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Cardiovascular disease (CVD) is one of the most common causes of death that kills approximately 17 million people annually. The
main reasons behind CVD are myocardial infarction and the failure of the heart to pump blood normally. Doctors could diagnose
heart failure (HF) through electronic medical records on the basis of patient’s symptoms and clinical laboratory investigations.
However, accurate diagnosis of HF requires medical resources and expert practitioners that are not always available, thus
making the diagnosing challengeable. Therefore, predicting the patients’ condition by using machine learning algorithms is a
necessity to save time and efforts. This paper proposed a machine-learning-based approach that distinguishes the most
important correlated features amongst patients’ electronic clinical records. The SelectKBest function was applied with
chi-squared statistical method to determine the most important features, and then feature engineering method has been applied
to create new features correlated strongly in order to train machine learning models and obtain promising results. Optimised
hyperparameter classification algorithms SVM, KNN, Decision Tree, Random Forest, and Logistic Regression were used to train
two different datasets. The first dataset, called Cleveland, consisted of 303 records. The second dataset, which was used for
predicting HF, consisted of 299 records. Experimental results showed that the Random Forest algorithm achieved accuracy,
precision, recall, and F1 scores of 95%, 97.62%, 95.35%, and 96.47%, respectively, during the test phase for the second dataset.
The same algorithm achieved accuracy scores of 100% for the first dataset and 97.68% for the second dataset, while 100%
precision, recall, and F1 scores were reached for both datasets.

1. Introduction

Cardiovascular disease (CVD) is one of the most common
diseases that cause morbidity and mortality. It contributes
to a third of deaths worldwide according to the American
College [1]. Since 2102, numerous surveys concluded that
nearly 56 million people lost their lives in 2012; amongst
them, 17.5 million died due to CVD [2]. According to [3],
CVD has three types: circulatory, structural, and electrical.
In circulatory CVD, which is also called coronary artery

disease (CAD), atherosclerosis (i.e., accumulation of
plaques) is built up on the inner walls of a coronary artery,
causing the arteries to harden [4–6]. This accumulated
plaque consists of cholesterol or fatty deposits that restrict
blood flow through the arteries. When CAD progresses,
potentially fatal symptoms, such as stroke and myocardial
infarction, begin to appear.

Therefore, early treatment and recovery of atherosclero-
sis are important to minimise CVD risks. Several imaging
methods are introduced with high accuracy and sensitivity
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to determine the disease severity [7, 8]. They include dobu-
tamine stress echocardiography, exercise electrocardiogram
(ECG), coronary computed tomography angiography, myo-
cardial perfusion scintigraphy, and conventional coronary
angiography. However, all these imaging methods could
only discover existing atherosclerosis that already developed.
For instance, ECG is an easy-to-access diagnostic tool that
records the electrical activity of the heart [9]. ECG signals
could be obtained during exercise as a patient undergoes
stress [10]. ECG signals allow heart rate variability signals
to be extracted [11]. The ECG technique is the primary
choice for evaluating heart conditions because it is easy to
perform, inexpensive, and noninvasive. However, manual
diagnosis of ECG signals is tedious and difficult because
the signals differ morphologically.

In addition, the discovery of biomarkers, such as chest
pain, serum cholesterol, resting electrocardiographic results,
resting blood pressure, maximum heart rate, depression,
fasting blood sugar, exercise-induced angina, slope of peak
exercise, number of major vessels, segment, and thallium
stress, in clinical samples has been helpful in understanding
and diagnosing atherosclerosis. Therefore, to conduct a
diagnostic process of ECG signals with high accuracy, artifi-
cial intelligence techniques are used to help diagnose arterio-
sclerosis through these tests and biomarkers. As the data
collected for these biomarkers are huge, most of the studies
on the diagnosis systems focused on the preprocessing pro-
cess to clean the data, select the most important representa-
tive features, delete redundant features, and choose
appropriate classification algorithms. For instance, Zimmerli
et al. presented an assay for polypeptides that contribute to
biomarkers for identifying CAD. They screened 359 urine
samples from 88 patients with CAD and 282 controls. The
system reached a sensitivity of 98% and a specificity of
83% [12]. Likewise, Tan et al. presented three diagnostic
algorithms for a set of diagnostic features of heart disease.
The systems were evaluated by accuracy, sensitivity, and
specificity on four datasets: Cleveland, Hungarian, SPECTF,
and Switzerland. Their proposed system reached accuracy
scores of 81.19%, 92.68%, 82.7%, and 84.52% for Cleveland,
Hungarian, SPECTF, and Switzerland, respectively [13].
Arabasadi et al. presented a hybrid method to diagnose
CAD, and their algorithm was able to increase the perfor-
mance of neural networks by 10% through a genetic algo-
rithm (GA), which optimises primary weights. The system
achieved an accuracy of 93.85%, a sensitivity of 97%, and a
specificity of 92% [14]. Maji and Arora presented a hybrid
method between Decision Tree and ANN classifiers for diag-
nosing heart disease. The ANN achieved an accuracy of
77.4%, a sensitivity of 77.4%, and a specificity of 21.7%
[15]. Saqlain et al. presented three algorithms for selecting
the most important features, which are the Fisher score-
based algorithm, the algorithm for selecting the most impor-
tant features based on forward, and the algorithm for
selecting the most important features based on the reverse.
The selected features were entered into an SVM classifier
based on the RBF kernel for the diagnosis of four cardiac
disease datasets. The system achieved an accuracy of
81.19% for the Cleveland dataset [16]. Babu et al. applied

