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Differentiation of Hispanic 
biogeographic ancestry with 80 
ancestry informative markers
Casandra H. Setser1 ✉, John V. planz1, Robert C. Barber  1, Nicole R. phillips1, 
Ranajit Chakraborty1,3 & Deanna S. Cross2

Ancestry informative single nucleotide polymorphisms (SNPs) can identify biogeographic ancestry 
(BGA); however, population substructure and relatively recent admixture can make differentiation 
difficult in heterogeneous Hispanic populations. Utilizing unrelated individuals from the Genomic 
Origins and Admixture in Latinos dataset (GOAL, n = 160), we designed an 80 SNP panel (Setser80) 
that accurately depicts BGA through STRUCTURE and PCA. We compared our Setser80 to the 
Seldin and Kidd panels via resampling simulations, which models data based on allele frequencies. 
We incorporated Admixed American 1000 Genomes populations (1000 G, n = 347), into a combined 
populations dataset to determine robustness. Using multinomial logistic regression (MLR), we 
compared the 3 panels on the combined dataset and found overall MLR classification accuracies: 93.2% 
Setser80, 87.9% Seldin panel, 71.4% Kidd panel. Naïve Bayesian classification had similar results on the 
combined dataset: 91.5% Setser80, 84.7% Seldin panel, 71.1% Kidd panel. Although Peru and Mexico 
were absent from panel design, we achieved high classification accuracy on the combined populations 
for Peru (MLR = 100%, naïve Bayes = 98%), and Mexico (MLR = 90%, naïve Bayes = 83.4%) as evidence 
of the portability of the Setser80. Our results indicate the Setser80 SNP panel can reliably classify BGA 
for individuals of presumed Hispanic origin.

It is important to study the genetics of Hispanic populations to avoid oversimplifying this heterogeneous ethnicity 
into a single conglomerate. The identification of specific biogeographic ancestries (BGA) has implications both 
in clinical1 and forensic2 genetics. Clinically, a more complete description of the various Hispanic BGAs may 
result in identification of rare variants that may not have been previously described when grouping all Hispanic 
populations together3, or for controlling for population substructure in clinical trials4,5. Hispanic individuals are 
known to have differential predispositions for various diseases and ignoring this diversity restricts the generaliza-
bility of the results6. In forensics, BGA data could be used to investigate the origin of unidentified human remains 
(UHR)7, or locate the rightful parents/guardians of a child who is unable to identify where she/he is from8. It is the 
heterogeneous nature of Hispanic populations that has previously deterred full characterization of their substruc-
ture. However, in the past decade, there has been a movement to explore global human diversity and a variety of 
genetic panels have been designed for this purpose.

Early ancestry informative marker (AIMs) panels are “continental” in nature, focused on admixture 
mapping to determine from which of the six inhabited continents an individual has ancestry; these include: 
Seldin1289, Galanter et al.’s 44610, Kidd5511, EUROFORGEN12, Genetic Atlas13, Genographic Project14, Cuba by 
Marcheco-Teruel et al.15, and Cuba by Fortes-Lima et al.16. Although these studies assessed continental ances-
try proportions (e.g. Seldin128)9, highly differentiated populations may be detected within continental panels, 
even identifying admixed populations such as Gujarati Indians in Houston, TX and Mexican ancestry from Los 
Angeles, CA17. The ability to separate small admixed populations among larger more homogenous populations 
supports the notion that continental SNPs with high genetic differentiation may still be informative on a more 
specific country level. The simultaneous description of highly divergent populations alongside less specific pop-
ulations using the same SNP panel is central to the goals of our study. However, dual level analysis of admixed 
populations within continental panels is rare, as it tends to decrease the panel’s performance2,17.
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Other panels target more specific, country BGA beginning in European populations before extending to other 
regions of the world (e.g. Denmark within Northern Europe). Although the Genographic Project14 assessed popu-
lations worldwide (though sparsely in the Americas), their in-house geographic population structure (GPS) algo-
rithm is capable of identifying country of origin. EASTASAIMS was one of the first non-European AIMs panels 
focusing on 22 East Asian populations using 1,500 AIMs and was able to separate the five largest populations in 
the region18. Zeng et al.19 created a panel of 23 AIMs using FST focusing on the four major US populations from 
HapMap 320: African ancestry from Southwest United States (ASW), Utah residents with Northern and Western 
European ancestry (CEU), Chinese from Metropolitan Denver, Colorado (CHD), and Mexican ancestry from 
Los Angeles, CA (MEX). And more recently, Huerta-Chagoya et al.21 reported 32 AIMs within Mexican mestizo 
populations, to estimate admixture proportions in various regions of Mexico.

