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ABSTRACT Clostridium difficile is the largest single cause of hospital-acquired infec-
tion in the United States. A major risk factor for Clostridium difficile infection (CDI) is
prior exposure to antibiotics, as they disrupt the gut bacterial community which pro-
tects from C. difficile colonization. Multiple antibiotic classes have been associated
with CDI susceptibility, many leading to distinct community structures stemming
from variation in bacterial targets of action. These community structures present
separate metabolic challenges to C. difficile. Therefore, we hypothesized that the
pathogen adapts its physiology to the nutrients within different gut environments.
Utilizing an in vivo CDI model, we demonstrated that C. difficile highly colonized
ceca of mice pretreated with any of three antibiotics from distinct classes. Levels of
C. difficile spore formation and toxin activity varied between animals based on the
antibiotic pretreatment. These physiologic processes in C. difficile are partially regu-
lated by environmental nutrient concentrations. To investigate metabolic responses
of the bacterium in vivo, we performed transcriptomic analysis of C. difficile from
ceca of infected mice across pretreatments. This revealed heterogeneous expression
in numerous catabolic pathways for diverse growth substrates. To assess which re-
sources C. difficile exploited, we developed a genome-scale metabolic model with a
transcriptome-enabled metabolite scoring algorithm integrating network architec-
ture. This platform identified nutrients that C. difficile used preferentially between
pretreatments, which were validated through untargeted mass spectrometry of each
microbiome. Our results supported the hypothesis that C. difficile inhabits alternative
nutrient niches across cecal microbiomes with increased preference for nitrogen-
containing carbon sources, particularly Stickland fermentation substrates and host-
derived glycans.

IMPORTANCE Infection by the bacterium Clostridium difficile causes an inflammatory di-
arrheal disease which can become life threatening and has grown to be the most preva-
lent nosocomial infection. Susceptibility to C. difficile infection is strongly associated with
previous antibiotic treatment, which disrupts the gut microbiota and reduces its ability
to prevent colonization. In this study, we demonstrated that C. difficile altered pathogen-
esis between hosts pretreated with antibiotics from separate classes and exploited differ-
ent nutrient sources across these environments. Our metabolite score calculation also
provides a platform to study nutrient requirements of pathogens during an infection.
Our results suggest that C. difficile colonization resistance is mediated by multiple
groups of bacteria competing for several subsets of nutrients and could explain why to-
tal reintroduction of competitors through fecal microbial transplant currently is the most
effective treatment for recurrent CDI. This work could ultimately contribute to the identi-
fication of targeted, context-dependent measures that prevent or reduce C. difficile colo-
nization, including pre- and probiotic therapies.
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Infection by the Gram-positive, spore-forming bacterium Clostridium difficile has in-
creased in both prevalence and severity across numerous countries during the last

decade (1). In the United States, C. difficile was estimated to have caused �500,000
infections and resulted in ~$4.8 billion worth of acute care costs in 2014 (2). C. difficile
infection (CDI) causes an array of toxin-mediated symptoms ranging from abdominal
pain and diarrhea to the more severe conditions pseudomembranous colitis and toxic
megacolon. Prior treatment with antibiotics is the most common risk factor associated
with development of CDI (3). Antibiotics contribute to an individual’s susceptibility to
CDI by disrupting the gut microbiota (4). In mouse models, multiple antibiotics can
induce susceptibility to C. difficile colonization (5–7). Notably, each antibiotic resulted in
unique gut bacterial communities that permitted high levels of C. difficile colonization.
Others have also shown that antibiotics from multiple classes also alter the gut metabo-
lome, increasing the concentrations of some C. difficile growth substrates (6, 8–10). The
ability of an unaltered murine gut community to exclude C. difficile colonization
supports the nutrient niche hypothesis, which states that an organism must be able to
utilize a subset of available resources better than all competitors to colonize the
intestine (11, 12). Taken together, these results are a strong indication that the healthy
gut microbiota inhibits the growth of C. difficile by limiting the availability of the
substrates that it needs to grow.

Based on genomic and in vitro growth characteristics, C. difficile appears able to
adapt to a variety of nutrient niches (13). C. difficile has a relatively large and mosaic
genome, can utilize a variety of growth substrates, and possesses a diverse array of
hosts (6, 14–16). These qualities are hallmarks of ecological generalists (17). C. difficile
has also been shown to integrate signals from multiple forms of carbon metabolism to
regulate its pathogenesis. In vitro transcriptomic analyses suggest that high concen-
trations of easily metabolized carbon sources, such as glucose or amino acids, inhibit
toxin gene expression and sporulation (18, 19). Other studies have indicated that other
aspects of C. difficile metabolism may be influenced through environmental nutrient
concentration-sensitive global transcriptional regulators such as CodY and CcpA (20, 21).
These analyses focused on in vitro growth (22, 23) or colonization of germfree (GF) mice (14,
21). Although these analyses are informative, they either are directed toward the expression
of pathogenicity factors or lack the context of the gut microbiota against which C. difficile
must compete for substrates. Metabolomic investigations have also been used to assay
changes in bacterial metabolism as they relate to CDI and have characterized the levels of
germinants and growth substrates (6, 10); however, metabolomic approaches are unable
to attribute a metabolite to specific organisms in the gut community. Thus, metabolomics
more closely represents the echoes of total community metabolism, not the currently active
processes of any one population. It has thus far not been possible to study the metabolism
of C. difficile in vivo. To overcome these limitations, we implemented transcriptomic and
untargeted metabolomic analyses of C. difficile and the surrounding environment to better
understand the active metabolic pathways in a model of infection. Based on the ability of
C. difficile to grow on a diverse array of carbon sources and its ability to colonize a variety
of communities, we hypothesized that C. difficile adapts its metabolism to fit the context of
the environment that it is attempting to colonize. To test this hypothesis, we employed a
mouse model of infection to compare the metabolic responses of C. difficile to the gut
environment caused by three antibiotics from distinct classes. By characterizing a
transcriptome-enabled metabolic model of C. difficile and changes in the metabolome
of each respective environment, we were able to generate a systems model to directly
test the nutrient niche hypothesis.

