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Abstract: We performed a numerical analysis to study the orientation distribution of a dilute
suspension of thin, rigid, rod-like nanoparticles under shearing flow near a solid boundary of weak
confinement. Brownian dynamics simulation of a rod was performed under various ratios of shear
rate and rod diffusivity (Peclet number), as well as the center-of-mass position (wall confinement).
We discuss the effects of Peclet number and wall confinement on the angle distributions, Jeffery
orbit distribution and average orientation moments. The average orientation moments, obtained as a
function of Peclet number and wall confinement, can be used to improve a previous shear-induced
migration model. We demonstrate that the improved model can give excellent prediction of the
orientation moment distributions in a microchannel flow.
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1. Introduction

There have been multiple studies performed on the orientation dynamics and distributions
of rod-like micro/nanoparticles in shear flow because these affect the center-of-mass distributions
and rheological properties of the suspension of rod-like particles [1,2]. With rapidly advancing
applications of micro/nanoparticles, which have shape-specific properties, it is becoming increasingly
important to understand the structure and dynamics of micro or nano-sized rod-like particles or
macromolecules in microscale flow systems [3–8]. However, in contrast to the various studies on the
orientation and distribution of rod-like particles, theories on the distribution of rod-like particles near
solid boundaries of a microscale flow are not enough to clarify abnormal experimental behaviors.
For example, the elution order of gold nanorods in field-flow fractionation, which is a particle
separation technique [9], is not clearly understood yet [10,11]. Therefore, a more accurate calculation
of rod distribution under consideration of the steric effect of a wall is required for the prediction of the
dynamics and elution behaviors in such a system [12,13]. In this work, we focus on the steric effect of
a wall on the rod orientation distribution, more specifically confined in a channel, of which height is
larger than the long axis length of a rod.

Rotation of a non-Brownian rod in an unbounded shear flow was found to follow a trajectory
called Jeffery orbit [14]. Several works have shown that the Jeffery orbit is affected by hydrodynamic
and mechanical interactions with other rods, Brownian motion and inertia [15–19]. For Brownian
rods in a shear flow, Boeder [20] suggests an equation to describe the orientation distribution of a
rod. That distribution can be characterized by the ratio between the shear rate,

.
γ and the rotational

diffusivity of the rod, DR, which is defined as Peclet number:

Pe ≡
.
γ

DR
(1)
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The orientation distribution can be numerically solved as a function of Pe [21]. The average values
of orientation moments (the products of the orientation vector components) of a Brownian spheroid as
a function of Pe were calculated, as well as derived in a form of harmonic potential [22,23]. It was also
shown that the average orientation moments obtained by performing Brownian rod simulation of a
slender body are very similar to those of a spheroid [24]. The average orientation moments were also
used in a model equation for predicting the center-of-mass distribution influenced by shear-induced
migration [25–27]. However, the average orientation moments when considering the effect of the wall
were not available, which resulted in a discrepancy between the simulated and the analytically derived
distributions [25,26], also shown in Figure 16.

The steric hindrance effect on the rod orientation was studied for a strongly confined channel
with very narrow height (less than the long axis length of a rod) [28]. However, the study for a
weakly confined channel with a wide height (larger than the long axis length of a rod) gives only
limited information which is not enough to be applied to the aforementioned predictions of rod
behaviors [29]. Moreover, these studies were performed on an assumption that rod rotation is on a 2D
plane, excluding the vorticity direction. There were also studies performed on rod orientation and its
effect on the distributions in limited flow conditions, such as low Pe [30–32].

The lack of study on this issue is likely because the effect is not easily characterized by the
distance between a rod’s center-of-mass and the wall surface, rc, due to the combined translational
and rotational motion as a response to a collision with the wall. For example, once the tip of a rod
touches the wall, two types of behavior are possible: either its rc changes, or its rc remains the same
with a change in its orientation. Hijazi and Khater studied both cases (named “surface restitution”)
via Brownian dynamics simulation and suggested that the response having a change in rc is the more
reasonable of the two outcomes [28,29]. Additionally, it has been known that a rod under a shear flow
near a wall shows “pole-vault” type rotation, which accompanies the lift of rc due to the excluded
volume effect of the wall [33–35].