Highly accurate BGA predictions are possible with up to 83% accuracy, but at the expense of panel size, 
requiring 40,000–130,000 SNPs as used in the Genographic Project14. Additionally, of the 12,476 reference sam-
ples used to select 40,000+ SNPs in their panel, only 9% were from American/Amerindian populations22, which 
limits the utility of their panel for resolving Hispanic ancestry. The size of this panel14, the proprietary nature of 
the SNPs on their Genochip22, and poor representation of the Western hemisphere, has prompted us to create a 
small, efficient, and publicly available SNP panel concentrated on BGA of Central America, South America, and 
the Caribbean.

Within one country, both Great Britain23 and Cuba15,16 have attempted to describe the diversity of their pop-
ulations. The British Isles were ideal candidates for national differentiation due to their relative homogeneity 
and the presence of a geographic barrier which has historically restricted continuous gene flow with continental 
Europe and other island populations. In contrast, studies by Marcheco-Teruel et al.15, and Fortes-Lima et al.16 
superficially appear to differentiate between the fifteen Cuban provinces on a national level, but their real focus 
was measuring admixture proportions using a subset of Galanter et al.’s 446 SNPs10, making their studies better 
described as continental and highlighting the need for a within country panel. Overall, at least 21 AIMs panels 
have been reported; however, of the 1,397 SNPs identified by Soundararajan et al.24, only 46 Consensus SNPs were 
in common to three or more SNP panels.

At present, there is no AIMs panel that focuses on the determination of BGA between countries in the 
Americas. Despite the overlap of our region of interest with the Galanter et al.’s 446 Latin American AIMs10, our 
purpose was to classify BGA, not to estimate the ancestral proportions contributed from 3–4 continental popu-
lations. The majority of AIMs panels and genetic ancestry studies have a heavy concentration of populations in 
Europe and Asia and far fewer in Central America, South America, and the Caribbean13,14,18. Our country panel 
addresses this gap in knowledge and focuses on these same populations.

Results
Setser80 SNP panel evaluation. We evaluated the ability of a newly developed Hispanic AIMs panel 
(the Setser80) versus the Seldin1289 and Kidd5511 to separate heterogeneous Hispanic populations in the GOAL 
dataset (from Moreno-Estrada et al.25) using STRUCTURE26 and principal components analysis (PCA). With 
the STRUCTURE26 results, we applied the Evanno method27 which optimized the computer-determined (K) 
populations; the highest likelihood for the Setser80 was at K = 4 while Seldin1289 and Kidd5511 were optimized 
at K = 3 (Fig. 1a,1c,1e). The genetic proportions from STRUCTURE26 indicated that the Setser80 clearly sepa-
rates HUR (Cluster 1 = 0.8290), DOM (Cluster 2 = 0.6976), and COL (Cluster 3 = 0.6562) (Table 1); but CUB 
(Cluster 2 = 0.2892, Cluster 4 = 0.6125) and PUR (Cluster 2 = 0.2048, Cluster 4 = 0.4145) remain indistin-
guishable (Fig. 1c). Using the genetic proportions from STRUCTURE26 for the Seldin1289 and Kidd5511 pan-
els, HUR and COL separated predominately into Cluster 1 (HUR: Seldin128 = 0.7274, Kidd55 = 0.7258)(COL: 
Seldin128 = 0.5370, Kidd55 = 0.5311) (Table 1), but the remaining populations did not separate into distinct 
clusters.

We performed a principal components analysis (PCA) for the AIMs panels in the GOAL population 
(Fig. 1b,1d,1f). In the PCA of the Setser80, HUR clearly separated across PC1 and PC2, DOM separated from 
HUR across PC2, and COL separated from HUR across PC1 and from DOM across PC1 and PC2, which occu-
pies three separate quadrants of the PCA (Fig. 1d). Seldin1289 PCA showed HUR and COL separated together 
but apart from the other populations across PC1, and CUB and DOM separated together along PC2 (Fig. 1f). 
The Kidd5511 performed poorly in PCA (Fig. 1b), not forming recognizable clusters, consistent with the genetic 
proportions generated in STRUCTURE26 (Fig. 1a) (Table 1). The Setser80 was able to differentiate HUR, DOM, 
and COL by the two different algorithms underlying STRUCTURE26 and PCA.

Classification of unknowns. Based on the GOAL25 and 1000 Genomes Project28 (1000 G) allele frequen-
cies, we modeled populations to determine classification accuracy using the Snipper 2.5 app suite29. Snipper 
uses naïve Bayesian likelihood ratios and multinomial logistic regression (MLR) for prediction of unknowns via 
−log(likelihood)29. Despite the different algorithms, both analyses had similar results.

As expected, the Setser80 had the highest overall accuracy across the three panels in the simulated GOAL 
dataset (98.4%) by naïve Bayesian classification implemented via leave-one-out cross-validation. Additionally, 
the Setser80 achieved 90% accuracy in the 1000 G dataset and 91.5% in the 7 Populations Combined dataset, 
both of which include populations not involved in our SNP ascertainment (Table 2). In the latter, the Setser80 
panel (98%) and the Seldin panel (98.8%) achieved approximately equal accuracy in PEL, a population on which 
the Setser80 was not trained. In the 1000 G simulations, the Seldin panel was more accurate overall (92.4%) in 
comparison to the Setser80 (90%).