14 features that were extracted, then fed into three classifica-
tion algorithms, namely,K-means, MAFI, and Decision
Tree, to classify heart disease. All algorithms performed well
for diagnosing heart failure [17]. Reddy and Khare presented
a rule-based fuzzy logic (RBFL) algorithm to predict heart
disease and help medical practitioners diagnose it at an early
stage. The locality preserving projection (LPP) method was
first applied to determine the most important characteristics
of the UCI dataset. The RBFL algorithm achieved an accu-
racy of 78% [18]. Feshki et al. presented Particle Swarm
Optimization method with Neural Network Feed Forward
Back Propagation, which reduced the features from 13 fea-
tures to 8 enhanced features; the system reached an accuracy
of 91.94% with these selected features [19]. Uyar and İlhan
presented a GA based on a Recurrent Fuzzy Neural Network
(RFNN) algorithm trained to diagnose heart disease, and the
system achieved an accuracy of 97.78% [20]. Haq et al. pre-
sented seven machine learning algorithms to classify features
extracted by three methods for selecting features of the heart
failure dataset. The performance of the systems was
evaluated using several scales such as accuracy, sensitivity,
specificity, receiving optimism curves, and AUC, and they
reached good results [21]. Kerexeta et al. presented two
methods for predicting the risk of returning a patient with
high blood pressure back to hospital. In the first method,
the supervised and supervised classification methods were
combined, and the system reached an AUC of 61%. The sec-
ond method was combined the Naïve Bayes classifiers and
the Decision Tree, and the method achieved an AUC of
73%. The limitations in this study are related to the dataset
because the study is based on a readmission day threshold
[22]. Adler et al. presented machine learning algorithms that
link patient features with mortality, by training a Decision
Tree algorithm with a set of features associated with high
mortality risk. Eight characteristics that have a very high risk
of death were extracted, and the risk score for these advan-
tages was 88% for the AUC scale. Limitation of MARKER-
HF was derived from two hospitals, San Diego, California,
and is therefore subject to demographic region bias [23].
Jin et al. presented an effective method for predicting heart
failure by using a neural network, where they used one-hot
encoding and word vectors to model the diagnosis and pre-
diction of heart failure through a long short-term memory
algorithm [24]. Gjoreski et al. presented a method that com-
bines machine learning and deep learning to diagnose heart
failure based on the heart sounds of 947 people. Machine
learning algorithms train expert features, while deep learn-
ing models train from the spectral chains of the heart signal.
The method achieved an accuracy of 92.9 and an error rate
of 7.1% [25]. Vijayashree and Sultana presented the Particle
Swarm Optimization (PSO) method, which selects the most
appropriate features and increases the important features for
diagnosing heart disease. PSO was used in conjunction with
SVM to reduce the number of features and increase
accuracy; the system achieved good results for diagnosing
heart disease [26].

However, most of the discussed studies above are
insufficient. Therefore, the main contributions of this paper
are as follows:
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(i) Adjust and optimise hyperparameter of five
machine learning algorithms for predicting heart
failure (HF) with high accuracy

(ii) Select the most important features with strong cor-
relation to obtain more realistic diagnostic results

(iii) Apply feature scoring to rank the features based on
the correlated to the target feature

(iv) Solve the class imbalance issue in the second dataset by
synthetic minority oversampling (SMOTE) technique

(v) Create new features that have strong correlation
with the target feature to obtain more realistic diag-
nostic results

The remainder of this study is organised as follows.
Section 2 describes a background on the overview and risk
factors of HF diseases and an explanation of machine learn-
ing algorithms. Section 3 discusses the exploratory data anal-
ysis (EDA) to describe the two sets of data and explain the
correlation between the features and the replacement of
missing values. Section 4 presents data processing that
includes subsections for engineering and selection of the
most important features. Section 5 describes the experimen-
tal result and discussion part. Finally, Section 6 concludes
the paper.

2. Background

2.1. Overview and Risk Factors of HF Diseases. Heart disease
and atherosclerosis are disorders of the heart and arteries
that include HF, coronary heart disease (heart attacks), cere-
brovascular diseases (strokes), and other types of heart dis-
ease [27]. CVD is one of the most common causes of
death in the world, with the number of deaths reaching
roughly 17 million annually worldwide. HF occurs because
the heart is unable to pump enough blood to the rest of
the body. It is caused by diabetes, high blood pressure, and
other heart diseases [28]. Doctors classify HF into two types
on the basis of the ejection fraction value, which is the per-
centage of blood that the heart pumps during one contrac-
tion and a physiological value ranging from 50% to 75%.
Low HF causes the ejection fraction, previously called left
ventricular (LV) HF, to drop below 40% [29]. The final ejec-
tion fraction rate is HF with preserved ejection fraction, pre-
viously called diastolic HF, with a normal ejection fraction.
In this case, during systole, the LV contracts normally but
fails during diastole due to ventricular stiffness; thus, blood
pumping is impaired [30]. Due to the importance of the
heart organ, HF prediction has become of utmost impor-
tance for physicians in predicting HF; however, even today
in clinical practices, physicians have failed to reach high
accuracy in predicting HF [31]. Electronic medical records
could be considered one of the most useful sources for unco-
vering correlated data amongst patients and an important
source for researchers and clinical practices [32]. Machine
learning techniques play an important role in analysing
medical records, predicting the survival of each patient with

HF, and detecting the most important features that lead to
HF [33].

2.2. Machine Learning. Machine learning is the ability of
computer programs to adapt, learn, and address new prob-
lems. Machine learning algorithms work on medical diag-
nostics and help experts support their decisions about their
medical diagnosis. Machine learning has the ability to learn
from training data and solve classification problems for
new data [34].

2.2.1. K-Nearest Neighbor (KNN). KNN is used to solve
classification problems based on stored data. The algorithm
trains the dataset and stores it in the memory. When the
classification process is to test new data points, the algorithm
works on the basis of similarity of the state between the
new data point and the stored dataset and classifies new
data in accordance with the most similar class on the basis
of the value of K and the closest one on the basis of
Euclidean distance.