Our study will systematically show the orientation distributions in terms of normalized probability
distribution functions of various angles in wide ranges of Pe. The details of our simulation algorithm
will be described in the next section. The simulation results will be presented in terms of various
orientation distributions and the average orientation moments as a function of Pe with various
confinements (i.e., given values of rc). Finally, it will be demonstrated that our study can be applied to
show an improved prediction of the average orientation of a Brownian rod flowing in a microchannel
than the previous works [24–26].

2. Numerical Method

2.1. Definitions of the Variables for a Rod Configuration

For the investigation of a rod orientation restricted by a wall, we performed Brownian dynamics
simulation of a thin, neutrally buoyant, rigid rod near a wall in a simple shear flow. As shown in
Figure 1, a rod with its principal axis length, L = 2a and its diameter, d = 2b, is under a flow with a
shear rate of

.
γ. The Cartesian coordinate system is set so that the flow is in the x-direction, the velocity

gradient is in the y-direction and the vorticity is in the z-direction. It is assumed that the channel
height, H, is larger than 2L so that the rod orientation is only restricted by the bottom wall (y = 0).
The channel width is much larger than the channel height so that the steric effect in the z-direction
is ignored. The unit vector describing rod orientation is p and has px, py and pz components in the
respective x, y and z directions. The rod configuration is approximated as a slender-body [36] and thus
its rotational diffusivity can be written as follows:

DR =
3kBT

8πµa3 ln
(

2a
b

)
(2)

Here, kB is the Boltzman constant, T is the absolute temperature and µ is the solvent viscosity.
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Figure 1. Schematic diagram of a rod under shear flow near a wall. 

Figure 2 demonstrates the angles that were investigated: θ is the angle between a rod’s principal 

axis and the flow direction on the xy-plane and ψ is the angle between a rod’s principal axis and the 

shear direction (y). We focus on the distributions of θ and ψ which show characteristic rod orientation 

behaviors. However, we also define the other angles: ϕ is the angle between a rod’s principal axis 

and the vorticity direction (z), χ is the angle between a rod’s principal axis and the flow direction on 
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Figure 2. The orientation variables for a rod configuration. (Left) θ and ϕ as well as (Right) ψ and χ. 

Note that either set of θ and ϕ or ψ and χ determines the rod orientation p. The distribution of θ gives 

a unique feature (asymmetric distribution) of Brownian rod under shear flow. The distribution of ψ 

is directly related to the geometrical constraint by the weak confinement. 

2.2. Simulation Approach and Assumptions 

For a Brownian rod experiencing a weakly confined channel flow, its rc continues to change 

dynamically due to Brownian translational motion and collisions with the wall (see Figure 3). 

Therefore, the proper algorithm must be implemented to correctly characterize the wall confinement 

effect on the rod orientation in terms of rc = α, the given position of interest.  

Figure 1. Schematic diagram of a rod under shear flow near a wall.

Figure 2 demonstrates the angles that were investigated: θ is the angle between a rod’s principal
axis and the flow direction on the xy-plane and ψ is the angle between a rod’s principal axis and the
shear direction (y). We focus on the distributions of θ and ψ which show characteristic rod orientation
behaviors. However, we also define the other angles: ϕ is the angle between a rod’s principal axis and
the vorticity direction (z), χ is the angle between a rod’s principal axis and the flow direction on the
xz-plane. Note here that χ is not affected by the confinement. The relations between these angles and
the vector components of p can be written as shown below:

θ = tan−1
(

py

px

)
, ϕ = cos−1(pz), χ = tan−1

(
pz

px

)
, and ψ = cos−1(py

)
(3)
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Figure 2. The orientation variables for a rod configuration. (Left) θ and ϕ as well as (Right) ψ and χ.
Note that either set of θ and ϕ or ψ and χ determines the rod orientation p. The distribution of θ gives
a unique feature (asymmetric distribution) of Brownian rod under shear flow. The distribution of ψ is
directly related to the geometrical constraint by the weak confinement.