Naïve Bayes analysis of the actual 1000 G genotypes revealed the Setser80 had the highest specificity in CLM 
(98.4%), the highest sensitivity in MXL (84.4%), and similar specificity in PUR (85.2%) and PEL (97.7%) in 
comparison to the Seldin (86.8%, 95.4%) and Kidd (85.2%, 94.7%) panels (Table 3). In all three SNP panels, the 
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micro-simulations underestimated the positive predictive value of CLM. The positive predictive value of Setser80 
for PUR (simulated = 69.8%, real = 70.2%) and PEL (simulated = 91.8%, real = 89.8%) was concordant between 
the simulated and real data where it was either under or overestimated by the Seldin and Kidd panels. Both the 
Setser80 (simulated = 59.3%, real = 36.7%) and the Seldin (simulated = 80.1%, real 54.1%) panels overestimated 
positive predictive value in MXL while the Kidd panel values were concordant between the simulations (47.3%) 
and real genotypes (45.7%).

Utilizing the MLR algorithm, Setser80 had the highest accuracy in GOAL and 7 Populations Combined (99% 
and 93.2%, respectively); the Setser80 and Seldin panel had equal accuracy in 1000 G (93.8%); and the Kidd panel 
had 80.5% in GOAL, 71.4% in 7 Populations Combined, and 82.2% overall in 1000 G (Table 4). As expected, 
HUR achieved >95% accuracy in the Setser80 and the Seldin panel across all datasets. Surprisingly, PEL also 
achieved >95% and MXL > 90% accuracies using the Setser80, although the Setser80 had not been trained on 
these populations.

Despite performing best overall, the Setser80 did misclassify COL 22.5% of the time in the 7 Populations 
Combined dataset (Supplemental Table S3). When it misclassified COL, the individual was classified as MXL 
77.8% and PUR 22.2% of the time. Conversely, even though MXL classified correctly 90% of the time, when 
individuals were misclassified they were misclassified as COL 100% of the time. In comparison, the Seldin panel 
misclassified COL 17.5% of the time spread across four countries, primarily into PUR (10%). The Kidd panel 
exhibited a similar trend where COL misclassified into five countries: PUR (15%), MXL (10%), HUR (7.5%), CUB 
(7.5%), and DOM (2.5%) in addition to one individual which could not be classified. When MXL was misclas-
sified using the Kidd panel, it misclassified into PEL (7.5%), HUR (5%), and COL (5%). Additionally, the Kidd 
panel had high misclassification of HUR into MXL (20%), COL (15%), and PUR (7.5%).

Discussion
We report a panel of 80 AIMs for Hispanic BGA classification using Weir & Cockerham’s estimator30 of Wright’s 
FST

31. Honduras (HUR) and DOM emerged first in STRUCTURE26 and PCA, followed by COL at K = 4, which 
separated from CUB & PUR, indicating three distinct populations (Table 1). Based on the allele frequencies, we 
created a series of micro-simulations to compare the BGA classification of the Setser, Seldin, and Kidd panels. 
Overall, the Setser80 outperformed the Seldin and Kidd panels in naïve Bayesian classification and MLR classi-
fication accuracies in the GOAL dataset (naïve Bayes = 98.4%, MLR = 99%) and the 7 Populations Combined 
(naïve Bayes = 91.5%, MLR = 93.2%). Notably, PEL and MXL were classified with >95% and >80% accuracy, 
respectively, indicating the Setser80 panel is portable into other Hispanic datasets and populations.

Figure 1. Comparison to other panels. Each plot represents 160 unrelated GOAL individuals and their 
respective populations. Figures a, c, and e are STRUCTURE plots where each vertical line represents one 
person. Figures b, d, and f are PCA plots created through EIGENSOFT where the first three principal 
components are plotted. Figures a and b use the Kidd55 SNP panel (K = 3), c and d use the Setser80 (K = 4), 
and e and f use the Seldin128 (K = 3). Abbreviations used: HUR = Honduras, DOM = Dominican Republic, 
COL = Colombia, CUB = Cuba, PUR = Puerto Rico, PCA = principal components analysis.
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Many panels have sought country-level ancestry determination, using a variety of SNP ascertainment meth-
ods19,21,28,29. Continentally, the EUROFORGEN Global AIMs12 and the Kidd5511 panel used allele frequency dif-
ferentials (δ). Within a country, the United States HapMap 3 populations20 used PCA with receiver operating 
characteristics curve (ROC)19, and the Mexican mestizos panel used nested subsets with high SNP weights fol-
lowed by the lowest number of SNPs with the highest PC121. Similar to Kidd et al.11, we prioritized SNPs that dis-
tinguished populations with lower mean FST per country. However, we focused on differentiating Hispanic instead 
of continental populations. Kosoy et al.9 (Seldin128) also concentrates on continental differentiation, but they also 
evaluated their AIMs on African American, Puerto Rican, and Mexican/Mexican American populations.

