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A B S T R A C T

Background: Brain amyloidosis does not invariably predict dementia. We hypothesized that high soluble 42-
amino acid b amyloid (Ab42) peptide levels are associated with normal cognition and hippocampal volume
despite increasing brain amyloidosis.
Methods: This cross-sectional study of 598 amyloid-positive participants in the Alzheimer's Disease Neuroim-
aging Initiative cohort examined whether levels of soluble Ab42 are higher in amyloid-positive normal cog-
nition (NC) individuals compared to mild cognitive impairment (MCI) and Alzheimer’s disease (AD) and
whether this relationship applies to neuropsychological assessments and hippocampal volume measured
within the same year. All subjects were evaluated between June 2010 and February 2019. Brain amyloid pos-
itivity was defined as positron emission tomography-based standard uptake value ratio (SUVR) �1.08 for [18]

F-florbetaben or 1.11 for [18]F-florbetapir, with higher SUVR indicating more brain amyloidosis. Analyses
were adjusted for age, sex, education, APOE4, p-tau, t-tau, and centiloids levels.
Findings: Higher soluble Ab42 levels were observed in NC (864.00 pg/ml) than in MCI (768.60 pg/ml) or AD
(617.46 pg/ml), with the relationship between NC, MCI, and AD maintained across all amyloid tertiles. In
adjusted analysis, there was a larger absolute effect size of soluble Ab42 than SUVR for NC (0.82 vs. 0.40) and
MCI (0.60 vs. 0.26) versus AD. Each standard deviation increase in Ab42 was associated with greater odds of
NC than AD (adjusted odds ratio, 6.26; p < 0.001) or MCI (1.42; p = 0.006). Higher soluble Ab42 levels were
also associated with better neuropsychological function and larger hippocampal volume.
Interpretation: Normal cognition and hippocampal volume are associated with preservation of high soluble
Ab42 levels despite increasing brain amyloidosis.
Funding: Please refer to the Funding section at the end of the article.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The amyloid cascade hypothesis has been the prevailing paradigm
for understanding Alzheimer’s disease (AD) pathogenesis. According
to this hypothesis, the fibrillogenic 42-amino acid b amyloid peptide
(Ab42) aggregates into toxic b-sheet rich assemblies, triggering a
cascade of neurotoxic events, including intracellular tau accumula-
tion as neurofibrillary tangles and neuroinflammation, which ulti-
mately result in neurodegeneration and subsequent cognitive
impairment [1]. This toxic gain-of-function hypothesis must be coun-
terbalanced by the loss of normal proteins when undergoing aggre-
gation. Proteins and peptides carry out their normal functions in the
soluble state; misfolding into insoluble fibers with the characteristic
cross-b conformation, known as amyloids, renders them non-
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Research in context

Evidence before this study

Aggregation of the 42-amino acid b amyloid (Ab42) peptide
into amyloids is conceived as the pathogenic trigger of a cas-
cade leading to tau accumulation into neurofibrillary tangles,
neuronal loss, and clinical dementia. However, while most of
the 40 anti-amyloid interventions examined over the past two
decades have successfully reduced the burden of brain amyloid,
corresponding clinical benefits have not materialized. More-
over, brain amyloidosis does not invariably predict dementia:
by the age of 85, the prevalence of brain amyloidosis is approxi-
mately 60% whereas that of dementia only 10%. No prior study
has assessed in humans the alternative loss-of-function amy-
loid hypothesis according to which high levels of natively-
folded, soluble Ab42 are associated with normal cognition in
the setting of brain amyloidosis.

Added value of this study

This is the first mechanistic study testing whether high levels of
soluble Ab42, as measured in cerebrospinal fluid, are associated
with normal cognition in individuals with brain amyloidosis. In
a cross-sectional analysis of 598 brain amyloid-positive individ-
uals participating in the Alzheimer’s Disease Neuroimaging Ini-
tiative, higher levels of soluble Ab42 were associated with
normal cognition compared to mild cognitive impairment and
Alzheimer’s disease across each tertile of brain amyloidosis.
Higher soluble Ab42 levels were also associated with better
neuropsychological performance and larger hippocampal vol-
ume, with a larger effect size yielded by changes in soluble
Ab42 than in insoluble (brain amyloid) Ab42.