2.2. Simulation Approach and Assumptions

For a Brownian rod experiencing a weakly confined channel flow, its rc continues to change
dynamically due to Brownian translational motion and collisions with the wall (see Figure 3).
Therefore, the proper algorithm must be implemented to correctly characterize the wall confinement
effect on the rod orientation in terms of rc = α, the given position of interest.
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region. This result suggests that although the hydrodynamic interaction affects each rod’s motion the 

resulting averaged orientation distribution is not affected. Moreover, our interest is more focused on 

the steric effect on the orientation distribution and moments. Therefore, hydrodynamic interaction is 

not considered in our simulation method. 

A rod in the near-wall region (0 < rc < a) can collide with a wall due to either Brownian motion 

or shear flow. Hijazi and Khater [28,29] classified the types of rod collisions with a wall as Brownian 

collision and shear collision in their “surface restitution” study. They also investigated how the rod 

translation and rotation are changed by the collisions. They showed that it is plausible for the 

Brownian collision, either caused by Brownian translation or rotation, to result in a rod translation 
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original rod position of interest, rc = α. Furthermore, the lifted rod comes back to the original position 

rc = α by Brownian translation later in the simulation, which is expected to make the orientation at 

collision and at returning more unrelated.  

Based on those two arguments, considering the relative frame on a rod, we propose to study the 

steric effect of a wall on the rod orientation distribution by investigating the rod orientation data 

collected through the simulation of Brownian rotation of a rigid rod of which rc is fixed at a chosen 

position, rc = α. During the simulation, if the tip of a rod invades the boundary (|py| > α/a), the 

resulting configuration data will not be collected for analysis (shown in Figure 6). Our assumption is 

that the orientation data collected in the previous simulation method (Figure 3) and our proposed 

method (Figure 6) are equivalent or at least acceptably close. We chose the proposed method to 

investigate the effect of the distance from a wall, α, on the orientation distribution and average 

moments more systematically and efficiently. The previous simulation had a difficulty in collecting 

enough number of data because the probability for a rod existence (the center-of-mass distribution) 

in the near-wall region is lower due to the shear-induced migration. The resulting orientation 

Figure 3. Schematic demonstration of a rod movement in a microchannel near a wall and the rod
orientation data collection algorithm in the previous simulation by Park & Butler (2009).

Theories and simulation approaches for Brownian dynamics of rods have been developed
by many researchers [37,38]. Park & Butler (2009) performed a simulation of a Brownian rod
in a microchannel shear flow while considering long-range as well as short-range (lubrication)
hydrodynamic interactions between a rod and the walls. The main purpose of the simulation was
to confirm the center-of-mass distribution in the cross-sectional direction predicted by a previous
analytical model. The orientation distribution in the cross-sectional direction was also investigated
using the simulation data. Comparing the simulation results that both considered and ignored
hydrodynamic interactions, it was found that the average orientation moments did not show any
noticeable differences, even in the near-wall region. It was conjectured that the excluded volume
effect on particle distribution is more dominant than the hydrodynamic interaction in the near-wall
region. This result suggests that although the hydrodynamic interaction affects each rod’s motion the
resulting averaged orientation distribution is not affected. Moreover, our interest is more focused on
the steric effect on the orientation distribution and moments. Therefore, hydrodynamic interaction is
not considered in our simulation method.

A rod in the near-wall region (0 < rc < a) can collide with a wall due to either Brownian motion
or shear flow. Hijazi and Khater [28,29] classified the types of rod collisions with a wall as Brownian
collision and shear collision in their “surface restitution” study. They also investigated how the rod
translation and rotation are changed by the collisions. They showed that it is plausible for the Brownian
collision, either caused by Brownian translation or rotation, to result in a rod translation away from a
wall (lift of rc), as shown in Figure 4, considering a theoretical center-of-mass distribution. They also
claimed that their experiment observed the shear collision to result in the pole-vault type, as also
observed by others [33–35], rotation which lifts rc to a, as shown in Figure 5. Either collision results
in the lift of rc: the orientation after the lift is no longer equal to the orientation at the original rod
position of interest, rc = α. Furthermore, the lifted rod comes back to the original position rc = α by
Brownian translation later in the simulation, which is expected to make the orientation at collision and
at returning more unrelated.

