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We report a draft genome sequence of Rhodococcus ruber IEGM 231, isolated from a water spring near an oil-extracting enter-
prise (Perm region, Russian Federation). This sequence provides important insights into the genetic mechanisms of propane and
n-butane metabolism, organic sulfide and beta-sitosterol biotransformation, glycolipid biosurfactant production, and heavy
metal resistance in actinobacteria.
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Nocardioform actinobacteria of the species Rhodococcus ruber
grow on the gaseous hydrocarbons ethane, propane, and

n-butane as sole carbon and energy sources and can be used in
prospecting for gas and oil deposits, as well as in other technolo-
gies (1–5). The R. ruber strain IEGM 231 was isolated from a water
spring near an oil-extracting enterprise (Perm region, Russian
Federation) and deposited in the IEGM Collection of Al-
kanotrophic Microorganisms (acronym IEGM, no. 768 WDCM,
http://www.iegm.ru/iegmcol/strains/rhodoc/ruber/r _ r u b e r
2 3 1 . h t m l) (6). The strain was shown in our laboratory to utilize
propane, n-butane, and liquid alkanes (C12–C17); convert aryl
alkyl sulfides into optically pure sulfoxides; transform beta-
sitosterol into therapeutically prospective stigmast-4-en-3-one;
produce nontoxic glycolipid biosurfactants; have a high resistance
to heavy metals; and accumulate molybdenum and nickel.

The whole genome of Rhodococcus ruber IEGM 231 was se-
quenced using Illumina technology. A mate-paired library with
an insert size of 6 kb was produced and sequenced with the
MiSeq system (2 � 250 nt). An approximately 130-fold cover-
age was generated, and the data were assembled with the Velvet
assembler (https://www.ebi.ac.uk/~zerbino/velvet). Gap filling
was performed using GapCloser (http://soap.genomics.org.cn
/soapdenovo.html) on scaffolds more than 2 kb in size. The anno-
tation of coding sequences (CDS) and prediction of gene func-
tions were performed using the MicroScope platform (https:
//www.genoscope.cns.fr/agc/microscope/home/index.php) (7),
which integrated 115 contigs, resulting in 46 scaffolds from the
assembly. The genome size of R. ruber IEGM 231 is estimated to be
6.01 Mb with a G�C content of 70.22%.

A total of 5,928 CDSs with an average length of 948 bp, 6
rRNAs, and 53 tRNAs were found in the R. ruber IEGM 231 ge-
nome. At least 73 CDSs coded for monooxygenases/hydroxylases,
22 CDSs coded for cytochromes P450, 45 CDSs coded for dioxy-
genases, 13 CDSs coded for peroxidases, and 285 CDSs coded for
dehydrogenases. Among monooxygenases, genes coding for 2 pu-

tative propane monooxygenases mmoABC and prmA, 2 alkane
1-monooxygenases alkB, 9 flavin monooxygenases, and 1 cyclo-
hexanone 1,2-monooxygenase were revealed, reinforcing the
strong phenotypic abilities of the species toward hydrocarbons.
Diversity of these sequences could also be evidence of the existence
of several alkane and organic sulfide degradation systems in R. ru-
ber IEGM 231 (8, 9). Two choD (coding for cholesterol oxidase)
homologues and 1 gene homologous to 3-beta hydroxysteroid
dehydrogenase/isomerase were present. They could account for
steroid compound transformations, as already shown for other
R. ruber strains (10, 11). The diversity of CDSs coding for glyco-
lipid biosurfactant synthesis was presented by 1 malonyl CoA-
ACP transacylase, 14 acyl-CoA synthetases, 1 fatty acid synthase I,
9 3-oxoacyl-ACP reductases, 1 cyclopropane mycolic acid syn-
thase, 1 polyketide synthase, 1 meromycolate extension ACP, 3
mycolyltransferases, 1 maltooligosyl trehalose synthase, 1 maltoo-
ligosyl trehalose trehalohydrolase, and 1 trehalose synthase.
Among heavy metal–associated CDSs, there were CDSs coding for
heavy metal resistance proteins (5 CDSs), heavy metal transport-
ers (8 CDSs), cation efflux enzymes (3 CDSs), metal binding pro-
teins (3 CDSs), a mercuric reductase, and an alkylmercuryl lyase.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der accession numbers CCSD01000001 to CCSD01000115.
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