RESULTS
Levels of C. difficile sporulation and toxin activity vary among different micro-

biomes. Conventionally reared specific-pathogen-free (SPF) mice were treated with
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either streptomycin, cefoperazone, or clindamycin (Table 1; also see Fig. S1 in the
supplemental material). These antibiotics were selected because they each have dis-
tinct and significant impacts on the structure of the cecal microbiome (Fig. S2A and B).
We challenged the antibiotic-treated mice and germfree (exGF) mice with C. difficile
strain 630 to understand the pathogen’s physiology with and without other microbiota.
This toxigenic strain of C. difficile was chosen for its moderate clinical severity in mouse
models (24) and well-annotated genome (25). After infection, we measured sporulation
and toxin production at 18 h postinoculation. That time point corresponded with when
another laboratory strain of C. difficile reached its maximum vegetative cell density in
the cecum with limited sporulation (26). There was not a significant difference in the
numbers of vegetative C. difficile cells in the ceca of mice pretreated with any of the
three antibiotics (Fig. 1A). All antibiotic-treated and exGF mice were colonized to ~1 �

108 CFU per gram of cecal content, while untreated mice maintained colonization resis-
tance to C. difficile (Fig. 1A). Despite having the same number of vegetative C. difficile cells,
more spores were detected in exGF mice than in the antibiotic-pretreated mice (P � 0.003,
0.004, and 0.003) (Fig. 1B). Toxin activity was relatively low across each group tested
compared to previous studies (24, 27). The low activity was likely the result of the early
sampling time point during infection. In spite of this, the toxin activity in exGF animals
was significantly higher than that in any other colonized group (all P values were
�0.001), with slight variation between antibiotic pretreatment groups (Fig. 1C). These
results showed that C. difficile colonized different communities to consistently high
levels but had subtle variation in sporulation and toxin activity between distinct antibiotic-
pretreated environments. As activation of both traits has been linked to recognition of
distinct nutrient source concentrations in the environment (28, 29), we hypothesized
that C. difficile was utilizing different growth substrates across the conditions tested. To
investigate the physiology of C. difficile when colonizing distinct susceptible gut
environments, we performed whole-transcriptome analysis of C. difficile from the cecal
content of the same mice used to measure C. difficile density and toxin activity.

C. difficile alters its gene expression pathways when colonizing distinct
antibiotic-pretreated environments. Utilizing aliquots of cecal content from the same
mice that were in the previous assays, we measured differential expression of specific
genes associated with in vivo phenotype changes reported in previous studies with a
transcriptome-sequencing (RNA-Seq)-based approach. Microarray-based gene expres-
sion measurement was not a viable alternative to sequencing as the amount of back-
ground orthologous transcription from other bacterial species would contribute to non-
specific binding and bias the true C. difficile signal. Therefore, we employed RNA-Seq to
quantify C. difficile-specific transcription. C. difficile represented a small percentage of the
community in each colonized environment (Fig. S2C), which made it impossible to
sequence the transcriptome of individual mice due to the depth required to sufficiently
sample the transcripts of C. difficile. This required the generation of a single transcrip-
tome per condition using pooled mRNA from all mice within each pretreatment group.

TABLE 1 Antibiotics used in C. difficile murine infection models

Antibiotic Class Target Activity Administration Dosage

Cefoperazone Cephalosporin
(third generation)

Primarily Gram-positive bacteria,
with increased activity
against Gram-negative
bacteria

Irreversible cross-linking of
bacterial transpeptidases
to peptidoglycan and
prevention of cell wall
synthesis

Drinking water ad libitum
for 5 days and 2 days
of untreated drinking
water prior to
infection

0.5 mg/ml drinking
water

Streptomycin Aminoglycoside Active against most Gram-
negative aerobic and
facultative anaerobic bacilli

Protein synthesis inhibition
through binding the 30S
portion of the 70S
ribosomal subunit

Drinking water ad libitum
for 5 days and 2 days
of untreated drinking
water prior to
infection

5.0 mg/ml drinking
water

Clindamycin Lincosamide Primarily active against Gram-
positive bacteria, most
anaerobic bacteria, and some
mycoplasmas

Protein synthesis inhibition
through binding to the
23S portion of the 50S
ribosomal subunit

Intraperitoneal injection
24 h prior to infection

10 mg/kg body
weight
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Following sequencing, read curation, and stringent mapping to C. difficile strain 630
genes (see Materials and Methods), we implemented two steps of abundance normal-
ization to compare expression between groups. Transcript abundances for each target
gene were first corrected to both read length and target gene length, which resulted
in an average per-base expression level for each. Adjusted values were then down-
sampled to the same total read abundance for each mapping effort, allowing for even
comparison between the conditions. Additionally, before proceeding with the analysis
we assessed variation in expression of select bacterial housekeeping genes across
treatment groups (Fig. S3A). Due to the heterogeneity of C. difficile reference genes
across strains (30), we chose DNA gyrase subunit A (GyrA), threonyl-tRNA synthetase
(ThrS), and ATP-dependent Clp protease (ClpP) because they are conserved across
bacterial phyla and have been commonly utilized as standards for numerous transcrip-
tional studies (14, 31, 32). We observed consistent expression for each of the house-
keeping genes across treatments, which indicated that our results were more likely to
be a true reflection of C. difficile expression in vivo. We then focused on select genes
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FIG 1 Gut environment context affects C. difficile sporulation and toxin activity. Quantification of spore
CFU and toxin titer from cecal content of infected mice (n � 9 per group). (A) Vegetative C. difficile CFU
per gram of cecal content (P � 0.05). (B) C. difficile spore CFU per gram of cecal content. (C) Toxin titer
from cecal content measured by activity in Vero cell rounding assay. Dotted lines denote limits of
detection (LOD). Values for undetectable points were imputed as half the LOD for calculation of
significant differences. Significance (P � 0.05), denoted by a single asterisk, was determined with the
Wilcoxon signed-rank test with the Benjamini-Hochberg correction.
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previously demonstrated to have altered transcription based on environmental cues,
including several key sigma factors (29) and downstream genes involved in sporulation
(33), toxin production (34), and quorum sensing (35) (Fig. S4). Comparing these data to
results described above, toxin gene expression seemed to vary between conditions
more than the activity data would suggest (Fig. S4B). However, the abundance of cDNA
transcript recruited within this mapping effort relative to the toxin genes was very low,
which would agree with the generally low levels of toxin activity detectable across
treatment groups (Fig. 1C). For the other gene categories, consistent trends across
pretreatments were not apparent through this analysis, and so we decided to shift our
focus toward differences in metabolic pathways that were more explicitly involved in
the breakdown of environmentally acquired nutrients.