We used the Snipper 2.5 app suite29 that provided two classification methods: a naive Bayesian classifier and 
MLR32. This web-based classifier was designed for classification of externally visible characteristics33–37 and ances-
try12,38–41, particularly in forensics. Snipper has successfully analyzed admixed South American populations34,42,43, 
similar to those used here.

The classification accuracy of the Seldin and Kidd panels is due to both the composition of their SNP ascer-
tainment datasets and the size of the panels. The Seldin panel (96.2%, 96.3%) was more accurate in MXL than 
the Setser80 (83.4%, 89.8%) in the 7 Populations Combined and 1000 G datasets, respectively. Its success is likely 
because 199 of their 825 samples were from admixed Latin American and Amerindian individuals (Mexico and 
Puerto Rico especially)9. The Kidd panel emphasized capturing diversity by using 63 global populations11 includ-
ing seven isolated Amerindian populations; they continue to add more populations via ALFRED44. The size of 
the Kidd panel and the ratio of SNPs to the number of samples (Kidd55 = 55 SNPs / 3071 samples = 0.0179; 
Seldin128 = 128 SNPs / 825 samples = 0.1552) suggests the number of SNPs, rather than SNP ascertainment pop-
ulation size, is the higher contributing factor to population differentiation. However, the number of individuals 
per population may also be a factor.

Our study’s limitations include: genechip design, sample size and its effect on allele frequencies. The GOAL25 
study genechip45 was built on 270 African (YRI), Caucasian (CEU), and East Asian population (CHB and JPT) 
samples from HapMap 146, without any Amerindian component. Although, our SNP ascertainment dataset 
was small it was not inconsistent with other studies11,18,20 where the larger overall size was coupled with small 
sub-populations. Therefore, we combined the GOAL25 dataset with the 1000 Genomes Admixed American data-
set (n = 347)28, merging COL with CLM (n = 147) and PUR with PUR (n = 122) due to negligible allele frequency 
differences, to create the 7 Populations Combined.

The design of the Setser80 is based on the balance of the countries via country attributable mean FST and 
selection of SNPs with LD < 0.7. Using a dilution series of 234 to 44 SNPs, we evaluated the effect of panel size on 
classification accuracy in relation to Seldin and Kidd sized panels and found 80 SNPs to be sufficient. Therefore 
we chose 80 SNPs from 247 candidates by selecting SNPs such that ~20% could be attributed to each country. It 
is possible that other panels informative of Hispanic ancestry could be selected from the same candidates, but 
testing multiple different panels was beyond the scope of this study. Residual LD is possible despite our thresh-
old where four pairs of SNPs had r2 > 0.5; however, removing one of each pair and classifying two separate 76 
SNP subsets had negligible effect on classification accuracy via naïve Bayes (Supplemental Table S4) or MLR 
(Supplemental Table S5). By treating these loci as independent, we may underestimate accuracy as Kidd et al. 
2013 has shown that diplotypes are effective predictors of ancestry47.

We used micro-simulations in this study in order to normalize the size of each population and expand the 
analysis to seven Hispanic populations instead of the four publicly available through the 1000 Genomes Project28. 
Although real genotypes would have been preferable, widely variable population sizes could disproportionately 