Based on those two arguments, considering the relative frame on a rod, we propose to study
the steric effect of a wall on the rod orientation distribution by investigating the rod orientation
data collected through the simulation of Brownian rotation of a rigid rod of which rc is fixed at a
chosen position, rc = α. During the simulation, if the tip of a rod invades the boundary (|py| > α/a),
the resulting configuration data will not be collected for analysis (shown in Figure 6). Our assumption
is that the orientation data collected in the previous simulation method (Figure 3) and our proposed
method (Figure 6) are equivalent or at least acceptably close. We chose the proposed method to
investigate the effect of the distance from a wall, α, on the orientation distribution and average moments
more systematically and efficiently. The previous simulation had a difficulty in collecting enough



Nanomaterials 2018, 8, 130 5 of 19

number of data because the probability for a rod existence (the center-of-mass distribution) in the
near-wall region is lower due to the shear-induced migration. The resulting orientation distributions
from this simulation and the previous simulation will be compared with each other to confirm the
validation of the assumption stated above, which will be shown in the Results & Discussion section.
It is also important to mention that we tried multiple different simulation methods. For example,
we applied excluded volume force or re-assign a random orientation after a collision. Although those
methods seem intuitively reasonable, they all gave unphysical results, which imply the validation of
our proposed method.
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2.3. Initial Configuration

For each simulation rc = α is chosen to be between 0 and a and Pe is chosen to be
between 10−3 and 104. Furthermore, an initial orientation of a rod is randomly determined through
the following stepwise procedure [39]:

(1) px, py and pz are assigned a random number between −1 and 1.
(2) If |p| > 1, repeat step (1). Otherwise, normalize px, py and pz with |p|.
(3) If the normalized py is not between −α/a and +α/a, repeat steps (1) and (2) until py is correctly

constrained (−α/a ≤ py ≤ +α/a).

2.4. Equation of Motion

The rotation of a Brownian rod under a shear flow can be described by the following equation:

.
p =

.
γpy

(
x̂− pyp

)
+

3
πµL3 ln

(
2L
d

)
[T × p] (4)

Here, x̂ is a unit vector in the x-direction. Brownian torque is denoted as T . With some
manipulation, as described in the previous work by Park [26], a new orientation can be calculated
numerically at each time step by integrating the following equation.

.
p = py

(
x̂− pyp

)
+

√
2

Pe∆t
(I− pp)·w− 2p

Pe
(5)

Here, t is a dimensionless time in terms of a characteristic time of 1/
.
γ. The identity matrix is I.

A random vector, w, has a mean of zero and one unit variance [39]. The third term on the right
hand side is a correction term for numerical integration by a modified Euler method, which reduces
computational time because it does not require correction at the intermediate time step [40].

2.5. Sampling Data during Dynamic Simulation

The integration of Equation (5) is repeated from t = 0 to tend, the end time for one particle
simulation. It is then repeated for N particles. During that “one simulation set” over N particles for
each period of tend, a rod configuration is sampled in terms of p at each m-th sampling time for the
n-th particle, tn,m,. If the sampled |py(tn,m)| is less than α/a (i.e., the rod configuration is within the
confinement), the orientation data is collected for analysis (see Figure 6). We confirmed that the effects
of the chosen simulation parameters give convergent results. It is also important to note here that the
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invasion of the wall boundary is evaluated based on the rod center line, neglecting the rod diameter.
Details of a rod geometry (such as cylinder or spheroid) may be only important for low values of
a/b < 10. For thin slender rods, a/b > 10, the diameter can be neglected or adjusted easily, which will
be shown in the application to modification of a shear-induced migration model.