We chose to assess transcriptional differences in several specific families of genes
known to contribute to different aspects of C. difficile metabolism (Fig. 2A; Table S1).
Genes involved in amino acid catabolism, including those that encoded enzymes
involved in Stickland fermentation and general peptidases, had the highest level of
expression across all pretreatments. Stickland fermentation refers to the coupled
fermentation of amino acid pairs in which one is deaminated and the other is reduced
to ultimately generate ATP (36). This suggested that C. difficile catabolized environ-
mental amino acids during infection, regardless of the structure of the surrounding
community. Although there were gene categories that were equally expressed across
conditions in spite of the community differences, there were patterns of expression for
certain gene families and specific genes that were specific to each antibiotic pretreat-
ment. In mice pretreated with cefoperazone, C. difficile tended to have higher expres-
sion of genes in the ABC sugar transporter and sugar alcohol catabolism (e.g., mannitol)
families and lower expression of genes in the phosphotransferase system (PTS) trans-
porter family than the other pretreatment groups. In mice pretreated with clindamycin,
C. difficile tended to have higher expression of genes from disaccharide catabolism (e.g.,
beta-galactosidases and trehalose/maltose/cellibiose hydrolases), fermentation product
metabolism (including consumption or production of acetate, lactate, butyrate, succinate,
ethanol, and butanol), and PTS transporter families. Genes from the sugar alcohol catabo-
lism and ABC sugar transporter families were not highly expressed in the clindamycin-
pretreated mice. Finally, in mice pretreated with streptomycin, C. difficile had higher
levels of expression of genes from the sugar alcohol catabolism (e.g., sorbitol) and PTS
transporter families. Combined, these results suggested that while catabolism of amino
acids and specific carbohydrates is a core component of the C. difficile nutritional
strategy during infection, C. difficile adapted its metabolism across different susceptible
environments.

Genome-scale metabolic model structure underscores known C. difficile phys-
iology. Because multiple enzymes can utilize the same input substrates within a single
organism, we decided to implement a metabolic network-based approach to further
investigate which metabolites were differentially utilized between conditions by C. dif-
ficile. This approach is more robust at identifying reporter metabolites than assessing
individual gene transcription because if the amount of a single enzyme that acts on
a substrate decreases and yet the amounts of others that also act on that substrate
increase, those changes are more readily apparent in the context of a network. To
perform this analysis, we created a generalizable tool to generate de novo genome-
enabled bipartite metabolic models with directed enzymatic reactions of bacterial
species using KEGG gene and biochemical reaction annotations. We implemented
this platform using the genome of C. difficile strain 630 (Fig. 3A), with enzymes and
metabolites represented by nodes and their interactions represented by directed
connecting edges. The C. difficile strain 630 network contained a total of 447
enzymes and 758 metabolites, with 2,135 directed edges (Fig. 3A). To validate our
metabolic network, we analyzed network topology by calculating two metrics of
centrality, betweenness centrality (BC) and closeness centrality (CC), to determine
which nodes are critical to the structure of the metabolic network and if these patterns
reflect known biology (Table S3). Both metrics utilize shortest paths, which refer to the
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lowest possible number of network connections that lie between two given nodes. The
BC of each node is the fraction of shortest paths that pass through that node and
connect all other potential pairs of nodes. In biological terms, this refers to the
amount of influence that a given hub has on the overall flow of metabolism (37).
Similarly, CC is the reciprocal sum of the lengths of shortest paths included in each
node’s BC. This value demonstrates how essential a given node is to the overall
structure of the metabolic network (38). Metabolic network structural studies of Esch-
erichia coli have found that metabolites with the highest centrality calculations are
involved in fundamental processes in metabolism, namely, glycolysis and the citrate
acid cycle pathway (39). As such, these metrics allow for assessment of the degree to
which a metabolic network accurately depicts established principles of bacterial me-
tabolism.

Following application of both methods, we found 5 enzymes that were shared
between the top 10 enzymes from BC and CC calculations (2-dehydro-3-deoxyphospho-
gluconate aldolase, aspartate aminotransferase, pyruvate-flavodoxin oxidoreductase,
formate C-acetyltransferase, and 1-deoxy-D-xylulose-5-phosphate synthase). These en-
zymes primarily participate in core processes, including glycolysis, the pentose phos-
phate pathway, or the citric acid cycle. Upon analysis of the other 15 high-scoring
enzymes combined from BC and CC analyses, the majority were also components of
the abovementioned pathways, as well as several for the metabolism of amino acids
(Table S3). Similarly, the intersection of those substrates with both high BC and high
CC values indicated that 6 metabolites were central to the metabolism of C. difficile
(pyruvate, acetyl coenzyme A [CoA], 2-oxoglutarate, D-4-hydroxy-2-oxoglutarate,
D-glyceraldehyde 3-phosphate, and L-glutamate). Not only are these members of
glycolysis and the citric acid cycle, but pyruvate, acetyl-CoA, and L-glutamate
contribute to numerous intracellular pathways as forms of biological “currency” (39).
Notably absent from the most well-connected metabolites were molecules like ATP or
NADH. Their exclusion is likely a by-product of the KEGG LIGAND reference used for
network construction, which excludes cofactors from most biochemical reactions. While
this may be a limitation of certain analyses, our study was not affected as the primary
interest was in those substrates acquired from the environment. These results reflected
the defined biological patterns of C. difficile and were therefore a viable platform to
study metabolism of the pathogen.

Metabolite score algorithm reveals adaptive nutritional strategies of C. difficile
during infection of distinct environments. We next sought to incorporate the
transcriptomic results into the metabolic model to infer which metabolites C. difficile
most likely utilized from a given environment. To accomplish this, we mapped nor-
malized transcript abundances to the enzyme nodes in the network. Similar approaches
have been previously successful in demonstrating that transcript abundance data can
be utilized through the lens of genome-scale metabolic networks to accurately predict
microbial metabolic responses to environmental perturbation and identify reporter
metabolites of changes (40). In our system, the score of each metabolite was measured
as the log2-transformed difference in average transcript levels of enzymes that use the
metabolite as a substrate and those that generate the metabolite as a product (Fig. 3B).
A metabolite with a high score was likely obtained from the environment because the
expression of genes for enzymes that produce the metabolite was low. It is important
to note that molecules that were more likely produced in our model were not
necessarily likely to be released to the environment. Our models do not include the