2.2.2. Support Vector Machine (SVM). This model is similar
to neural networks in its objective of adjusting a set of
parameters, which allow to establish boundaries in a dimen-
sional space and approximate functions or separate patterns
in different regions of the attribute space. The difference lies
in the training method for adjusting the parameters. By con-
trast, SVMs base their training on maximizing the margin
between the hyperplane and the instances of two classes
(initially, this model was designed to solve problems of
classifying two classes but extensions for multiclass and
regression problems exist) [35]. The algorithm works with
linear and nonlinear data. When the data are linear, the
algorithm finds a hyperplane with maximum margin, which
is the largest distance between data points of two classes.
Maximum margin gives the algorithm power to classify the
test dataset with high confidence. Hyperplane is the decision
boundary that separates the class data. Support vectors are
the data points that form close to the hyperplane. In
accordance with support vectors, the distance is increased
to maximize the margin. Thus, the hyperplanes change
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Figure 1: Experimental methodology of heart disease.
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when removing these support vectors. Therefore, these
points build an SVM classifier. For nonlinear data, the orig-
inal coordinate area is converted into a separable space [35].

2.2.3. Decision Tree. Decision Tree is used to solve classifica-
tion problems. It consists of root node, inner nodes,
branches, and leaf nodes. It is organised in the form of a tree,
where the root node represents the complete dataset, the
internal nodes represent the features contained in the data-
set, the branches represent the decision-making area, and
the leaf nodes represent the outcome. Decisions are made
on the basis of features selected in the dataset. When pre-
dicting dataset features, the algorithm starts from the root
node. The algorithm compares the value of the root feature
with the feature’s values of the dataset, and in accordance
with the comparison, it moves to the next nodes. The pro-
cess continues to the next node, where the feature in the
node is compared with the features in the next nodes, and
the process continues until the leaf node is obtained.

2.2.4. Random Forest. Random Forest is used to solve
classification problems. It works on the basis of ensemble
learning, as it solves the problem by combining several
classifiers to improve the performance of the algorithm.

The algorithm contains several classifiers of Decision Trees.
Each Decision Tree works with a subset of data and average
taken to improve prediction accuracy. Instead of taking
prediction from one tree, the Random Forest algorithm
takes prediction from each tree and works on prediction
on the basis of majority voting.

2.2.5. Logistic Regression. Logistic Regression is one of the
supervised machine learning algorithms used to solve
classification problems to predict probability-based target
variables. The target or dependent variables are binary
variables that contain two classes; multinomial target
variables have three or more unordered types or ordinal
variables, where the target variable contains three or more
ordered variables.

3. Exploratory Data Analysis (EDA)

This section focuses on data preprocessing, including miss-
ing data treatment, outlier removal, and feature correlation
test. Figure 1 describes the structure applied to evaluate the
performance of the algorithms on the two datasets for early
diagnosis of heart disease.

Table 1: Diagnosing heart disease features with metrics from the Cleveland dataset.

Features Description Explanation Type

Age Patient age Age of patient in year Numeric

Sex
1 = male

Nominal
Patient gender 0 = female

cp

1 = typical angina

Nominal
Chest pain 2 = atypical angina

3 = nonanginal pain

4 = asymptomatic

trestbps Patient’s blood pressure at rest (mm/Hg) Resting blood pressure (mm/Hg) Numeric

chol Patient’s cholesterol (mg/dL) Serum cholesterol (mg/dL) Numeric

fbs
1 = Fasting blood sugar > 120mg/dL

Nominal
Patient’s blood sugar during fasting 0 = Fasting blood sugar < 120mg/dL

restecg

0 = normal

NominalElectrocardiographic measurement at rest 1 = ST-T wave abnormality

2 = probable left ventricular hypertrophy

thalach Maximum heart rates Maximum heart rate achieved Numeric

exang
Angina due to exercise 1 = exercise induced angina

Nominal
0 = exercise induced no angina

Oldpeak ST depression ST depression induced by exercise relative to rest Numeric

Slope

1 = upsloping

NominalSlope of ST 2 = flat

3 = downsloping

ca Number of major vessels Number of major vessels (0-3) colored by fluoroscopy Numeric

thal

3 = normal

NominalBlood disorder 6 = fixed defect

7 = reversible defect

Target
0 = normal Nominal

1 = heart disease
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3.1. Description of Datasets. Two datasets of heart disease
and failure data were collected from the UCI machine
learning repository. The first dataset is called Cleveland
(https://archive.ics.uci.edu/ml/datasets/heart+Disease) [36],
which is commonly used by heart-disease diagnostic machine
learning researchers. The Cleveland dataset consists of 303
records, with 76 features. However, the UCI repository pro-
vides approved 14 features that are most influential in the field
of diagnosing heart disease. Table 1 describes the features,
measures, and their ranges. Thirteen features could be used
for diagnosing heart disease, and one target feature could be
used to describe whether or not a disease exists.

The second dataset for predicting HF contains medical
records of 299 patients with HF (https://archive.ics.uci.edu/
ml/machine-learning-databases/00519/) [37]. The dataset
was collected from the Faisalabad Institute of Heart Disease
and the Allied Hospital in Faisalabad. Table 2 describes the
features, measurement, and range of HF prediction. Twelve
features could predict HF in addition to the target feature that
describes whether or not the patient died during follow-up.
Table 2 also explains each feature and the subsections that rep-
resent each feature.

3.2. Statistical Feature Correlation Using Heat Map. A heat
map is a graphical representation that shows the correlation
between features and the percentage of correlation of each fea-
ture with the other. It also describes the correlation of all fea-
tures with the target feature. Statistics is a set of computational
tools used to interpret raw data and convert them into infor-
mation to be understood. It is one of the tools used in the field
of machine learning. Statistics and machine learning are two
closely related fields. In this study, descriptive statistics were
calculated on the dataset of heart disease (Cleveland dataset)
and HF to obtain the features of common and correlated data
samples asmean, standard deviation, andmax andmin values.
Table 3 describes the statistical processes applied to the Cleve-
land dataset, where count refers to the number of features of
dataset, mean refers to the mean between the features of the
dataset, std refers to the standard deviation between the fea-
tures of the dataset, and min and max refer to the minimum
and maximum values amongst the features of the dataset.
Descriptive statistics have a positive effect on graphic visuali-
sations to easily understand raw data and relate the data to
one another. Figure 2 illustrates the correlation between the
features of the dataset with one another. “cp” (chest pain),

Table 2: Heart failure features with metrics from the Allied Hospital dataset.