2.6. Orientation Distribution

Rod orientation distributions were investigated by plotting the rod angles from the collected
orientation data determined from the Brownian dynamics simulation. The collected rod configuration
data, p(tn,m), was converted for each angle via Equation (3) to obtain probability distribution functions
(PDFs). The converted angle data, θ(tn,m) and ϕ(tn,m), are counted on each unit area (∆θ = 1◦ by
∆ϕ = 1◦) on a spherical surface spanned by the tips of a rod. The counted bins on each unit area are
then normalized by the total number of the collected sampled data to give the PDF on the spherical
surface. In other words, integration of the PDF on the whole range gives 1. Additionally, each angle is
counted on unit interval (∆angle = 1◦) and then normalized to give the PDF of the corresponding angle.
The simulation parameters were chosen as ∆t = 5 × 10−7, tend = 100 and N = 1000. The sampling was
made at each time step.

2.7. Average Orientation Moments Calculation

Orientation moments were averaged over the collected orientation data, p(tn,m). For example,
an ensemble average of one of the second-order orientation moments, <pxpy>, obtained from the one
simulation set is:

〈px py〉 =
1
N

N

∑
n

1
M(n)

M(n)

∑
m

px(tn,m)py(tn,m) (6)

Here, M(n) is the total number of the collected orientation data sets falling within the boundary
for the n-th particle simulation. The average values from Equation (6) typically have large standard
deviations for low Pe’s due to the broad orientation distribution. Because we intend to extract a
model for each of the average moments in terms of Pe and α, a different approach was adapted to get
more convergent values with smaller standard deviations. We used ∆t = 5 × 10−7, tend = 1000 and
N = 100. Data was sampled at every 200th time step. The determination of this “one simulation set”
was repeated until five ensemble average values were obtained using Equation (6). These five values
were then averaged again. Most of the resulting standard deviations determined from this method
were less than 2% of the average values.

We calculated all of the possible combinations of the second-order and the fourth-order orientation
moments. However, we only display <pxpy>, <py

2> and <pxpy
3>, which are related to a theoretical

model equation for shear-induced rod migration [12,13,25,26].

3. Results and Discussion

3.1. Orientation Distribution near a Wall

PDFs of θ, ϕ, ψ and χ were obtained from each simulation, as well as PDFs of the spherical surface
spanned by the tips of a rod for various values of Pe and α.

Figures 7 and 8 show PDFs at Pe = 0.001. At this very low value of Pe the effect of shear on
each PDF is negligible and the effect of Brownian rotation dominates the PDF. Figure 7 shows the
spherical PDF(θ,ϕ) at Pe = 0.001. If there is no confinement, (α/a ≥ 1), the PDF becomes almost evenly
distributed over the spherical surface due to Brownian rotation. As the confinement is varied with
α/a = 0.1, 0.5, 0.9 and 1.0, the PDF gets restricted within the confinement but the restricted distribution
is still even.
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Figure 8 shows PDFs for θ and ψ defined in Equation (3). Figure 8a shows the PDF(θ) at Pe = 0.001.
For the unbounded case of α/a = 1.0, the PDF(θ) is also almost evenly distributed. As α/a decreases,
the values of PDF between confinement angles, sin−1(−α/a) < θ < sin−1(+α/a), increase in height
but is still almost evenly distributed. Less probable distribution outside of the confined angle region is
possible for the configurations near the z-axis. For example, although p = (0, 0.5, 0.866) has θ = 90◦,
this orientation can exist out of any θ confinement region. The PDF(ψ) is only non-zero inside of
the confinement angle range, cos−1(+α/a) < ψ < cos−1(−α/a). Therefore, the PDF(ψ) at each
confinement looks similar to squares within that confinement range.