FIG 2 C. difficile alters expression metabolic pathways between antibiotic pretreatment models. Each
point in the ternary plot represents a unique gene from the annotated genome of C. difficile strain 630.
The position reflects the ratio of median rarefied transcript abundance for that gene between the three
colonized antibiotic pretreatment models. Genes from specific metabolic pathways of interest are
labeled, and transcription from all other genes is shown in gray. (A) The size of highlighted points is
relative to the highest transcript abundance among the antibiotic pretreatments for each gene. (B to I)
Categories of metabolism are displayed separately. Genes, annotations, and normalized transcript
abundances can be found in Table S1.
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FIG 3 C. difficile strain 630 genome-enabled bipartite metabolic network architecture and transcriptomic-
enabled metabolite score calculation. (A) Largest component from the bipartite genome-enabled model
of C. difficile strain 630. Enzyme node sizes reflect the levels of detectable transcript from each gene.
Metabolite score algorithm components: I, average transcription of reactions consuming a metabolite; II,
average transcription of reactions producing a metabolite; III, difference of consumption and production.
(B) The expanded window displays a partial example of D-fructose score calculation. Values in the red
nodes represent normalized transcript reads mapping to enzymes. (C) Example of 10,000-fold Monte
Carlo simulation results corresponding to a significant metabolite score for m.
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synthesis of large macromolecules (i.e., long polypeptides or cytoskeleton) and should
therefore be utilized to consider only metabolites that were inputs to a network. Due
to the previously mentioned limited technical replication of sequencing efforts, we
adopted a Monte Carlo-style simulation for iterative random transcriptome comparison
to provide statistical validation of our network-based findings. This process generated
random score distributions for each metabolite node in the network, which made it
possible to calculate a confidence interval that represented random noise for each
metabolite. This ultimately allowed for assessment of the probability that a given
metabolite was excluded from the associated null distribution (Fig. 3C).

To identify the metabolites that were most essential for C. difficile growth, regardless
of the environment, we cross-referenced the 40 highest-scoring metabolites from
each treatment group (Fig. 4A). N-Acetylglucosamine (GlcNAc) was found to have
the highest median score of all shared metabolites and has been shown to be a
readily available source of carbon and nitrogen, which can be limiting in the gut
(21). We went on to confirm that our strain of C. difficile could metabolize GlcNAc for
growth (Fig. 4B; Table S5) in C. difficile minimal medium (41). The Stickland fermentation
acceptor proline scored highly across all conditions (42). C. difficile is auxotrophic for not
only proline but also cysteine, leucine, isoleucine, tryptophan, and valine, which
prevented testing for in vitro growth changes on proline despite providing for modest
growth in the no-carbohydrate control. Previous analysis of C. difficile colonizing GF
mice under monoassociated conditions indicated that C. difficile uses both sets of metab-
olites (21); however, use of these metabolites in the context of a complex community of
potential competitors has not been observed. This analysis indicated that these metabolites
might be an integral component of the nutrient niche for C. difficile.

In vivo metabolomic analysis supports that C. difficile consumes metabolites
indicated by metabolic modeling. To further validate the results of our metabolic
model, we tested the effect of C. difficile on the metabolite pool in cecal contents from
each antibiotic-pretreated and exGF mouse used in the previous analyses. This afforded
us the ability to compare replicates within each treatment group. To measure metab-
olite concentrations, we utilized nontargeted ultraperformance liquid chromatography
and mass spectrometry (UPLC-MS) to measure the relative in vivo concentrations of
metabolites for each mouse under the conditions investigated, with special attention to
those highlighted by high metabolite scores. We tested whether the susceptible
communities had significantly different concentrations of each metabolite relative to
untreated SPF mice and whether the presence of C. difficile affected the metabolite
composition.

First, we compared the relative concentrations of highly scored metabolites in
untreated SPF mice and antibiotic-pretreated mice in the absence of C. difficile (Fig. 5).
We found that the relative concentration of GlcNAc was actually significantly lower
under all susceptible conditions (Fig. 5A; all P values are �0.001). The concentrations of
the Stickland fermentation acceptors proline (all P values are �0.05) and hydroxypro-
line (all P values are �0.05) were significantly higher in all susceptible environments
tested (Fig. 5B and S5D). Succinyl-CoA, which is the direct precursor to succinate by
succinyl-CoA transferases, scored highest in the clindamycin pretreatment (43). Succi-
nate has been shown to support C. difficile growth in vivo through a synergistic
relationship that requires at least one other bacterial species (9). As succinyl-CoA was
not measured in our metabolomic assay, we instead found that succinate was indeed
significantly higher in clindamycin-pretreated mice (Fig. 5D; all P values are �0.05).
Among the cefoperazone-pretreated SPF and GF mice, we also found that the concen-
trations of mannitol/sorbitol (Fig. 5C), N-acetylneuraminate (Fig. 5E), and glycine
(Fig. S5E) were significantly higher in cefoperazone-treated SPF and GF mice (all
P values were �0.05). These results supported the assertion that susceptible mice had
multiple nutrient niches that C. difficile was able to exploit.

Second, we compared relative concentrations of high-scoring metabolites during
CDI and mock infection within each pretreatment group (Fig. 5). Both groups of
host-derived glycans, GlcNAc/GalNAc (Fig. 5A) and Neu5Ac (Fig. 5E), were significantly
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FIG 4 Metabolic network analysis reveals differential carbon source utilization by C. difficile across
infections. Reported metabolite scores were calculated to have �2.5% probability of being included in
the associated random score distribution. Analysis was performed using the 40 highest-scoring metab-
olites from each condition. (A) The shared metabolite score represents the median score of metabolites
that consistently scored highly among all infected conditions. Below the conserved patterns are shown
the distinct metabolites for each group’s subset. (B) Eighteen hours of C. difficile strain 630 in vitro growth
validating substrates from network analysis. All statistical comparison was performed relative to the
no-carbohydrate control (all P values were �0.001). Significance was determined with one-way ANOVA
with the Benjamini-Hochberg correction.
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lower when in the presence of C. difficile in exGF mice (P � 0.05 and 0.01). In agreement
with the previous results, we found that the Stickland acceptors proline (Fig. 5B) and
hydroxyproline (Fig. S5D) were significantly lower in every C. difficile-colonized envi-
ronment (all P values were �0.05). Glycine, another preferred Stickland acceptor, was
lower under each condition following infection, with a significant change in cefoperazone-
pretreated mice (Fig. S5D; P � 0.05). The Stickland donors leucine and isoleucine were
significantly lower under all infected conditions except in streptomycin-pretreated
mice (Fig. S5; all P values were �0.05). These results supported the hypothesis that
amino acids are an important energy source for C. difficile during infection. A
significant difference was seen for mannitol/sorbitol in exGF mice (P � 0.01) but not
in cefoperazone-pretreated mice (Fig. 5C). Although a lower concentration of
succinate in both streptomycin- and clindamycin-pretreated mice was observed, nei-
ther was found to be significant. Overall, this metabolomic analysis supported our
transcriptome-based metabolite score algorithm for predicting the metabolites utilized
by C. difficile under different infection conditions. Results from metabolic modeling
combined with untargeted metabolomic analysis also suggested a possible hierarchy of
preferred growth substrates.