Panel Population Cluster 1 Cluster 2 Cluster 3 Cluster 4 Individuals

Setser80 (K = 4) HUR 0.8290 0.0387 0.0647 0.0676 13

Setser80 (K = 4) DOM 0.0811 0.6976 0.1147 0.1067 21

Setser80 (K = 4) COL 0.1601 0.0474 0.6562 0.1365 53

Setser80 (K = 4) CUB 0.0348 0.2892 0.0634 0.6125 55

Setser80 (K = 4) PUR 0.0836 0.2048 0.2969 0.4145 18

Seldin128 (K = 3) HUR 0.7274 0.1155 0.1570 N/A 13

Seldin128 (K = 3) DOM 0.2296 0.4283 0.3422 N/A 21

Seldin128 (K = 3) COL 0.5370 0.1280 0.3349 N/A 53

Seldin128 (K = 3) CUB 0.1672 0.3507 0.4822 N/A 55

Seldin128 (K = 3) PUR 0.3415 0.2728 0.3860 N/A 18

Kidd55 (K = 3) HUR 0.7258 0.1077 0.1664 N/A 13

Kidd55 (K = 3) DOM 0.2664 0.3548 0.3788 N/A 21

Kidd55 (K = 3) COL 0.5311 0.0690 0.4001 N/A 53

Kidd55 (K = 3) CUB 0.1723 0.2528 0.5749 N/A 55

Kidd55 (K = 3) PUR 0.3907 0.1705 0.4389 N/A 18

Table 1. Genetic proportions from STRUCTURE. Each vertical line in a STRUCTURE diagram represents one 
individual, and the values listed here correspond to the genetic proportions of each of “K” computer determined 
populations, represented as colors in the diagram. The Setser80 categorized genetic proportions of samples into 
four computer-determined populations (K = 4). The Seldin128 and Kidd55 categorized genetic proportions into 
three computer-determined populations (K = 3).
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affect the classification accuracy for smaller populations, as may have been the case with the real MXL genotypes. 
Our analysis of additional populations is a more realistic representation of the challenges of a more granular 
classification of heterogeneous populations. Forensic labs may not have access to a sizeable Hispanic database of 
individuals from multiple different countries; therefore, we simulated datasets based on readily available allele 
frequencies from multiple sources. By doing so, we have allowed MXL to misclassify into HUR which otherwise 
do not exist within the same dataset.

Additionally, our use of a static model for BGA determination may have overestimated classification success; 
despite reasonable success by other research groups48. Finally, our imputation of the Seldin1289 and Kidd5511 
into the GOAL25 dataset required removal of ~30 loci to comply with the Setser80 QC filters. Missingness was 
not detrimental here because STRUCTURE disregards it49,50, and at 10% MLR is robust49. Alternatively, some 
missingness in micro-simulations may approximate the degraded forensic samples51.

Our findings indicate that the Setser80 can predict BGA of individuals of presumed Hispanic origin with 
high confidence. By selecting additional SNPs attributed to countries with lower average country attributable FST 
(COL, CUB, and PUR) to create the panel, the Setser80 had similar accuracy overall in GOAL25 and 7 Populations 
Combined. The Setser80 is robust as it clusters well with Bayesian model-based clustering and PCA, and classifies 
equally well in naïve Bayes classification and MLR. The Setser80 is portable and, to our knowledge, is the first BGA 
AIMs panel specifically for the Caribbean and surrounding mainland countries. In comparison to Seldin1289, 
Kidd5511, and 46 Consensus SNPs24, our 80 AIMs for Hispanic BGA is unique, both exact and by linkage dise-
quilibrium. Therefore, it is our intention that the Setser80 be integrated into a future Western Hemisphere panel.

SNP Panel Dataset HUR DOM COL CUB PUR PEL MXL Overall

Setser80 GOAL 100% (±0%) 96.8% (±2.5%) 99.4% (±0.5%) 96.8% (±2.8%) 99% (±0.7%) N/A N/A 98.4%

Seldin96 GOAL 99.2% (±0.4%) 89.6% (±3%) 78.4% (±4.2%) 76% (±3.3%) 90.8% (±1.8%) N/A N/A 87.9%

Kidd44 GOAL 88.4% (±3.4%) 78.6% (±4.1%) 67.6% (±4%) 66.2% (±5.3%) 68% (±7.3%) N/A N/A 73.8%

Setser80 1000 G N/A N/A 81.9% (±2.7%) N/A 90.4% (±2.1%) 98.1% (±0.9%) 89.8% (±3%) 90%

Seldin96 1000 G N/A N/A 84.2% (±3.6%) N/A 89.8% (±4.9%) 99.4% (±0.7%) 96.3% (±1.5%) 92.4%

Kidd44 1000 G N/A N/A 63.2% (±1.9%) N/A 75.84% (±3%) 91.84% (±2.7%) 85.28% (±3.3%) 79.00%

Setser80 7 Pops 98.4% (±0.9%) 97.4% (±1.7%) 77.6% (±8.2%) 95.8% (±1.9%) 89.8% (±2.9%) 98% (±1%) 83.4% (±3.3%) 91.5%

Seldin96 7 Pops 85% (±2.5%) 84.4% (±3.1%) 79.8% (±4.6%) 68.8% (±3.1%) 79.6% (±7%) 98.8% (±0.8%) 96.2% (±0.8%) 84.7%

Kidd44 7 Pops 67.8% (±7.8%) 83.2% (±5.1%) 59% (±4.4%) 61.2% (±4.3%) 56.4% (±2.1%) 91.4% (±1.1%) 78.6% (±4.6%) 71.1%

Table 2. Naïve Bayesian classification accuracy. Comparison of the nine possible combinations of each of 
three simulated datasets on each of three SNP panels and their naïve Bayesian classification accuracy for 
each population. Reported as percent accuracy with two-tailed standard deviations listed in parentheses 
(). Abbreviations used: GOAL = Genomic Origins and Admixture in Latinos, 1000 G = 1000 Genomes 
Project, 7 Pops = 7 Populations Combined, COL = Colombia, CUB = Cuba, DOM = Dominican Republic, 
HUR = Honduras, PUR = Puerto Rico, PEL = Peru from Lima, and MXL = Mexicans living in Los Angeles. 
Both Colombian populations from GOAL and 1000 G are listed in this table as “COL”.