In contrast to the PDFs at low Pe values where Brownian rotation makes the distribution even
within a confined angle region, PDFs at higher Pe values show distinctive concentrated densities on
a certain angle region. We chose to present the results at Pe = 10 for the convenience of describing
this distinctive feature. Figure 9 shows the spherical PDF(θ,ϕ) at Pe = 10. The unconfined PDF(θ,ϕ)
at α/a ≥ 1 shows a concentrated density along the x-axis; however, it is shifted towards the y-axis.
This distinctive distribution of Brownian rods under shear flow at Pe > 1 is explained by Jeffery orbit
rotation, as well as the competition between rod orientation relaxation from the Brownian rotation and
rod alignment from shear flow [21].
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Figure 9. Simulation results for the PDF(θ,ϕ) on the spherical surface of the tips of a rod at Pe = 10 with
α/a = 0.2, 0.4, 0.8 and 1.0. The color bars represent the probability density levels of each PDF from
yellow (highest probability) to dark blue (lowest probability) (color online).

At α/a = 0.8, the confinement does not affect the maximum density region. Therefore, the PDF(θ,ϕ)
is only sliced at the confinement and the overall shape is not changed much. However, as α/a becomes
smaller than 0.4, the maximum density region at α/a > 0.4 begins to reside out of the confinement region.
As a result, the distribution becomes more concentrated towards one side of the confinement region.

Figure 10a shows the PDF(θ) at Pe = 10 and various α/a’s. At α/a = 1, where rod rotation is not
restricted by a wall, the PDF(θ) shows the off-center maximum, which is well known for a Brownian
rod under shear flow [21]. The off-center maximum is found to be at θmax ≈ 25◦ for Pe = 10. As α/a is
reduced and the confinement angle region remains larger than θmax < sin−1(α/a) (i.e., 0.43 < α/a < 1),
the off-center maximum is not affected but the distribution is sliced at sin−1(±α/a). However, at α/a < 0.43,
the distribution becomes concentrated at the positive limit of the confinement, which is expected
because the rod cannot be distributed towards the maximum density region at the unconfined condition.
Figure 10b shows the PDF(ψ)/sinψ at Pe = 10. The unconfined PDF(ψ)/sinψ at Pe = 10 shows a curved
distribution. As in the case of the PDF(θ), the PDF(ψ)/sinψ at 0.43 < α/a < 1 shows the cutoff at
sin−1(±α/a), whereas the PDF(ψ)/sinψ at 0 < α/a < 0.43 shows square-like shape as in the low Pe case.
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Figure 10. Simulation results for the (a) PDF(θ) and (b) PDF(ψ)/sinψ at Pe = 10 with various α/a. It is
seen that θmax ≈ 25◦, which corresponds to α = 0.43a.

Note here that PDFs at Pe = 1.0 simply show that the distribution patterns are in between those
of Pe = 0.001 and Pe = 10.0. For example, the off-center maximum is found to be at θmax ≈ 40.5◦ for
Pe = 1.0. The confinement, sin 40.5◦ = 0.65 < α/a < 1, gives PDF(θ)s which maintain θmax ≈ 40.5◦,
while the other confinement, α/a < 0.65, results in the distribution being concentrated at the positive
limit (data not shown).

Figures 11 and 12 show PDFs at Pe = 1000. At this high value of Pe, most of the distributions
are aligned along the x-axis with the off-center maximum at θmax ≈ 4.5◦. The wide range of the
confinement, sin 4.5◦ = 0.078 < α/a < 1, gives PDF(θ)s which maintain θmax ≈ 4.5◦. As in the PDFs
shown so far, the pattern change happens when the confinement becomes narrower than the θmax

(sin 4.5◦ = 0.078 > α/a).
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Figure 12. Simulation results for the (a) PDF(θ) and (b) PDF(ψ)/sinψ at Pe = 1000 with various α/a.
It is seen that θmax ≈ 4.5◦, which corresponds to α = 0.078a.

Comparing with the previous work by Hijazi and Khater [29], our PDF(θ) seems reasonably
similar. Although the previous work used a different method for normalization and presented PDF(θ)s
only at Pe = 2 and Pe = 200, qualitatively it is enough to compare our results inferred between Pe = 0.001
and Pe = 10 as well as between Pe = 10 and Pe = 1000. For the PDF(θ) at low Pe, the trend of the shape of
the PDF(θ) being sliced at confinement appears the same. For the PDF(θ) at high Pe, the overall trends
also seem the same, except α/a = 0.2. The difference is unclear due to the normalization method used
in the previous work. Additionally, it should be pointed out that our PDFs are based on 3D simulation,
whereas the previous work was based on 2D simulation.