DISCUSSION

The results presented here expand upon the previous understanding of C. difficile
metabolism during infection by showing that the pathogen adapts its metabolism not
only to life inside a host (14, 21) but also to the context of the specific gut environment
in which it finds itself. Previous transcriptomic efforts to measure the response of
C. difficile have characterized in vivo changes in metabolism following colonization of
GF mice. In this study, we utilized a conventionally reared mouse model of infection to
compare the responses of C. difficile to colonization in the context of varied gut
communities generated by pretreatment with representatives from distinct classes of
antibiotics. With these models, we identified subtle differences in sporulation and toxin
activity between each antibiotic-pretreated condition. Transcriptomic sequencing
of C. difficile across colonized environments indicated complex expression patterns of
genes in catabolic pathways for a variety of carbon sources. Integration of transcrip-
tomic data with genome-scale metabolic modeling allowed us to observe that C. dif-
ficile likely generated energy by metabolizing specific alternative carbon and nitrogen
sources across colonized conditions. We also found that Stickland fermentation sub-
strates and products, as well as the host-derived glycan N-acetylglucosamine, were
consistently among the highest-scoring shared metabolites, which indicated that these
metabolites were central to the in vivo nutritional strategy of C. difficile. To confirm our
modeling-based results, we employed untargeted mass spectrometry that demon-
strated greater availability of many metabolites highlighted by our algorithm in sus-
ceptible gut environments. Metabolomic analysis further revealed differential reduction
of highly scored metabolites during CDI, which suggested a hierarchy for the utilization
of certain growth nutrients.

Our interpretation of the positive trends that we observed between metabolite
score and substrate availability across conditions was that the distinct antibiotic
treatments eliminate alternative patterns of competitors for those nutrients in the gut
of susceptible animals. These groups of bacteria are likely to be more specialized than
C. difficile at acquiring those resources, supporting the nutrient niche hypothesis as a
mechanism to explain the exclusion of C. difficile by the intact microbiota. By pursuing
a more generalist behavior in terms of growth nutrient preferences, C. difficile has

FIG 5 In vivo untargeted metabolomics support network-based metabolite scores and suggest nutrient preference
hierarchy. Paired metabolites were quantified simultaneously as they differ only by chirality, making differentiation
impossible. CDI status and C. difficile metabolite scores during infection are indicated below each panel. “NA” denotes
metabolites that were not included in our metabolic model of C. difficile strain 630. Black asterisks inside the panels
represent significant differences between mock- and C. difficile-infected groups within separate treatment groups (all
P values were �0.05). Gray asterisks above each panel indicate significant differences from untreated SPF mice (all P values
were �0.05). Significance was determined with the Wilcoxon signed-rank test with the Benjamini-Hochberg correction.
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increased fitness for exploiting differentially perturbed gut communities. ExGF mice
provided a partially controlled system of resource competition. Under this condition,
Neu5Ac was found to be the highest-scoring substrate, and its concentrations were
significantly higher during mock infection than following C. difficile colonization. A
similar trend was also seen in cefoperazone-pretreated mice, implying that this anti-
biotic may have reduced the population density of the particular competitors for this
niche. These data suggest that C. difficile may be less competitive for this host-derived
glycan and have access only when certain competitors have had their densities
reduced. In agreement with earlier research, we found that C. difficile likely fermented
amino acids for energy during infection of GF mice in addition to host-derived glycan
catabolism. Our results go on to support the idea that this metabolic strategy was
conserved across all infection conditions tested. Several Stickland substrates that had
consistently high metabolite scores, including alanine, leucine, and proline, indeed
decreased in concentration during infection (Fig. 5B; see also Table S4 and Fig. S5A and
B in the supplemental material). Fermentation of amino acids provides not only carbon
and energy but also a source of nitrogen, which is a limited resource in the mammalian
lower gastrointestinal tract (44). This makes Stickland fermentation a valuable meta-
bolic strategy, and it stands to reason that C. difficile would use this strategy across all
environments that it colonizes. This same principle may also extend to glycans har-
vested from the host mucus layer (GlcNAc and Neu5Ac), as they are another source of
carbon and nitrogen which, despite augmented release by members of the microbiota,
would be present at some basal concentration regardless of other species’ metabolism
(45, 46). Moreover, decreases in relative concentrations of certain metabolites following
antibiotic treatment do not preclude their availability to C. difficile. As long as compe-
tition for the remaining pool of the given substrate is reduced, C. difficile may be able
to exploit it as a component of its nutrient niche space. Based on our results, we
propose that amino acid catabolism is a primary strategy of C. difficile in vivo followed
closely by host-derived glycan catabolism. To fulfill its remaining needs, C. difficile
adapts its metabolism to utilize a combination of carbohydrates, sugar alcohols, or
carboxylic acids depending on their availability in the environment. Since the last
provide carbon and energy but not nitrogen, it appears that C. difficile metabolism
strongly prefers nitrogen-containing carbon sources that fulfill a larger proportion of its
biological requirements.