Implications of all the available evidence

This analysis provides a tentative solution to the paradox of
normal cognition in the setting of brain amyloidosis, suggesting
that soluble Ab42 levels above 800 pg/ml are associated with
normal cognition regardless of (and despite increasing) brain
amyloid burden. Future disease-modifying efforts may warrant
the evaluation of therapeutic strategies that increase the levels
of soluble Ab42 in amyloid PET-positive individuals with mild
cognitive impairment or dementia and cerebrospinal Ab42 lev-
els below 800 pg/ml.
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functional [2]. Examples of loss of function of normal proteins when
transformed into amyloids include loss of glycemic control in insulin-
derived amyloidosis and loss of p53 tumor suppression function in
TP53mutations [3,4].

Disease-modifying therapeutic efforts in AD have aimed at reduc-
ing the insoluble Ab42 peptide, assuming its toxicity, rather than
increasing its soluble precursor, which is necessary for many essen-
tial functions in the brain, such as copper homeostasis, regulation of
mitochondrial function, brain development, and neuroprotection [5].
In fact, as insoluble Ab42 accumulates with age in the brain, there is
a corresponding decrease of soluble Ab42, as measured in the cere-
brospinal fluid (CSF) of patients with sporadic and familial AD (due to
PSEN1, PSEN2, or APP genetic mutations) [6]. Several lines of evidence
suggest the need for reexamining the rationale for reducing insoluble
Ab42, including the poor correlation between brain amyloid plaque
burden and disease frequency, severity, or neuronal loss [7], and the
identification of brain amyloidosis in about 30 to 40% of individuals
in their 70s and in 50% of centenarians without cognitive impairment
[8,9]. Moreover, most experimental anti-amyloid interventions have
successfully reduced the burden of brain amyloidosis without
corresponding clinical benefits [10]. Finally, knock-down APP animal
models have demonstrated behavioral and degenerative phenotypes
in the absence of amyloidosis.[5]

The National Institute on Aging and the Alzheimer’s Association
(NIA/AA) framework for the diagnosis of AD requires the demonstra-
tion of high insoluble Ab42 in the brain measured via an amyloid
radiotracer uptake by positron emission tomography (PET), or of low
soluble Ab42, measured in CSF [11]. According to this framework, the
identification of brain amyloidosis places individuals on a clinical con-
tinuum to AD dementia. However, most amyloid PET-positive indi-
viduals will not develop dementia during their lifetimes: between the
ages of 65 and 85 years, the approximate prevalence of brain amy-
loidosis increases from 20% to 60%; the prevalence of AD reaches 10%
by 85, five times lower than predicted if amyloid were toxic [12].

The accumulation of Ab42 into amyloids usually leads to reduced
levels of the soluble Ab42 pool [13], although with wide variability of
concordance between the increase in amyloidosis and the reduction
in soluble Ab42 [14]. The standardized quantification of CSF Ab42 is
the only available indirect measure of soluble Ab42 in the human
brain and has been shown to linearly correlate with the interstitial
Ab42 concentration measured by in-vivo microdialysis [15]. There-
fore, we sought to test the hypothesis that amyloid-positive individu-
als with normal cognition (NC) and brain volume have higher levels
of CSF Ab42 compared to those with mild cognitive impairment
(MCI) and AD. We also evaluated whether increasing levels of CSF
Ab42 in amyloid PET-positive individuals were associated with better
neuropsychological performance and larger hippocampal volumes
and had an attenuating role in the NC-to-AD phenotype conversion.

2. Methods

2.1. Overview

The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitu-
dinal study of over 2700 participants aged between 55 and 90 years
(http://adni.loni.usc.edu/) (Supplementary materials 1.1�1.3). As the
longitudinal data available for brain amyloid-positive individuals
included a small number of conversions from NC to MCI or to AD only a
cross-sectional analysis was feasible, although we report the available
conversion data from NC to MCI and AD among this cohort. We only
included amyloid PET-positive ADNI participants for whom the ascer-
tainment of NC, MCI, or AD, as well as their CSF collection, were made
within one year from a PET scan identifying brain amyloidosis [16].
When more than one CSF specimen was collected within 1 year from
the positive PET scan, we selected the visits with the shortest time
between CSF and PET in order to narrow the temporal association
between PET and CSF data. NC subjects included participants with and
without subjective memory concerns but no deficits on neuropsycho-
logical evaluation. Brain magnetic resonance imaging (MRI) and neuro-
psychological assessments were also included if obtained within 1 year
from the PET- and CSF-qualifying criteria for inclusion. All subjects were
evaluated between June 2010 and February 2019. Amyloid positivitywas
defined by PET data according to ADNI guidelines (http://adni.loni.usc.
edu/) as a standard uptake value ratio (SUVR) at or above 1.08 for [18]F-
florbetaben or 1.11 for [18]F-florbetapir, with higher SUVR indicating
greater amyloid plaque burden. The SUVRwas quantified across cortical
gray matter, normalized by the whole cerebellum and divided into
SUVR tertiles. Details of PET acquisition are described in previous publi-
cations and on the ADNI website (www.adni-info.org). Given the analy-
sis of two amyloid PET-tracers, SUVR levels were converted in centiloids
(CL) using the specific equation for each tracer as provided by ADNI.