3.2. Average Orientation Moments near a Wall

Figures 13–15 are resulting from the simulation performed and show the average orientation
moments, <pxpy>, <py

2> and <pxpy
3>, as a function of Pe for various values for α. The average
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orientation moments at α/a = 1 (unbounded) reproduce previously determined results [26]. As α

decreases (more confined), all the values are decreased. As can be inferred from Equation (3), <pxpy> is
related to the PDF(θ) and <py

2> is related to the PDF(ϕ). As a PDF is narrowed by confinement,
the related average orientation moments are reduced. The relations among Pe, α and each orientation
moment in Figures 13–15 can be used to calculate any transport variables of rods near boundaries.
Although no formulas to express all of the values in the entire Pe and α ranges have been derived,
interpolation between the obtained data points can give reasonable approximation to the values at
arbitrary Pe and α. One application of utilizing the orientation moments is demonstrated in the
next section.
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3.3. Application to Improving a Shear-Induced Migration Theory

A previous model equation for a shear-induced migration of a rod-like particle under shear flow
near a boundary [25] did not consider the rod orientation dependence on the wall steric effect in the
near-wall region. Therefore, the rod configurations in the near-wall region predicted by the model
equation showed discrepancy from the result from the previous simulation. For example, Figure 16
compares the profiles of <py

2> as a function of rc/a for the case of Pe* = 0 (no flow), as well as a
pressure-driven flow with Pe* = 100 in a microchannel of H = 12a. Note that this assigned value
of Pe* for a pressure-driven flow is based on the cross-sectional average shear rate in the channel.
Therefore, we distinguish the local Pe(y), which is dependent on y-position for pressure-driven flow:

Pe(y) = 2Pe∗
∣∣∣∣2y

H
− 1
∣∣∣∣ (7)
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from this work [open symbols], from the previous model [lines] by Park et al. (2007) [25] and the Figure 16. The <py
2> profile as a function of rc/a for a shear flow in a channel with H = 12a. Predictions

from this work [open symbols], from the previous model [lines] by Park et al. (2007) [25] and the
previous simulation results [solid symbols] by Park and Butler (2009) [24] are compared. Note that the
half rod length distance from a wall is at 1.1a due to the rod diameter. The small discrepancy between
the previous bulk values at rc > 1.1a and the values from this work are from the interpolation.
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Since the previous model did not consider the wall confinement effect on the orientation
distribution, the values of <py

2> in the channel were assumed to follow Pe(y) from Equation (7),
even near the wall (see Figure 15). However, the previous simulation showed the reduction of <py

2>
values at rc < 1.1a, due to the wall confinement. The reason why the confinement region is rc < 1.1a
and not rc < 1.0a, is due to the assumption that the closest position where the rod tip can be located in
the previous simulation was set to rc = 0.1a, considering its diameter.

Our new prediction of <py
2> in Figure 16 can be applied to predict the <py

2> distributions in the
channel. The results are also compared with the previous results in Figure 16. As mentioned in an
earlier section, our prediction is shifted by the same amount in order to match the closest available
position. The profiles of <py

2> obtained through our new results match those from the previous
simulation for Pe* = 0. This indicates that our assumption made in our proposed simulation method is
valid for the low Pe condition.

The newly predicted profile of <py
2> at Pe* = 100 shows good agreement with the previous

simulation results at rc < 0.9a. We believe that this is the first time the orientation moments near a
wall have been calculated. Furthermore, this result shows that our orientation moment which was
calculated under simple shear flow can be applied to pressure-driven flow. This also supports Stover
and Cohen’s argument [16], that shear gradient in pressure-driven flow does not affect the orientation
distribution. However, there is some quantitative disagreement around rc = 1.1a, as the values of <py

2>
from the previous simulation are slightly higher. This discrepancy can be explained by the pole-vault
motion. As shown in Figure 5, the py component becomes larger while the pole-vault motion results
in an increasing rc, which results in the increase of <py

2> values. Since this effect is not considered
in our simulation and the pole-vault motion only happens under shear flow, it can be inferred that
the pole-vault motion was the cause of the bumps in the curvature of the graphed simulation results.
Although some discrepancy was detected around rc = 1.1a and high Pe, we claim that that discrepancy
is not severe and our model can predict the rod orientation fairly well in the near-wall region.