Several factors limited our ability to generate transcriptomic replicates for individual
mice in each treatment group. Most prominently, we were forced to pool the cecal
contents of multiple animals to generate a sufficient quantity of high-quality RNA for
extremely deep sequencing that would permit sampling the transcriptome of a rare
member of the microbiota (Fig. S2C). Due to possible variation between individual
samples that could be masked by this approach, we quantified within-group sample
variation for all sample types for which we were able to collect biological replicates.
This included C. difficile density, 16S rRNA gene abundance, and untargeted mass
spectrometry. In order to increase our confidence that transcriptomes were more likely
to be consistent between pretreatment groups, we calculated within-group sample
variance for C. difficile density, 16S rRNA gene abundances, and untargeted metabo-
lomics data sets (Fig. S3B to D). This revealed extremely low variability in each
treatment group tested for sample types with increasing levels of complexity. Since
these data were collected using matched cecal samples, we were confident that our
transcriptomic results reflected reality. Unlike our transcriptomic data, we were able to
characterize the metabolome of individual animals; however, these comparisons had
their own complications related to the fact that multiple organisms contribute to
the overall metabolite pool. The changes observed could be the result of metabolic
patterns from other species in each system (host or microbe) in response to pathogen
colonization, and it is difficult to discern whether C. difficile reaches a density large
enough to impact these differences on its own. Possible limitations of our modeling
approach also existed, despite much of our results being consistent with previously
published work and our own untargeted metabolomic analysis. The metabolite score
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calculation is dependent on correct and existing gene annotation. In this regard, it has
been shown previously that the pathway annotations in KEGG are robust to missing
elements (47); however, this does not completely eliminate the possibility of this type
of error. Due to the topology of the metabolic network, we were also unable to
integrate stoichiometry for each reaction, which may affect rates of consumption or
production. Reaction reversibility also varies depending on the versions of enzymes
possessed by each species. Since our algorithm favorably weights those metabolites
closer to the network periphery, incorrect directionality annotations may lead to mislabel-
ing of reactants or products and potentially lead to incorrect metabolite score calcu-
lations. Since our metabolite scoring algorithm selectively amplifies signal for those
metabolites with the highest probability of being imported from the environment, this
modeling platform may also allow for the identification of emergent properties for the
metabolism of C. difficile during infection. One example could be the appearance of CO2

and formate, apparent metabolic end products, in the list of shared metabolites which
scored highly across conditions. Although this may be a shortcoming of the genome or
database annotation, one group has posited that C. difficile may actually consume CO2

under certain conditions and require both of these substrates to undergo this process
(48). These findings highlight that our method not only identified growth substrates
but also identified additional metabolites that were being utilized for other processes.
With further manual curation of the C. difficile metabolic network, more species-specific
discoveries are possible. Even with this possibility, the application of multiple methods
to study the altered physiology of C. difficile in mock-infected and infected communities
allowed us to validate our results based on known elements of C. difficile biology and
to internally cross-validate the novel results from our experiments. Ultimately, these
results combine to underscore predictions of nutrient niche plasticity.

Our systems approach to studying C. difficile metabolism during the infection of
susceptible communities combines multiple levels of biological data to identify meta-
bolic trends that would not be apparent by a single method. Only through integrative
multiomic analysis of C. difficile infection employing genomics, transcriptomics, and
metabolomics were we able to uncover a much clearer image of C. difficile’s nutrient
niche space during infection in the context of complex microbial communities. Focus-
ing on previously established metabolic capabilities of the pathogen, we identify that
these forms of metabolism are differentially important to C. difficile when colonizing
distinct environments. Our data suggest that C. difficile is a true bacterial generalist,
making it less competitive for specific nutrients against specialists but more fit overall
for colonizing a variety of recently vacated nutrient niche spaces. These results have
implications for the development of targeted measures to prevent C. difficile coloniza-
tion through pre- or probiotic therapy that will need to be tailored to specific antibiotic-
induced perturbations. In the future, this systems-level approach could be expanded to
study the niche landscape of entire communities of bacteria and subsequent changes
to competition for nutrients in response to antibiotic treatment or pathogen coloniza-
tion.

MATERIALS AND METHODS
Animal care and antibiotic administration. Six- to 8-week-old GF C57BL/6 mice were obtained

from a single breeding colony maintained at the University of Michigan and fed laboratory rodent diet
5001 from LabDiet for all experiments. All animal protocols were approved by the University Committee
on Use and Care of Animals at the University of Michigan and carried out in accordance with the
approved guidelines. Specified SPF animals were administered one of three antibiotics: cefoperazone,
streptomycin, or clindamycin (Table 1). Cefoperazone (0.5 mg/ml) and streptomycin (5.0 mg/ml) were
administered in distilled drinking water ad libitum for 5 days with a 2-day recovery with untreated
distilled drinking water prior to infection. Clindamycin (10 mg/kg of body weight) was given via
intraperitoneal injection 24 h before the time of infection. This model was adapted from one previously
described (24).

C. difficile infection and necropsy. All C. difficile strain 630 spores were prepared from a single large
batch whose concentration was determined a week prior to challenge. On the day of challenge, 1 � 103

C. difficile spores were administered to mice via oral gavage in phosphate-buffered saline (PBS) vehicle.
Subsequent quantitative plating to enumerate the spores was performed to ensure correct dosage.
Mock-infected animals were given an oral gavage of 100 �l PBS at the same time as those mice
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administered C. difficile spores. Eighteen hours following infection, mice were euthanized by carbon
dioxide asphyxiation and necropsied to obtain the cecal contents. Two 100-�l aliquots were immediately
flash-frozen for later DNA extraction and toxin titer analysis, respectively. A third 100-�l aliquot was
quickly transferred to an anaerobic chamber for quantification of C. difficile abundance. The remaining
content in the ceca (approximately 1 ml) was mixed with 1 ml of sterile PBS in a stainless steel mortar
housed in a dry ice and ethanol bath. The cecal contents of 9 mice from 3 cages were pooled into the
mortar. Pooling cecal contents was necessary so that there would be a sufficient quantity of high-quality
rRNA-free RNA for deep sequencing. The pooled content was then finely ground and stored at �80°C for
subsequent RNA extraction.

C. difficile cultivation and quantification. Cecal samples were weighed and serially diluted under
anaerobic conditions (6% H, 20% CO2, 74% N2) with anaerobic PBS. Differential plating was performed
to quantify both C. difficile spores and vegetative cells by plating diluted samples on CCFAE plates
(fructose agar plus cycloserine [0.5%], cefoxitin [0.5%], and erythromycin [0.2%]) at 37°C for 24 h under
anaerobic conditions (49). It is important to note that the germination agent taurocholate was omitted
from these plates to quantify only vegetative cells. In parallel, undiluted samples were heated at 60°C for
30 min to eliminate vegetative cells and leave only spores (50). These samples were serially diluted under
anaerobic conditions in anaerobic PBS and plated on CCFAE with taurocholate (10%) at 37°C for 24 h.
Plating was simultaneously done for heated samples on CCFAE to ensure that all vegetative cells had
been eliminated.

C. difficile toxin titer assay. To quantify the titer of toxin in the cecum, a Vero cell rounding assay
was performed as described in reference 27. Briefly, filter-sterilized cecal content was serially diluted in
PBS and added to Vero cells in a 96-well plate. Plates were blinded and viewed after a 24-h incubation
for cell rounding. A more detailed protocol with product information can be found at https://
github.com/SchlossLab/Jenior_Modeling_mSystems_2017/blob/master/protocols/toxin_assay/Verocell
_ToxinActivity_Assay.Rmd.

