-F- complexes in the form of

NaF0 at the extremely high sodium concentrations in saline groundwater. The percentages of

HF0 and BF(OH)3
- were higher in the saline groundwater than in the fresh groundwater.

Therefore, increases in the ion concentrations in saline groundwater favor the formation of

complex fluoride, reduce the activity of aqueous fluoride, and promote the further dissolution

of fluoride-bearing minerals or the desorption of fluoride from mineral/organic matter

surfaces.

Anthropogenic contamination. Several human activities may also result in substantial fluo-

ride inputs to the subsurface aquatic environment [9], [81–83]. One of the significant sources

of fluoride pollution is the use of domestic sewage, fertilizer and pesticides in agriculture in

the Yuncheng Basin. Some shallow groundwater samples in Fig 10i are characterized by high

NO3
- concentrations and a moderately high fluoride concentration. These samples were

mainly collected in rural areas where a great deal of domestic sewage, agricultural fertilizer and

pesticides had been discharged into the nearby ground or ditches, infiltrating the groundwater.

Long-term irrigation with domestic sewage is a major source of manure for agricultural activi-

ties in the area, and nitrogenous fertilizer is another important source of nitrogen in local agri-

culture. Both of these practices could cause elevated NO3
- concentrations in the groundwater

of this widely distributed agricultural areas [84], [85]. Therefore, anthropogenic pollution is

responsible for the high NO3
- concentrations and elevated fluoride concentration in the shal-

low groundwater samples in Fig 10i. Table 5 shows the fluoride contents in the fertilizer and

pesticides samples collected in the study area. The total fluorine content and the water-soluble

fluoride content ranged between 3.19 and 1161 mg/kg and 0.57 and 51.87 mg/L, respectively,

which reflect persistent groundwater fluoride pollution in the area.

Many of the industries with fluoride pollution problems are also sources of groundwater

fluoride pollution [86], [87]. Industries often produce fluoride-laden solid waste that may

undergo open-air leaching before disposal. Aluminum and steel industries in the Yuncheng

Basin produced solid waste with the highest water-soluble fluoride contents of up to 7.52 and

4.47 mg/L, respectively. Fluoride discharges from other industries were not negligible but were

smaller than those from steel and aluminum operations (Table 5). The infiltration of wastewa-

ter/leachate with a high fluoride content is likely another anthropogenic source of groundwa-

ter fluoride contamination in the study area based on the results of our field investigation and

laboratory results.

Conclusions

The groundwater chemistry in the studied area showed wide variations in ion concentrations

and hydrochemical facies, indicating complex hydrochemical conditions in the Yuncheng

Basin. Sediment mineral weathering leaching and evaporite dissolution were the primary

hydrochemical processes controlling the groundwater chemistry. Deep groundwater was
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contaminated by mixing with polluted surface water, irrigation return water and/or shallow

groundwater.

Fluoride pollution also has important impacts on the groundwater chemistry in this area.

The sources of fluoride in groundwater can include fluoride-bearing mineral dissolution, ion

exchange, desorption from sorbent surfaces and anthropogenic contamination. The biotite/

muscovite widely distributed in the sediment and base rock was determined to be the most

abundant mineral fluoride source in the study area. Alkaline groundwater modified the prop-

erties of solid surfaces and promoted the desorption and exchange of fluoride with other

anions. Massive anions, such as HCO3, could cause the desorption of fluoride from mineral/

organic matter surfaces by competitive adsorption on the active sites within the groundwater

system. Evaporation/evapotranspiration is critical for the concentration of fluoride in ground-

water in this arid and semi-arid region. These processes can directly remove water from shal-

low aquifers; increase the fluoride concentration in groundwater; induce the precipitation of

major minerals, e.g., calcite and dolomite; decrease the Ca concentration; and favor the disso-

lution of fluorite and the enrichment of fluoride in groundwater. Except for evaporation, ion

effects induced by the dissolution of evaporites (gypsum) introduced additional calcium

into the groundwater system and caused the precipitation of calcite/dolomite from the

groundwater, which decreased the activity of calcium and maintained the dissolution capacity

for fluorite in the groundwater. A rough estimation revealed that cation exchange may cause a

significant increase of 2.7 mg/L fluoride when the Na/Ca molar ratio increases from 0.24 to

9.0. The promoting mechanisms of salt effects in fluoride-polluted water were the further dis-

solution of most fluoride-bearing minerals in aquifers by a reduction in the fluoride activity in

Table 5. Fluoride content in selected pesticides/fertilizer/solid waste samples in the study area.

ID Fertilizer/pesticide/solid waste pH Water-soluble fluoride (mg/L) Total fluorine (mg/kg)

concentration mean SD concentration mean SD

Pesticides NY01 DDT (dichlorodiphenyltrichloroethane) 6.1 21.91 - - 21.91 34.23 12.62

NY02 Acetamiprid 6.9 51.87 51.87

NY03 Beta cypermethrin 7.1 30.92 30.92

NY04 Avermectin 7.2 32.2 32.2

Fertilizers HF01 Foliar fertilizer 6.4 1.85 6.96 9.73 92.32 343.01 490.45

HF02 Compound fertilizer 6.5 23.22 1161

HF03 Nitrogenous fertilizer A 6.7 0.62 31.11

HF04 Nitrogenous fertilizer B 6.2 14.84 741.9

HF05 Urea 7.5 0.57 28.53

HF07 Potassium ammonium nitrate 5.8 0.64 3.19

Solid waste GF01 Magnesium plant 10.25 1.93 2.46 1.88 543.18 694.81 178.32

GF02 Paper mill 8.7 1.54 546.97

GF03 Steel mill 12.08 7.52 465.91

GF05 Cement plant 9.24 1.13 933.93

GF09 Paper mill 8.16 2.51 656.87

GF10 Glassworks 8.12 1.39 563.05

GF14 Pump industry 7.99 1.46 838.4

GF16 Chemical factory 7.91 1.46 933.18

GF17 Juice factory 7.81 1.25 465.56

GF18 Power plant 7.29 3.38 889.23

GF19 Industrial park for aluminum processing 7.75 4.47 715.36

GF20 Pesticide factory 7.56 1.46 786.11

https://doi.org/10.1371/journal.pone.0199082.t005
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groundwater via ion complexation. MgF+ and NaF0 are the most abundant complex fluoride

species in saline groundwater and account for 6.0–19.0% of the total fluorine.

Human activities (domestic sewage, fertilizer and pesticide application in agriculture) and

industries that cause fluoride pollution (aluminum and steel industries) may result in substan-

tial fluoride inputs to the subsurface aquatic environment based on our field investigation and

laboratory results.
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