4. Conclusions

We investigate the wall confinement effect on the orientation distribution for a rod near a
wall (within a half rod length distance from a wall) under a shear flow. Brownian dynamics
simulations were performed by only considering the rod rotation with given various values of Pe and
α. This simulation method is proposed based on the findings from previous simulation studies that
rod-wall hydrodynamic interaction did not affect the orientation distribution and the rod-wall collision
causes the rod translation not the rod rotation.

The simulation results were analyzed to give the orientation angle distributions, Jeffery orbit
distributions and the average orientation moments for various values of Pe and α. The PDF(θ) showed
that if a wall confinement (sin−1(α/a)) is smaller than the characteristic θmax, then the distribution
becomes concentrated at sin−1(α/a). The average orientation moments values were decreased with
more confinement compared to the values under non-confinement (α/a ≥ 1.0).

The average orientation moments obtained from this study were applied to improve a
shear-induced migration theory for rod-like particles in a microchannel flow. The original theory did
not take into consideration the wall confinement effect on the orientation moments. Comparison of
the orientation moment distribution in the cross-sectional direction from the new prediction and the
previous simulation confirmed the following: (1) The rod translation due to Brownian collision does not
affect the rod orientation, which agrees with the finding by Hijazi and Khater [28,29]. (2) The pole-vault
motion slightly affects the rod orientation near the position of the half rod length but not to a severe
level. Future calculations of the orientation moments in this study will be improved by considering
the pole-vault motion, as well as details of rod shape, such as spheroid or cylinder.

The orientation distribution and moments newly obtained from our study can be applied to
improve the prediction of flow behaviors or structural configurations of rod-like particle in various
flow systems. The model equations in the shear-induced rod migration theory and the subsequent
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theories on particle separation contains the terms of the average orientation moments [12,13]. A typical
approach for evaluating the particle distribution in a flow system is to use the convective-diffusion
equation, where diffusivity is usually assumed to be isotropic and constant in the channel [41].
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Abbreviations

Notation
a the half-length of the long principal axis of a rod
b the half-length of the short principal axis of a rod
d the length of the short principal axis (diameter or thickness) of a rod
DR Rotational diffusivity of a rod
I identity matrix
kB Boltzmann constant
L the length of the long principal axis of a rod
m index of the sample time
M(n) the total number of sampled orientation data for the n-th particle.
n index of a particle
N the number of particles in each set of simulation
rc the rod center-of-mass position
p rod orientation vector with a magnitude of unity
pi the i-direction component of p
PDF probability distribution function (normalized so that its integration gives 1)
Pe rotational Peclet number
Pe* rotational Peclet number averaged over cross section for a pressure driven flow
Pe(y) local rotational Peclet number at a cross sectional position y in a pressure driven flow
t dimensionless time
tm,n the m-th sampling time for the n-th particle
T Brownian torque
T Absolute temperature of the flow
w random vector with zero mean and variance of 1
x̂ a unit vector in the x-direction
x flow direction in the Cartesian coordinate system
y shear direction in the Cartesian coordinate system
z vorticity direction in the Cartesian coordinate system
Greek Letters
.
γ shear rate
α wall confinement (distance from the wall surface to the rod center-of-mass position)
θ the angle between a rod’s principal axis and the flow direction on the xy-plane
ϕ the angle between a rod’s principal axis and the vorticity direction (z)
χ the angle between a rod’s principal axis and the flow direction on the xz-plane
ψ the angle between a rod’s principal axis and the shear direction (y)
µ solvent viscosity
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