Features Explanation Range Measurement

Age Age of patient in year [40, ..., 95] Year

Anaemia
1 = haematocrit levels lower than 36%

0, 1 Boolean
0 = haematocrit levels higher than 36%

High blood pressure
1 = patient has hypertension

0, 1 Boolean
0 = patient has no hypertension

Creatinine phosphokinase Level of CPK in blood [23, ..., 7861] mcg/L

Diabetes
1 = patient has diabetes

0, 1 Boolean
0 = patient has no diabetes

Sex
1 = male

0, 1 Boolean
0 = female

Platelets Blood platelets [25.01, ..., 850.00] Kiloplatelets/mL

Serum creatinine Level of creatinine in blood mg/dL [0.50, ..., 9.40]

Serum sodium Level of sodium in blood mEq/L [114, ..., 148]

Smoking
1 = patient smokes

0, 1 Boolean
0 = patient does not smoke

Time Periodic follow-up of patient Days [4,..., 285]

Death event (target)
1 = patient died during follow-up

0, 1 Boolean
0 = patient did not die during follow-up

mcg/L refers to micrograms per litre. mL refers to microlitre. mEq/L refers to milliequivalents per litre.

Table 3: Statistical operations for the Cleveland dataset.

Statistical Age Sex cp trestbps chol fbs restecg thalach exang Oldpeak Slope ca thal Target

Count 303 303 303 303 303 303 303 303 303 303 303 303 303 303

Mean 54.37 0.68 0.97 131.6 246.3 0.15 0.53 149.7 0.33 1.04 1.4 0.73 2.31 0.54

std 9.08 0.47 1.03 17.54 51.83 0.36 0.53 22.91 0.47 1.16 0.62 1.02 0.61 0.5

Min 29 0 0 94 126 0 0 71 0 0 0 0 0 0

Max 77 1 3 200 564 1 2 202 1 6.2 2 4 3 1
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“thalach,” and “slope” features were correlated closely with the
target feature, and the correlation of each distinctive with the
other was noted.

3.3. Treatment of Missing Values. Datasets that contain miss-
ing values need to be addressed and cleaned up. Missing
values result from patients missing out on some metrics
when they undergo a test. The Cleveland dataset contained
missing values, and the second dataset contained six missing
values. Thus, statistical measures must be applied to replace
the missing values. Statistical measures, such as mean,
median, and standard deviation, are applied to replace
numerical values. The mode method is also applied to
replace nominal values. Table 4 describes the missing fea-
tures for the Cleveland dataset after processing. The mean
method was applied to replace the numerical values by cal-
culating the mean for the features and replacing the missing
value. The mode method was also applied to replace the
missing nominal values by replacing the nominal value with
the most common value in the features.

3.4. Balancing a Dataset. With regard to data balancing, the
Cleveland dataset contains 165 people with heart disease and
138 people without heart disease. Thus, the dataset is bal-
anced. Regarding the second dataset, the number of people
who died during follow-up was 203, while 96 people did
not die during follow-up; therefore, the dataset is unbal-
anced. To obtain satisfactory results, the dataset must be bal-
anced during the training phase. In this study, the synthetic
minority oversampling technique (SMOTE) was applied,
which is one of the appropriate methods for balancing the
dataset. SMOTE technique searches for minority classes
and finds the nearest neighbor for each point (value) in the

minority class to generate new synthetic samples at a given
point randomly, the mechanism continues until the dataset
is balanced during the training phase, and the minority class
becomes approximately equal to the majority class. Table 5
describes the second dataset before and after the application
of the SMOTE technique, where it is noted that the cases of
the minority class (die during follow-up) increased from 79
cases to 160 cases; thus, the two classes became equal during
the training phase.

3.5. Data Conversion. Data processing is the ability to trans-
form data into useful data that could be manipulated and
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Figure 2: Feature correlation of the Cleveland dataset by using heat map.

Table 4: Missing values.

Features Missing values

Age 0

Sex 0

cp 0

trestbps 0

chol 0

fbs 0

restecg 0

thalach 0

exang 0

Oldpeak 0

Slope 0

ca 0

thal 0

Target 0

dtype: int64 0
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analysed. In this study, categorical variables were converted
into dummy variables, which include the values 0 and 1.
Dummy variables are useful for multiple groups in single
regression equations. Table 6 describes the dataset after
converting the categorical features to dummy.

3.6. Data Standardization. Preprocessing is one of the most
important stages of data mining, and it leads to diagnostic
accuracy in the following stages. In this study, data standard-
ization method was applied to the two datasets. Standardiza-
tion coordinates the data internally, ensures that all data
have the same formatting and content, and gives the dataset
more meaning. It transforms the dataset, in which its
distribution has a mean of 0 and a standard deviation value
of 1. In this study, the standardization method was applied
in accordance with Equation (1) and the dataset obtained its
data distribution. Each feature in the dataset obtained its value
subtracted from the mean and divided by the standard devia-
tion of the whole dataset. Table 7 describes the application of
the standardization method to four features of the dataset,
namely, “trestbps,” “chol,” “thalach,” and “oldpeak.”

z = x − μ

σ
, ð1Þ

where x denotes the value of each feature, μ refers to the mean
for each feature, σ denotes the standard deviation of the data-
set, and z refers to the features in a standardised form.

4. Feature Processing

4.1. Feature Engineering. Feature engineering, also called fea-
ture creation, is the process of creating new features from the
existing dataset for the purpose of training machine learning
models and obtaining more reliable results. Usually, the fea-
ture engineering process is manual, relying on intuition, field
knowledge, and data manipulation. It is also very tedious
and limited. Thus, automated feature engineering helps data
scientists create new features that are well correlated and use
them for training. Table 8 describes the additional relevant
extracted features correlated between two features, in which
60 features from the original Cleveland dataset containing 13
features were obtained. With these new features, the solution
to the classification problem could be enhanced. The better
the features, the better the results.