Known 
Origin SNP Panel

5 sets of 500 micro-simulations 347 real 1000 G genotypes

Sen. (%) Spe. (%) PPV (%) Sen. (%) Spe. (%)
PPV 
(%)

CLM

Setser80 81.9% 70.1% 47.8% 17.0% 98.4% 80.0%

Seldin96 84.2% 77.9% 55.9% 55.3% 90.9% 69.3%

Kidd44 63.2% 49.9% 29.6% 51.1% 83.8% 53.9%

PUR

Setser80 90.4% 86.9% 69.8% 81.7% 85.2% 70.2%

Seldin96 89.8% 80.5% 60.6% 89.4% 86.8% 74.4%

Kidd44 75.8% 51.7% 34.4% 71.2% 85.2% 67.3%

PEL

Setser80 98.1% 97.1% 91.8% 62.4% 97.7% 89.8%

Seldin96 99.4% 98.9% 96.9% 87.1% 95.4% 86.0%

Kidd44 91.8% 90.4% 76.1% 75.3% 94.7% 82.1%

MXL

Setser80 89.8% 79.5% 59.3% 84.4% 67.1% 36.7%

Seldin96 96.3% 92.0% 80.1% 51.6% 90.1% 54.1%

Kidd44 85.3% 68.3% 47.3% 50.0% 86.6% 45.7%

Table 3. Positive predictive values from naïve Bayes analysis. Sensitivity, specificity, and positive predictive 
values from naïve Bayes leave-one-out cross-validation for the average of five sets of 500 micro-simulations 
(left) and n = 347 actual 1000 G genotypes (right). Micro-simulations were generated based on the allele 
frequencies from the 1000 G dataset only. Abbreviations used: Sen. = sensitivity, Spe. = specificity, 
PPV = positive predictive value, CLM = Colombia from Medellin, PUR = Puerto Rico, PEL = Peru from Lima, 
and MXL = Mexicans living in Los Angeles.
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Materials and Methods
Genomic Origins and Admixture in Latinos (GOAL) dataset. Here we downloaded the GOAL dataset 
and used 160 unrelated individuals including Honduran (HUR, n = 13), Dominican Republican (DOM, n = 21), 
Colombian (COL, n = 53), Cuban (CUB, n = 55), and Puerto Rican (PUR, n = 18) populations with three of four 
grandparents from the same country25. These samples were collected in South Florida and genotyped using the 
Affymetrix 6.0 gene chip of 906,600 predetermined SNPs45.

The Genomic Origins and Admixture in Latinos (GOAL) dataset analyzed during the current 
study is available in the dbGaP repository, accession number phs000750.v1.p1, found at: https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000750.v1.p1&phv=202273&ph-
d=4443&pha = &pht=3936&phvf = &phdf = &phaf = &phtf = &dssp=1&consent = &temp=1. Funding sup-
port for the GOAL Study was provided by the National Institute of General Medical Sciences (1R01GM090087). 
Additional support for sample collection was provided by a grant from the Stanley J. Glaser Foundation and the 
Dr. John T. Macdonald Foundation Department of Human Genetics.

Genomes (1000 G) dataset. For further comparison, we used fully sequenced individuals from the 1000 
Genomes Project Phase 3 Admixed American populations (n = 347)28, accessed through the UCSC Genome 
Browser52. These include Colombia in Medellin (CLM, n = 94), Peru in Lima (PEL, n = 85), Puerto Rico (PUR, 
n = 104), and Mexican Living in Los Angeles (MXL, n = 64)28. The 1000 Genomes Project dataset is available via 
the UCSC Genome Browser, found at: http://genome.ucsc.edu/.

SNP ascertainment. We created our AIMs panel by applying a series of quality control algorithms. 
Beginning with 897,336 autosomal SNPs on the genechip45, we filtered the GOAL dataset by linkage disequi-
librium (LD) ≤ 0.7, missingness ≤ 0.1, and minor allele frequency (maf) ≥ 0.01 using PLINK v.1.953,54 and 
retained 494,886 SNPs. After calculating FST

31 by Weir & Cockerham’s algorithm30 in PLINK v.1.9 (https://www.
cog-genomics.org/plink/1.9/basic_stats#fst)55, 1509 SNPs with FST ≥ 0.15 for at least one pairwise comparison 
were retained.

We calculated the mean FST for each of the five countries and assigned each SNP to a country based on the 
highest mean FST. The next highest mean FST was designated the 2nd country mean FST. For example, rs3777908 
is attributed to HUR because the average of HUR vs. DOM, HUR vs. COL, HUR vs. CUB, and HUR vs. PUR 
is [(0.27318 + 0.19754 + 0.19560 + 0.28808)/4] = 0.23860, which was the highest country mean FST value for 
rs3777908. The 2nd highest country mean FST = 0.07442, corresponded to PUR (see Supplemental Table S1 for 
example calculations).