2.2. Neuropsychological evaluation

We extracted composite scores for memory (ADNI-MEM) and
executive function (ADNI-EF) [17,18]. ADNI-MEM included memory
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items from the Mini-Mental State Examination and the Alzheimer's
Disease Assessment Scale-Cognitive Subscale, immediate and delayed
scores from the Rey Auditory Verbal Learning Test, and recall from
Logical Memory I of the Wechsler Memory Scale�Revised (WMS-R);
ADNI-EF included the Digit Symbol Substitution Test, the WMS-R
Digit Span, Trail Making Test (A & B), category fluency tests, and the
clock drawing test.
2.3. CSF biomarkers

CSF Ab42, phospho-Tau (p-tau), and total-Tau (t-tau) were ana-
lyzed by electrochemiluminescence immunoassays (ECLIA) Elecsys
on a fully automated Elecsys cobas e 601 instrument. Levels of CSF
biomarkers are expressed in pg/ml. Given ascertainment of batch
effects, Ab42, p-tau, and t-tau levels determined by the batch run in
2019 were converted to 2016/2017 levels, using the regression equa-
tion provided by ADNI. No corrections are available for flow rate or
Ab production and degradation rate.
2.4. Hippocampal volume

ADNI participants completed a 1.5 Tesla or 3.0 Tesla T1-weighted
MRI scan. The description of MRI acquisition parameters and process-
ing are available on surfer.nmr.mgh.harvard.edu. We extracted the
left and right hippocampal volumes (mm3) (dictionary code: ST29SV
and ST88SV) and calculated the average between left and right hip-
pocampus. Hippocampal volume was adjusted for intracranial vol-
ume (ICV). We included only brain MRI data that met the quality
assessments in both hippocampi.
Table 1
Characteristics of the amyloid-PET positive study cohort.

Variable N Summary measures*

Age (years) 598 73.6 (7.0)
Education (years) 596 16.1 (2.7)
Sex (female) (%) 598 302 (50.5%)
APOE4 (%) 598 376 (62.9%)
Ab42 (pg/ml) 596 748.9 (307.4)
Ab40 (pg/ml) 130 18,641.7 (5479.9)
p-tau (pg/ml) 596 33.3 (15.3)
t-tau (pg/ml) 597 335.6 (138.5)
ADNI-MEM (z-score) 597 0.1 (0.9)
ADNI-EF (z-score) 593 0.0 (1.1)
Amyloid PET (SUVR) 598 1.39 (0.18)
Amyloid PET (CL) 598 76.4 (34.7)
L hippocampus (mm3) 493 3307.9 (561.5)
R hippocampus (mm3) 493 3385.8 (582.7)
B hippocampi (mm3) 493 3346.8 (552.2)

*Data are expressed in mean (standard deviation) or fre-
quency (%). ADNI: Alzheimer's Disease Neuroimaging Initia-
tive; ADNI-MEM: ADNI memory score; ADNI-EF: ADNI
executive function score; APOE4: APOE e4 allele; Ab42: 42-
amino acid b amyloid peptide; Ab40: 40-amino acid b
amyloid peptide; CL: centiloid; p-tau: phopsho-Tau; t-tau:
total-Tau; pg: picogram; ml: milliliters; PET: Positron Emis-
sion Tomography; SUVR: standard uptake value ratio; L:
left; R: right; B: average bilateral volume.; mm: millimeters.
2.5. Aims, sample size and statistical analysis