4.2. Feature Selection. Feature selection methods are aimed
at reducing unimportant features and focusing on features
that contribute to the most predictable feature of the target
feature. Reducing the number of features reduces the com-
putational cost of modelling and improves the performance
of the model. The methods for selecting features by means of
statistics include assessing the relationship between each fea-
ture and the target feature and selecting the input features
that have the strongest correlation with the target feature.
In this study, SelectKBest with the chi-square method was
used to extract the best features from the dataset. The
SelectKBest function uses this method as a score function
to determine a score and the correlation between each fea-
ture and target feature. It passes chi-square to determine
the score between each feature and the target feature. If the
resulting value is lower, then the feature is independent of
the target feature, while higher resulting value indicates that
the feature is not randomly related to the target feature.
Table 8 describes how the SelectKBest function automati-
cally returns the first K features with the highest scores of
the Cleveland dataset. The exang_oldpeak2 feature, which
is correlated between exang feature and oldpeak2 feature,

Table 5: Balancing the dataset by SMOTE.

Dataset
Phase Training 80% Testing 20%
Classes Did not die during follow-up Die during follow-up Did not die during follow-up Die during follow-up

Before Oversampling 160 79 43 17

After Oversampling 160 160 43 17

Table 6: Converting categorical data to dummy.

Age trestbps chol thalach Oldpeak Target Sex_0 Sex_1 cp_0 cp_1 ... Slope_2 ca_0 ca_1 ca_2 ca_3

0 63 145 233 150 2.3 1 0 1 0 0 ... 0 1 0 0

1 37 130 250 187 3.5 1 0 1 0 0 ... 0 1 0 0

2 41 130 204 172 1.4 1 1 0 0 1 ... 1 1 0 0

3 56 120 236 178 0.8 1 0 1 0 1 ... 1 1 0 0

4 57 120 354 163 0.6 1 1 0 1 0 ... 1 1 0 0

Table 7: Preprocessing of data by using standardization method.

Age trestbps chol thalach Oldpeak

0 0.95 0.76 −0.26 0.02 1.09

1 −1.92 −0.09 0.07 1.63 2.12

2 −1.47 −0.09 −0.82 0.98 0.31

3 0.18 −0.66 −0.2 1.24 −0.21
4 0.29 −0.66 2.08 0.58 −0.38
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had the highest score of 652.85, while the lowest fbs feature
score was 0.18.

5. Experimental Result and Discussion

5.1. Splitting Datasets. The Cleveland dataset consisted of
303 records for two classes: heart disease (class 1), which
contained 165 records by 54.46%, and normal (class 0),
which contained 138 records by 45.54%. The second dataset
(HF) contains 299 records for two classes: died during
follow-up (class 1), containing 203 records by 67.87%, and
did not die during follow-up (class 0) containing 96 records
by 32.13%. After balancing the second dataset, the two clas-
ses became equal to 160 cases during the training phase.
Table 9 describes the distribution of the two datasets for
the two groups during the training and testing phases.

5.2. Evaluation Criteria. Four qualitative measures were
used, namely, accuracy, precision, recall, and F1score, to
evaluate the proposed systems on the two datasets, as shown
in Equations (2)–(5).

Accuracy = TN + TP
TN + TP + FN + FP

∗ 100%, ð2Þ

Precision =
TP

TP + FP
∗ 100%, ð3Þ

Recall =
TP

TP + FN
∗ 100%, ð4Þ

F1 score = 2 ∗ Precision ∗ recall
Precision + recall

∗ 100, ð5Þ

where TP is the number of heart disease samples that are
correctly classified, TN is the number of nonheart disease
samples that are correctly classified, FN is the number of
heart disease samples classified as nonheart disease, and FP
is the number of nonheart disease samples classified as heart
disease [38].

5.3. Results for the Cleveland Dataset. Several machine learn-
ing algorithms have been applied to predict heart disease for

Table 8: Creation of features and arranging the best features.

No Feature Score

1 exang_oldpeak2 652.854396

2 exang_ca 263.212119

3 Sex_oldpeak2 252.657949

4 thal_oldpeak2 247.914913

5 exang_trestbps2 241.749732

6 Thalach 186.180286

7 Oldpeak2 171.4864

8 fbs_oldpeak2 164.89897

9 Age2_oldpeak2 139.151372

10 exang_chol2 131.365522

11 thal_trestbps2 116.88462

12 thal_chol2 113.985724

13 thal_ca 90.668503

14 Sex_trestbps2 78.162433

15 Sex_ca 77.302537

16 Oldpeak 71.692782

17 Ca 71.020719

18 Cp 62.116086

19 Age2_ca 54.956199

20 Age2_trestbps2 53.221349

21 restecg_cp 51.837075

22 fbs_ca 43.441045

23 exang 38.518849

24 Age2_chol2 36.438097

25 Sex_chol2 35.823916

26 fbs_cp 32.072291

27 restecg_thalach2 29.718076

28 exang_thalach2 27.279766

29 Age 22.210517

30 Chol 21.690747

31 exang_slope 20.48139

32 exang_cp 18.443334

33 restecg_slope 18.246965

34 trestbps 15.094591

35 restecg_trestbps2 12.462827

36 thal_thalach2 12.403249

37 Slope 9.677715

38 restecg_oldpeak2 8.249627

39 Sex 7.72169

40 thal_slope 7.199342

41 Sex_thalach2 5.89906

42 fbs_trestbps2 5.897746

43 thal_cp 5.838268

44 Thal 5.75303

45 thalach2 5.688919

46 restecg_chol2 5.639162

47 fbs_slope 5.480661

48 Age2_thalach2 5.466855

Table 8: Continued.