We binned the 1509 SNPs by the 1st and 2nd highest country attributable mean FST and removed SNPs where 
the 1st country mean FST < 0.11 and 2nd country mean FST < 0.09, resulting in 437 SNPs. Since 63.3% of the 1509 
candidate SNPs were attributable to HUR or DOM, we removed SNPs where HUR and DOM had the 1st and 2nd 
highest country mean FST, where HUR had the 2nd highest country mean FST, and the 100 lowest ranked SNPs 
where HUR or DOM had the highest country mean FST. From the remaining 247 SNPs, we chose a subset of 80 in 
order to maintain ~20% contribution of SNPs for each country across 1st and 2nd country attribution. Therefore, 
we proceeded with the Setser80 (Supplemental Table S2), which has the following country attributable mean 
FST values: HUR (mean FST = 0.21228), DOM (mean FST = 0.16901), COL (mean FST = 0.14212), CUB (mean 
FST = 0.10803), and PUR (mean FST = 0.10272).

To assess the value of our panel, we compared it to two commonly sited AIMs panels9,11. Here, we refer to 
the panel developed by Kosoy et al., 2009 as the Seldin1289, and the 55 ancestry informative SNPs developed by 
Kidd et al., 2014 as the Kidd5511. We performed each analysis on the Setser80 in parallel with the Kidd and Seldin 
panels to evaluate the utility of our Hispanic AIMs panel.

SNP 
Panel Dataset HUR DOM COL CUB PUR PEL MXL Overall

Setser80 GOAL 100% (±0%) 100% (±0%) 100% (±0%) 97.5% (±5%) 97.5% (±5%) N/A N/A 99%

Seldin96 GOAL 97.5% (±5%) 95% (±5.8%) 85% (±12.9%) 90% (±11.5%) 95% (±5.8%) N/A N/A 92.5%

Kidd44 GOAL 92.5% (±9.6%) 90% (±0%) 75% (±17.3%) 72.5% (±15%) 72.5% (±9.6%) N/A N/A 80.5%

Setser80 1000 G N/A N/A 90.4% (±7.4%) N/A 90.4% (±7.4%) 100% (±0%) 94.2% (±7.4%) 93.8%

Seldin96 1000 G N/A N/A 94.2% (±3.8%) N/A 88.5% (±7.7%) 100% (±0%) 92.3% (±6.3%) 93.8%

Kidd44 1000 G N/A N/A 76.9% (±8.9%) N/A 76.9% (±6.3%) 92.3% (±8.9%) 82.7% (±9.7%) 82.2%

Setser80 7 Pops 95% (±5.8%) 97.5% (±5%) 77.5% (±9.6%) 100% (±0%) 92.5% (±9.6%) 100% (±0%) 90% (±8.2%) 93.2%

Seldin96 7 Pops 100% (±0%) 82.5% (±20.6%) 82.5% (±12.6%) 85% (±17.3%) 67.5% (±17.1%) 97.5% (±5%) 100% (±0%) 87.9%

Kidd44 7 Pops 57.5% (±9.6%) 85% (±12.9%) 55% (±5.8%) 72.5% (±12.6%) 55% (±12.9%) 92.5% (±9.6%) 82.5% (±9.6%) 71.4%

Table 4. MLR classification accuracy. Comparison of the nine possible combinations of each of three 
simulated datasets on each of three SNP panels and their MLR classification accuracy for each population. 
Reported as percent accuracy with two-tailed standard deviations listed in parentheses (). Abbreviations used: 
GOAL = Genomic Origins and Admixture in Latinos, 1000 G = 1000 Genomes Project, 7 Pops = 7 Populations 
Combined, COL = Colombia, CUB = Cuba, DOM = Dominican Republic, HUR = Honduras, PUR = Puerto 
Rico, PEL = Peru from Lima, MXL = Mexicans living in Los Angeles, and MLR = multinomial logistic 
regression. Both Colombian populations from GOAL and 1000 G are listed in this table as “COL”.
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Imputation. The SNPs on the Affymetrix 6.0 gene chip45 were pre-determined and not all SNPs were included 
in the ABI Taqman assay used to genotype the Seldin1289 and Kidd5511; therefore, we imputed these two panels 
into the GOAL dataset25 using IMPUTE256 on the full 250 individuals using a 5 Mb window centered on each SNP 
and an effective population size of 20,000 as seen in Instructions for IMPUTE version 257. We used 2,504 individ-
uals from 1000G28 for the genetic map and legend and the strand alignment from dbSNP batch query. Given the 
use of genome builds NCBI35/hg17 to GRCh38/hg38, we converted all components to GRCh37/hg19 for analysis.