16S rRNA gene sequencing and read curation. DNA was extracted from approximately 50 mg of
cecal content from each mouse using the PowerSoil-htp 96-well soil DNA isolation kit (Mo Bio Labora-
tories) and an EpMotion 5075 automated pipetting system (Eppendorf). The V4 region of the bacterial
16S rRNA gene was amplified using custom bar-coded primers and sequenced as described previously
using an Illumina MiSeq sequencer (51). All 63 samples were sequenced on a single sequencing run. The
16S rRNA gene sequences were curated using the mothur software package (v1.36), as described
previously (51). In short, paired-end reads were merged into contigs, screened for quality, aligned to the
SILVA 16S rRNA sequence database, and screened for chimeras. Sequences were classified using a naive
Bayesian classifier trained against a 16S rRNA gene training set provided by the Ribosomal Database
Project (RDP) (52). Curated sequences were clustered into operational taxonomic units (OTUs) using a
97% similarity cutoff with the average neighbor clustering algorithm. The number of sequences in each
sample was rarefied to 2,500 per sample to minimize the effects of uneven sampling.

RNA extraction, shotgun library preparation, and sequencing. Pooled, flash-frozen samples were
ground with a sterile pestle to a fine powder and scraped into a sterile 50-ml polypropylene conical tube.
Samples were stored at �80°C until the time of extraction. Immediately before RNA extraction, 3 ml of
lysis buffer (2% SDS, 16 mM EDTA, and 200 mM NaCl) contained in a 50-ml polypropylene conical tube
was first heated for 5 min in a boiling water bath (53). The hot lysis buffer was added to the frozen and
ground cecal content. The mixture was boiled with periodic vortexing for another 5 min. After boiling,
an equal volume of 37°C acid phenol-chloroform was added to the cecal content lysate and incubated
at 37°C for 10 min with periodic vortexing. The mixture was then centrifuged at 2,500 � g at 4°C for
15 min. The aqueous phase was then transferred to a sterile tube, and an equal volume of acid
phenol-chloroform was added. This mixture was vortexed and centrifuged at 2,500 � g at 4°C for 5 min.
The process was repeated until the aqueous phase was clear. The last extraction was performed with
chloroform-isoamyl alcohol to remove the acid phenol. An equal volume of isopropanol was added,
and the extracted nucleic acid was incubated overnight at �20°C. The following day, the sample was
centrifuged at 12,000 � g at 4°C for 45 min. The pellet was washed with 0°C 100% ethanol and
resuspended in 200 �l of RNase-free water. Samples were then treated with 2 �l of Turbo DNase for
30 min at 37°C. RNA samples were retrieved using the Zymo Quick-RNA MiniPrep kit. Completion of the
DNase reaction was assessed using PCR for the V4 region of the 16S rRNA gene for 30 cycles (51). The
quality and integrity of the RNA were measured using the Agilent RNA 6000 Nano kit for total prokaryotic
RNA. The Ribo-Zero Gold rRNA removal kit for epidemiology was then used to deplete 16S and 18S rRNA
from the samples. Prior to library construction, quality and integrity were measured again using the
Agilent RNA 6000 Pico kit. Stranded RNA-Seq libraries were constructed with the TruSeq total RNA library
preparation kit, version 2. The Agilent DNA high-sensitivity kit was used to measure concentration and
fragment size distribution before sequencing. High-throughput sequencing was performed by the
University of Michigan Sequencing Core in Ann Arbor, MI. For all groups, sequencing was repeated across
4 lanes of an Illumina HiSeq 2500 sequencer using 2 by 50-bp chemistry.

cDNA read curation, mapping, and normalization. Raw read curation was performed in a two-step
process. First, residual 5= and 3= Illumina adapter sequences were removed using CutAdapt (54) on a
per-library basis. Reads were then quality trimmed using Sickle (N. A. Joshi and J. N. Fass, 2011) on the
default settings. An average of ~261,000,000 total reads (both paired and orphaned) remained after
quality trimming. Mapping was accomplished using Bowtie2 (55), and the default stringent settings
allowing for 0 mismatches again target reference genes. An average of ~6,880,000 reads in each sample
mapped to the annotated nucleotide gene sequences of Clostridioides difficile 630 from KEGG (Kyoto
Encyclopedia of Genes and Genomes) (56). Optical and PCR duplicates were then removed using Picard
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MarkDuplicates (http://broadinstitute.github.io/picard/), leaving an average of ~167,000 reads per sam-
ple for final analysis (see Table S2 in the supplemental material). The remaining mappings were
converted to idxstats format using SAMtools (57), and the read counts per gene were tabulated.
Discordant pair mappings were discarded, and counts were then normalized to read length and gene
length to give a per-base report of gene coverage. Each collection of reads was then subsampled to 90%
of the lowest sequence total across the libraries, resulting in even quantities of normalized read
abundances in each group to be utilized in downstream analysis. This method was chosen because
normalization to housekeeping genes would artificially remove their contributions to metabolic flux and
reduce the information provided by our metabolite score calculations within our metabolic modeling
approach.

Reaction annotation and bipartite network construction. The metabolism of C. difficile strain 630
was represented as a directed bipartite graph with both enzymes and metabolites as nodes. Briefly,
models were semiautomatically constructed using KEGG (2016 edition) ortholog (KO) gene annotations
to which transcripts had been mapped. Reactions that each KEGG ortholog mediates were extracted
from ko_reaction.list, located in /kegg/genes/ko/. KOs that do not mediate simple biochemical reactions
(e.g., ones that mediate interactions of macromolecules) were omitted. Metabolites linked to each
reaction were retrieved from the reaction_mapformula.lst file located in /kegg/ligand/reaction/ from the
KEGG release. Those reactions that did not have annotations for the chemical compounds with which
they interact were discarded. Metabolites were then associated with each enzyme, and the directionality
and reversibility of each biochemical conversion were also saved. This process was repeated for all
enzymes in the given bacterial genome, with each enzyme and metabolite node appearing only once.
The resulting data structure was an associative array of enzymes associated with lists of both categories
of substrates (input and output), which could then be represented as a bipartite network. The final
metabolic network of C. difficile strain 630 contained a total of 1,205 individual nodes (447 enzymes and
758 substrates) with 2,135 directed edges. Transcriptomic mapping data were then reassociated with the
respective enzyme nodes prior to scoring calculations. Betweenness centrality and overall closeness
centralization indices were calculated using the igraph R package found at http://igraph.org/r/.