No Feature Score

49 fbs_thalach2 4.64652

50 Age2_slope 4.031292

51 Sex_slope 2.987813

52 restecg 2.877743

53 Age2_cp 2.324974

54 fbs_chol2 2.116344

55 Age2 2.00334

56 trestbps2 1.655964

57 chol2 0.877493

58 Sex_cp 0.564425

59 restecg_ca 0.256374

60 fbs 0.184946
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patient survival. Classification and hyperparameter algo-
rithms that produce optimal networks have been optimised
to reduce function loss and to obtain high diagnostic perfor-
mance. Tuning hyperparameter is an important process for
determining the behaviour of machine learning networks
during training. In this study, machine learning models were
applied to the dataset containing 13 original features of 303
patients. New features were created through the correlation
of the original features, and they were expanded to 60 fea-
tures for each patient. The dataset was divided randomly
into 80% for training (242 patients) and 20% for testing
(61 patients). Figure 3 shows the performance of classifica-
tion algorithms on the dataset during the training and test-
ing phases. Table 10 shows the diagnostic results for heart

disease by using five machine learning algorithms during
the training and testing processes. During the training phase,
Decision Tree and Random Forest obtained the best results
of 100% for all measures. However, during the testing phase,
SVM and KNN algorithms achieved the best results, with an
approximate rate of 90% for all measures. Logistic Regres-
sion obtained the lowest result during the training and test-
ing phases amongst all the algorithms. During the training
phase, SVM, KNN, Decision Tree, Random Forest, and
Logistic Regression reached accuracy scores of 92.56%,
87.60%, 100%, 100%, and 87.60%, respectively; in the testing
phase, their accuracy scores were 90.16%, 90.16%, 81.97%,
85.25%, and 88.52%, respectively. For the precision, during
the training phase, SVM, KNN, Decision Tree, Random

Table 9: Splitting the datasets.

Dataset Cleveland dataset HF dataset
Class Heart disease Normal Died during follow-up Did not die during follow-up

Training 133 109 160 160

Testing 32 29 43 17
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Figure 3: Evaluating the performance of five classifiers on the Cleveland dataset.

Table 10: Results of diagnosing heart disease (Cleveland dataset) by using five machine learning algorithms.

Classifiers SVM KNN Decision Tree Random Forest Logistic Regression

Criteria
Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Accuracy
(%)

92.56 90.16 87.60 90.16 100 81.97 100 85.25 87.60 88.52

Precision
(%)

93.45 90.12 88.82 90.26 100 82.43 100 85.82 88.19 88.56

Recall (%) 92.52 90.45 87.63 90.38 100 82.39 100 85.29 87.44 89.46

F1 score 92.98 90.28 88.23 90.32 100 82.41 100 85.55 87.81 89.00
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Forest, and Logistic Regression reached of 93.45%, 88.82%,
100%, 100%, and 88.19%, respectively; in the testing phase,
their precision rates were 90.12%, 90.26%, 82.43%, 85.82%,
and 88.56%, respectively. During the training phase, SVM,
KNN, Decision Tree, Random Forest, and Logistic Regres-
sion reached recall rates of 92.52%, 87.63%, 100%, 100%,
and 87.44%, respectively; in the testing phase, their recall
rates were 90.45%, 90.38%, 82.39%, 85.29%, and 89.46%,
respectively. For the F1 score, during the training

phase, SVM, KNN, Decision Tree, Random Forest,
and Logistic Regression reached 92.98%, 88.23%, 100%,
100%, and 87.81%, respectively; In the testing phase,
their F1 scores were 90.28%, 90.32%, 82.41%, 85.55%,
and 89%, respectively.

Table 11 and Figure 4 describe the analysis of the results
obtained in depth at each class, where heart disease = 1 and
nonheart disease = 0. The dataset was divided into 80% for
training and 20% for testing. The training data were further

Table 11: Results of diagnosing heart disease as the category using five machine learning algorithms.

SN Classifiers Division of data Class Precision (%) Recall (%) F1 score (%) Number of patients

1

SVM

Training (80%)
0 93 90 92 109

2 1 92 95 93 133

3
Testing (20%)

0 87 93 90 29

4 1 93 88 90 32

5

KNN

Training (80%)
0 88 84 86 109

6 1 88 90 89 133

7
Testing (20%)

0 90 90 90 29

8 1 91 91 91 32

9

Decision Tree

Training (80%)
0 100 100 100 109

10 1 100 100 100 133

11
Testing (20%)

0 78 86 82 29

12 1 86 78 82 32

13

Random Forest

Training (80%)
0 100 100 100 109

14 1 100 100 100 133

15
Testing (20%)

0 83 86 85 29

16 1 87 84 86 32

17

Logistic Regression

Training (80%)
0 88 83 86 109

18 1 87 91 89 133

19
Testing (20%)

0 87 90 88 29

20 1 90 88 89 32
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Figure 4: The performance of classification algorithms for each class.

10 Computational and Mathematical Methods in Medicine



divided into 133 for heart disease and 109 for nonheart
disease, while the test data were divided into 32 for heart dis-
ease and 29 for nonheart disease. During the training phase,
Decision Tree and Random Forest achieved the best results
for diagnosing heart and nonheart diseases by 100% for all
measures. However, during the testing phase, KNN achieved
better than the rest of the algorithms, with rates of 90% for
all criteria when diagnosing negative cases (nonheart dis-
ease) and 91% for all criteria when diagnosing positive cases
(heart disease). First, in the analysis and interpretation of the
results of the diagnosis of heart disease (class 1) during the
training phase, SVM, KNN, Decision Tree, Random Forest,
and Logistic Regression reached a precision of 92%, 88%,
100%, 100%, and 87%, respectively; in the testing phase,
their precision was 93%, 91%, 86%, 87%, and 90%, respec-
tively. For the recall, during the training phase, SVM,
KNN, Decision Tree, Random Forest, and Logistic Regres-
sion reached a recall of 95%, 90%, 100%, 100%, and 91%,
respectively; in the testing phase, their recall was 88%,
91%, 78%, 84%, and 88%, respectively, while for the F1 score
during the training phase, SVM, KNN, Decision Tree,
Random Forest, and Logistic Regression reached a recall of
93%, 89%, 100%, 100%, and 89%, respectively; in the testing

phase, their F1 scores were 90%, 91%, 82%, 86%, and 89%,
respectively. Second, in the analysis and interpretation of
the results of the diagnosis of nonheart disease (class 0) dur-
ing the training phase, SVM, KNN, Decision Tree, Random
Forest, and Logistic Regression reached a precision of 93%,
88%, 100%, 100%, and 88%, respectively; in the testing
phase, their precision was 87%, 90%, 78%, 83%, and 87%,
respectively. For the recall, during the training phase,
SVM, KNN, Decision Tree, Random Forest, and Logistic
Regression reached a recall of 90%, 84%, 100%, 100%, and
83%, respectively; in the testing phase, their recall was
93%, 90%, 86%, 86%, and 90%, respectively, while for the
F1 score during the training phase, SVM, KNN, Decision
Tree, Random Forest, and Logistic Regression reached a
recall of 92%, 86%, 100%, 100%, and 86%, respectively; in
the testing phase, their F1 scores were 90%, 90%, 82%,
85%, and 88%, respectively.