However, the gene chip used45 was based on an early genome build (NCBI35/hg17) which did not have all the 
tag SNPs necessary (in comparison to the 1000 G Project) to reliably impute ~30 of the SNPs from Seldin1289 
and 11 from Kidd5511 for each individual. We assessed the accuracy of the imputation using the concordance 
tables provided by IMPUTE2; of the ~160 imputed SNPs from 20 chromosomes the mean concordance = 92.6% 
and range = 85.3% to 96.4%. Of the ~30 SNPs with missingness >10%, there was no obvious pattern between 
missingness proportion and concordance. Despite multiple attempts with different intervals, rs10954737 from 
the Seldin1289 was unable to be imputed due to the lack of Panel 2 SNPs. Because STRUCTURE and PCA ignore 
missing data49,50, the full Seldin1289 and Kidd5511 were used in these analyses. However, since the resampling 
approach to simulations is dependent upon the reliability of allele frequencies in our real data58, we applied the 
same <10% missingness filter used in the development of the Setser80; this resulted in 96 SNPs in the Seldin 
panel and 44 SNPs in the Kidd panel after imputation.

STRUCTURE. We evaluated ancestry by the Bayesian model-based clustering method used in STRUCTURE 
v.2.3.426 to compare the self-reported to computer-determined (K) populations. We performed STRUCTURE 
analysis at K = 2 to K = 7 for each dataset/panel at 10 iterations each using the admixture model, no LOCPRIOR, 
10,000 burn-in, and 100,000 Markov Chain Monte Carlo (MCMC) repetitions. The final STRUCTURE diagrams 
for each SNP panel were optimized and averaged through STRUCTURE Harvester59, CLUMPP60, and Distruct61 
to create the diagrams in Fig. 1.

Principal components analysis (PCA). We analyzed the Setser80, Seldin1289, and Kidd5511 on the 
GOAL dataset by PCA using EIGENSOFT v.6.1.462 and plotted the first three eigenvectors. Genesis63 was used for 
improved visualization of clustering as seen in Fig. 1.

Linkage disequilibrium (LD) analysis. Using the web-based tool LDmatrix64, we compared the Setser80 
to the Seldin1289 and Kidd5511, and the 46 Consensus SNPs described in a review article by Soundararajan et al.24.  
We used r2 > 0.7 as the threshold to evaluate whether any SNP in the Setser80 was in strong LD with SNP(s) from 
Seldin1289 and Kidd5511 (tested together) or the 46 Consensus SNPs appearing in more than 3 of 21 panels of 
AIMs24.

Modeling for the prediction of unknowns. To model the data for BGA prediction of unknown individ-
uals, we used a resampling approach based on calculated allele frequencies of the three SNP panels on each data-
set58. We simulated a randomly mating population of 100–125 individuals within each country. Next, we assigned 
a genotype to individuals by generating a random number between 1 and 0 and comparing this number to the 
maf for the country at the specified locus. Any random number above the maf was assigned the major allele. All 
genotypes were created from 2 separate allele generations for each locus. The simulation of each population was 
performed at least 5 times for the GOAL and 1000 G countries. The 7 Populations Combined dataset was created 
by merging the countries from the 1000 G and GOAL simulations without regard to simulation number. We ver-
ified our model using a chi-square test for each panel and found the allele frequencies from the simulation sets 
were not significantly different from the true allele frequencies at α = 0.05 after Bonferroni correction.

Classification of unknowns. Snipper 2.5 app suite29 is a web-based Naïve Bayes classifier, found here 
(http://mathgene.usc.es/snipper/), which calculates −log(likelihood) with leave-one-out cross-validation and 
multinomial logistic regression (MLR) options. Cross-validation divides a set of data into a training set and a 
testing set, and rotates the samples until all samples have been in the testing set. Using the “Thorough analysis of 
population data with a custom Excel file” option, Snipper calculated likelihood ratios (LR) of population vs. not 
the population and selected the country that corresponded to the highest LR. MLR is similar to STRUCTURE26,32, 
which calculated genetic proportions of individuals (as percent admixture) instead of whole populations, and 
categorized individuals based on those probabilities. We used 100–125 micro-simulations (individuals) each 
from population for references and selected 10% of profiles from a separate set of micro-simulations to predict 
unknowns. We evaluated potential overlap of MLR classification using the confusion matrix and assessed the 
validity of our classification by sensitivity, specificity, and positive predictive value from the naïve Bayes classifica-
tion of the actual 1000 G genotypes (n = 347; CLM = 94, PUR = 104, PEL = 85, and MXL = 64).

Ethical approval and informed consent. This research study using the Genomic Origins and 
Admixture in Latinos (GOAL) from Moreno-Estrada, A. et al. (2013)25, and the 1000 Genomes Project28 data-
sets was approved under University of North Texas Health Science IRB 2013-201. As this manuscript only used 
pre-existing genetic data from Moreno-Estrada, A. et al. (2013)25, where their “Informed consent was obtained 
from all participants under approval by the University of Miami Institutional Review Board (study no. 20081175)”. 
The 1000 Genomes Project data was only included in the International Genome Sample Resource if the submis-
sion was in accordance with the Consent, Ethics Review and Sampling Process of the 1000 Genomes Project28.
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