Metabolite score calculation. The substrate scoring algorithm (Fig. 3A) favors metabolites that are
more likely acquired from the environment (not produced within the network) and awards them a higher
score (Fig. 3B and 4A). The presumption of our approach was that enzymes that were more highly
transcribed were more likely to utilize the substrates on which they act due to coupled bacterial
transcription and translation. The more likely that a compound was to be produced, the more negative
the resulting score would be. To calculate the score of a given metabolite (m), we used rarefied transcript
abundances mapped to respective enzyme nodes. This was represented by to and ti to designate if an
enzyme created or utilized m, respectively. The first step was to calculate the average expression of
enzymes for reactions that either created a given metabolite (i) or consumed that metabolite (ii). For each
direction, the sum of transcripts for enzymes connecting to a metabolite was divided by the number
of contributing edges (eo or ei) to normalize for highly connected metabolite nodes. Next, the raw
metabolite score was calculated by subtracting the creation value from the consumption value to
weight for metabolites that are likely acquired exogenously. The difference was log2 transformed for
comparability between scores of individual metabolites. This resulted in a final value that reflected the
likelihood that a metabolite was acquired from the environment. Untransformed scores that already
equaled 0 were ignored, and negative values were accounted for by transformation of the absolute
value and then multiplied by �1. These methods have been written into a single Python workflow, along
with supporting reference files, and are presented as bigSMALL v1.0 (bacterial genome-scale metabolic
models for applied reverse ecology), available in a public GitHub repository at https://github.com/
mjenior/bigsmall.

Transcriptome randomization and probability distribution comparison. As sequencing repli-
cates of in vivo transcriptomes was not feasible, we applied a Monte Carlo-style simulation to distinguish
calculated metabolite scores due to distinct transcriptional patterns for the environment measured
from those metabolites that were constitutively scored at the extremes of the scale. We employed a
10,000-fold bootstrapping approach of randomly reassigning transcript abundance for enzyme nodes
and recalculating metabolite scores. This approach was chosen over fitting a simulated transcriptome to
a negative binomial distribution because it created a more relevant standard of comparison for lower
coverage sequencing efforts. Using this method, each substrate node accumulated a random probability
distribution of metabolite scores, which were then used to calculate the median and confidence interval
to generate a probability for each metabolite score to be the result of more than chance. This was a
superior approach to switch randomization since the connections of the network itself were created
through natural selection, and any large-scale alterations would yield biologically uninformative com-
parisons (58).

Anaerobic in vitro C. difficile growth curves. The carbon-free variation of C. difficile basal defined
medium (NCMM) was prepared as previously described (6). Individual carbohydrate sources were added
at a final concentration of 5 mg/ml, and pairwise carbohydrate combinations were added at 2.5 mg/ml
each (5 mg/ml total). A solution of the required amino acids was made separately and added when noted
at identical concentrations to the same study. Two hundred forty-five microliters of final medium mixes
was added to a 96-well sterile clear-bottom plate. A rich medium growth control was also included,
consisting of liquid brain heart infusion (BHI) with 0.5% cysteine. All culturing and growth measurements
were performed anaerobically in a Coy type B vinyl anaerobic chamber (3.0% H, 5.0% CO2, 92.0% N, 0.0%
O2). C. difficile strain 630 was grown for 14 h at 37°C in 3 ml BHI with 0.5% cysteine. Cultures were then
centrifuged at 2,000 rpm for 5 min, and resulting pellets were washed twice with sterile, anaerobic
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phosphate-buffered saline (PBS). Washed pellets were resuspended in 3 ml more PBS, and 5 �l of
prepared culture was added to each growth well of the plate containing medium. The plate was then
placed in a Tecan Sunrise plate reader. Plates were incubated for 24 h at 37°C with automatic optical
density readings at 600 nm (OD600) taken every 30 min. OD600 values were normalized to readings from
wells containing sterile medium of the same type at equal times of incubation. Growth rates and other
curve metrics were determined by differentiation analysis of the measured OD600 over time in R to obtain
the slope at each time point.

Quantification of in vivo metabolite relative concentrations. Metabolomic analysis was per-
formed by Metabolon (Durham, NC); a brief description of their methods follows. All methods utilized a
Waters Acquity ultraperformance liquid chromatograph (UPLC) and a Thermo Scientific Q-Exactive
high-resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II)
source and Orbitrap mass analyzer at 35,000 mass resolution. Samples were dried and then reconstituted
in solvents compatible with each of the four methods. The first was under acidic positive conditions
using a C18 column (Waters UPLC BEH C18; 2.1 by 100 mm, 1.7 �m) and using water and methanol,
containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). The second method was
identical to the first but was chromatographically optimized for more hydrophobic compounds. The third
approach utilized basic negative-ion-optimized conditions using a separate dedicated C18 column. Basic
extracts were gradient eluted from the column using methanol and water but, however, with 6.5 mM
ammonium bicarbonate at pH 8. Samples were then analyzed via negative ionization following elution
from a hydrophilic interaction chromatography column (Waters UPLC BEH amide; 2.1 by 150 mm,
1.7 �m) using a gradient consisting of water and acetonitrile with 10 mM ammonium formate, pH 10.8.
The MS analysis alternated between MS and data-dependent MS n scans using dynamic exclusion. The
scan range varied slightly between methods but covered 70 to 1,000 m/z. Library matches for each
compound were checked for each sample and corrected if necessary. Peaks were quantified using area
under the curve.

Statistical methods. All statistical analyses were performed using R (v.3.2.0). Significant differences
between community structures of treatment groups from 16S rRNA gene sequencing were determined
with analysis of molecular variance (AMOVA) in the mothur software package. Significant differences of
inverse Simpson diversity, CFU, toxin titer, and metabolite concentrations were determined by the
Wilcoxon signed-rank test with the Benjamini-Hochberg correction. Undetectable points used half the
limit of detection for all statistical calculations. Significant differences for growth curves compared to
the no-carbohydrate control (plus amino acids) were calculated using 1-way analysis of variance (ANOVA)
with the Benjamini-Hochberg correction.

Data availability. Pooled and quality-trimmed transcriptomic read data and experiment metadata
are available through the NCBI Sequence Read Archive (SRA) under accession no. PRJNA354635. Data
processing steps from the beginning with raw sequence data through the final paper are hosted at
http://www.github.com/SchlossLab/Jenior_Modeling_mSystems_2017.
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