5.4. Results of HF Dataset. A medical dataset containing 299
patients with HF was analysed. This section describes the
outcomes that predicted patient survival during the follow-
up period. The features were arranged in accordance with
the correlation with the target feature (death event), and
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Figure 5: Evaluating the performance of five classifiers on the heart failure dataset.

Table 12: Prediction results of heart failure by using five machine learning algorithms.

Classifiers SVM KNN Decision Tree Random Forest Logistic Regression

Criteria
Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Training
80%

Testing
20%

Accuracy
(%)

92.35 90.00 96.82 93.33 96.46 95.00 97.68 95.00 91.05 88.33

Precision
(%)

95.41 93.02 95.76 93.33 97.11 93.48 100.00 97.62 94.52 93.00

Recall (%) 96.10 93.02 98.51 97.67 100.00 100.00 100.00 95.35 92.39 90.90

F1 score 95.75 93.02 97.12 95.45 98.53 96.63 100.00 96.47 93.44 91.93
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the data lost due to the loss of some tests during patient
examination were processed and replaced. Correlated fea-
tures were created between two features, and they have an
effective effect on increasing the accuracy of prediction.
Hyperparameter classification algorithms were adjusted to
reduce the loss function and obtain high predictive results.
The dataset was divided into 80% for training (160 patients
died during follow-up, and 79 patients did not die during

follow-up) and 20% for testing (43 patients died during fol-
low-up, and 17 patients did not die during follow-up).
Figure 5 illustrates the evaluation of the dataset on the per-
formance of the algorithms during the training and testing
phases. Table 12 shows the results for predicting HF by
using five classification algorithms during the training and
testing phases. Random Forest achieved the best perfor-
mance during both phases, followed by Decision Tree,

Table 13: Result prediction of heart failure as the category using five machine learning algorithms.

SN Classifiers Division of data Class Precision (%) Recall (%) F1 score (%) Number of patients

1

SVM

Training (80%)
0 92 95 95 79

2 1 93 96 97 160

3
Testing (20%)

0 92 91 92 17

4 1 94 94 94 43

5

KNN

Training (80%)
0 89 97 96 79

6 1 91 99 98 160

7
Testing (20%)

0 92 97 94 17

8 1 94 98 96 43

9

Decision Tree

Training (80%)
0 97 100 98 79

10 1 98 100 99 160

11
Testing (20%)

0 92 100 95 17

12 1 94 100 97 43

13

Random Forest

Training (80%)
0 100 100 100 79

14 1 100 100 100 160

15
Testing (20%)

0 98 96 97 17

16 1 97 95 96 43

17

Logistic Regression

Training (80%)
0 94 93 94 79

18 1 96 91 93 160

19
Testing (20%)

0 93 90 91 17

20 1 93 92 93 43
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Figure 6: The performance of classification algorithms for each class.
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KNN, SVM, and Logistic Regression. During the training
phase, SVM, KNN, Decision Tree, Random Forest, and
Logistic Regression reached an accuracy of 92.35%, 96.82%,
96.46%, 97.68%, and 91.05%, respectively; in the testing
phase, their accuracy was 90%, 93.33%, 95%, 95%, and
88.33%, respectively. For the precision, during the training
phase, SVM, KNN, Decision Tree, Random Forest, and
Logistic Regression reached of 95.41%, 95.76%, 97.11%,
100%, and 94.52%, respectively; in the testing phase, their
precision rates were 93.02%, 93.33%, 93.48%, 97.62%, and
93%, respectively. During the training phase, SVM, KNN,
Decision Tree, Random Forest, and Logistic Regression
reached recall rates of 96.10%, 98.51%, 100%, 100%, and
92.39%, respectively; in the testing phase, their recall rates
were 93.02%, 97.67%, 100%, 95.35%, and 90%, respectively.
For the F1 score, during the training phase, SVM, KNN,
Decision Tree, Random Forest, and Logistic Regression
reached 95.75%, 97.12%, 98.53%, 100%, and 93.44%, respec-
tively; in the testing phase, their F1 scores were 93.02%,
95.45%, 96.63%, 96.47%, and 91.93%, respectively.

Table 13 and Figure 6 describe the HF results predicted
using the five machine learning algorithms for each class
(1 = died during follow-up and 0 = did not die during fol-
low-up). The training data were divided into 160 for class
1 and 79 for class 0, while the test data were divided into
43 for class 1 and 17 for class 0. Random Forest achieved
the best result during the training phase for both classes,
with 100% for each criterion (precision, recall, and F1 score).
During the testing phase, Random Forest also achieved the
best precision for predicting HF, with 97% for class 1 and
98% for class 0. Meanwhile, Decision Tree achieved the best

recall of 100% for both classes. Random Forest showed the
best F1 score of 96% for predicting positive cases and 97%
for predicting negative cases. First, in the analysis and inter-
pretation of the results of the diagnosis of died during
follow-up (class 1) during the training phase, SVM, KNN,
Decision Tree, Random Forest, and Logistic Regression
reached a precision of 93%, 91%, 98%, 100%, and 96%,
respectively; in the testing phase, their precision was 94%,
94%, 94%, 97%, and 93%, respectively. For the recall, during
the training phase, SVM, KNN, Decision Tree, Random For-
est, and Logistic Regression reached a recall of 96%, 99%,
100%, 100%, and 91%, respectively; in the testing phase,
their recall was 94%, 98%, 100%, 95%, and 92%, respectively,
while for the F1 score during the training phase, SVM, KNN,
Decision Tree, Random Forest, and Logistic Regression
reached a recall of 97%, 98%, 99%, 100%, and 93%, respec-
tively; in the testing phase, their F1 scores were 94%, 96%,
97%, 96%, and 93%, respectively. Second, in the analysis
and interpretation of the results of the diagnosis of did not
die during follow-up (class 0) during the training phase,
SVM, KNN, Decision Tree, Random Forest, and Logistic
Regression reached a precision of 92%, 89%, 97%, 100%,
and 94%, respectively; in the testing phase, their precision
was 92%, 92%, 92%, 98%, and 93%, respectively. For the
recall, during the training phase, SVM, KNN, Decision Tree,
Random Forest, and Logistic Regression reached a recall of
95%, 97%, 100%, 100%, and 93%, respectively; in the testing
phase, their recall was 91%, 97%, 100%, 96%, and 90%,
respectively, while for the F1 score during the training phase,
SVM, KNN, Decision Tree, Random Forest, and Logistic
Regression reached a recall of 95%, 96%, 98%, 100%, and
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Figure 7: Comparison of system performance on the diagnostic accuracy in two datasets.

Table 14: Accuracy of diagnosing two dataset using five machine learning algorithms.

Dataset SVM KNN Decision Tree Random Forest Logistic Regression
Dataset Training Testing Training Testing Training Testing Training Testing Training Testing

Cleveland 92.56 90.16 87.60 90.16 100 81.97 100 85.25 87.60 88.52

HF 92.35 90.00 96.82 93.33 96.46 95.00 97.68 95.00 91.05 88.33
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94%, respectively; in the testing phase, their F1 scores were
92%, 94%, 95%, 97%, and 91%, respectively.

5.5. Comparison of the Performance of Algorithms between
the Two Datasets. Similar data processing methods, prepro-
cessing, processing features and arranging them in order of
importance, and classification algorithms, were applied to
the two datasets, Cleveland and HF datasets. Through the
analyses in the previous sections, the diagnostic systems
were able to evaluate the HF dataset, with an accuracy that
exceeded the evaluation of the Cleveland dataset during the
test phase. Table 14 and Figure 7 describe the analytical
results to compare the performance of machine learning
algorithms on the two datasets. First, the performance of
the SVM, KNN, Decision Tree, Random Forest, and Logistic
Regression on the Cleveland dataset during the training

phase reached to an accuracy of 92.56%, 87.60%, 100%,
100%, and 87.60%, respectively; in the testing phase, their
accuracy was 90.16%, 90.16%, 81.97%, 85.25%, and 88.52%,
respectively. Second, the performance of the SVM, KNN,
Decision Tree, Random Forest, and Logistic Regression on
the HF dataset during the training phase reached to an accu-
racy of 92.35%, 96.82%, 96.46%, 97.68%, and 91.05%,
respectively; in the testing phase, their accuracy was 90%,
93.33%, 95%, 95%, and 88.33%, respectively.

5.6. Comparison with Previous Studies. Table 15 and Figure 8
describe the evaluation of machine learning network models
proposed by several criteria evaluated in relevant previous
studies. As noted, previous studies were evaluated with some
criteria. All previous studies reached an accuracy ranging
between 93.85% and 77.55%, while the accuracy of the
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Figure 8: The performance of our systems with the previous studies.

Table 15: Comparison of the performance between the proposed system and previous studies.

Previous studies Accuracy (%) Precision (%) Recall (%) F1 score (%)

Arabasadi et al. [14] 93.85 — 97 —

Maji and Arora [15] 77.4 — 77.4 —

Reddy et al. [39] 90 — 91 —

Amin et al. [40] 78.15 78.15 — 80.25

Feshki and Shijani [19] 91.94 91.9 93 —

Pouriyeh et al. [41] 77.55 77.4 83 80.1

Chicco and Jurman [42] 83.8 — 72 71.9

Proposed model first dataset for training 97.68 100 100 100

Proposed model second dataset for training 100 100 100 100

Proposed model first dataset for testing 90.16 90.26 90.38 90.32

Proposed model second dataset for testing 95 97.62 95.35 96.47
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proposed system reached 100% during training and 95%
during testing. The previous studies reached a precision
ranging between 91.4% and 77.4%, while the proposed
system reached 100% during training and 97.62% during
testing. The recall (sensitivity) in previous studies
reached a rate ranging between 97% and 72%, while
the proposed system reached 100% during training and
95.35% during testing.

6. Conclusion and Future Work

The importance of electronic biometrics was verified in the
process of predicting heart disease and failure. The
SelectKBest function with the chi-square statistical method
was applied to select the features with strong correlation
with the target feature, and then, the degree between each
feature and the target feature was determined. Feature engi-
neering method was also applied to increase the number of
correlated features between them and train machine learning
models to obtain reliable results that were better than the
results obtained from the original features of the two data-
sets. Machine learning algorithms used optimised hyper-
parameters and fed them with new features. All algorithms
reached superior results during the training and testing
phases of the two datasets. During the testing phase, all algo-
rithms achieved better results for the second dataset (HF)
than for the first dataset (Cleveland). For the first dataset,
Random Forest and Decision Tree reached the best results
during the training phase, with 100% for all measures. Dur-
ing the testing phase, SVM and KNN achieved better results
than the rest of the algorithms. For the second dataset,
Random Forest obtained the best results during both phases.
There are some limitations to the study. First, the two
datasets used and publicly available are relatively small.
Second, the two datasets do not contain feature natriuretic
peptides (NPs) which are biomarkers of heart failure, where
NPs rise with age and NPs decrease in obese patients. Third,
the two datasets did not include advantages about the
patients’ diet. However, despite the limitations, the two data-
sets had sufficient features. Our aim was to rank the signifi-
cance of the features on the basis of the score and correlation
feature of heart failure. The future scope of this work is the
application of the Internet of Things and the testing of
new samples in real time.
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