To test the hypothesis that higher levels of CSF Ab42 are observed
in amyloid PET-positive NC individuals compared to AD or MCI as
well as in MCI compared to AD, we applied one-way analysis of vari-
ance and adjusted linear regression analyses followed by Tukey’s
multiple comparisons. In addition, the levels of CSF Ab42 were com-
pared between NC and MCI, between MCI and AD, and between NC
and AD at similar levels of brain amyloid burden quantified into
SUVR tertiles (�1.29, 1.30�1.46, and �1.47) and converted into CL
tertiles (21.75�58.9; 59.0�89.9; �90.0), using nonparametric boot-
strap t tests [19] and multiple linear regression analysis after adjust-
ing for multiple comparisons with Tukey’s test. We also determined
the adjusted associations of CSF Ab42 levels with diagnostic catego-
ries using multiple logistic regression analyses and with memory and
executive function measures (ADNI-MEM and ADNI-EF) and hippo-
campal volume using multiple linear regression analyses. The
adjusted associations were summarized using adjusted odd ratios
(OR) or regression coefficients (RC) of standardized Ab42 and CL lev-
els with 95% confidence intervals and p-values. The adjusted mean
difference was computed by estimating the associated values for
Ab42 levels according to each cognitive diagnosis after adjusting for
all covariates at their average levels using multiple linear regression
analysis. A Tukey’s multiple comparison test was applied in posthoc
analysis of CSF biomarkers and amyloid burden comparisons
between the three cognitive groups following adjusted linear regres-
sion analysis. All analyses were adjusted for age, sex, education,
APOE4 carrier status, CL levels, p-tau levels, and t-tau levels. However,
CL was not adjusted in the SUVR or CL tertile analysis. We provide
additional details including sample size computation for each aim, as
well as analyses of all secondary and exploratory outcomes, in the
supplementary materials (Supplementary materials 1.4�1.5).
2.6. Role of the funding source

The study funder had no role in the study design, data collection,
data analysis, data interpretation, or writing of the report. All authors
had full access to all the data in the study and had final responsibility
for the decision to submit for publication.
2.7. Ethics approval

The study protocol for ADNI was approved by local ethical com-
mittees of all participating institutions and all participants signed
informed consent.
3. Results

Of 2740 participants in the entire ADNI cohort, 598 subjects met
the inclusion criteria of amyloid PET-positivity (540 by [18]F-florbeta-
pir and 58 by [18]F-florbetaben). Of these, 596 had CSF Ab42 assays
and 493 brain MRI obtained within 1 year from the qualifying PET
scan and available for analyses (Table 1). The mean follow-up for
these ADNI participants was 2.5 § 2.20 years (range 0�9 years). Sub-
jects with AD were more likely to be male (p < 0.001), APOE4 carriers
(p < 0.001), have fewer years of education (p = 0.048), lower Ab40
(p = 0.020) and higher p-tau (p < 0.001), t-tau (p < 0.001), amyloid
PET-SUVR (p < 0.001), and amyloid PET-CL (p < 0.001) compared to
amyloid PET-positive NC and MCI subjects (Table 2).

3.1. CSF Ab42 in cognition of amyloid PET-positive individuals

Soluble Ab42 was higher in better cognitive categories, that is, in
NC compared to AD (898.7 pm/ml vs. 602.8 pg/ml; p < 0.001), NC
compared to MCI (898.7 pm/ml vs. 755.4 pg/ml; p < 0.001), and MCI
compared to AD (755.4 pm/ml vs. 602.8 pg/ml; p < 0.001) (Table 2).
After adjusting for all covariates, CSF Ab42 levels remained higher,
above an average of 800 pg/ml, in amyloid PET-positive NC compared
to AD (864.00 pg/ml vs. 617.46 pg/ml; adjusted mean
difference = +246.54 pg/ml; p < 0.001) and MCI (864.00 pg/ml vs.
768.60 pg/ml; mean difference = +95.40 pg/ml; p = 0.001) as well as
in amyloid PET-positive MCI compared to AD (768.60 pg/m vs.



Table 2
Cerebrospinal fluid markers and baseline characteristics across cognitive categories in amyloid-PET positive individuals.

Cognitive categories
Variable NC N MCI N AD N p-value

Ab42 (pg/ml)* 898.7 (367.4) 155 755.4 (283.6) 270 602.8 (198.2) 171 <0.001
Ab40 (pg/ml) 19,656.1 (5407.0) 75 17,953.3 (5293.0) 36 15,941.6 (5254.7) 19 0.020
p-tau (pg/ml) 28.0 (12.2) 155 33.3 (15.7) 270 38.1 (15.6) 171 <0.001
t-tau (pg/ml) 288.5 (109.1) 155 332.1 (138.0) 271 383.9 (147.9) 171 <0.001
APOE4 (%) 50.3% 78 63.8% 173 72.7% 125 <0.001
Age (years) 74.4 (6.3) 155 73.4 (6.5) 271 73.0 (8.2) 172 0.17
Education (years) 16.5 (2.5) 155 16.0 (2.8) 269 15.8 (2.6) 172 0.048
Sex (female) (%) 66.5% 103 45.0% 122 44.8% 77 <0.001
Amyloid PET (SUVR) 1.32 (0.18) 155 1.38 (0.17) 271 1.46 (0.17) 172 <0.001
Amyloid PET (CL) 62.3 (33.3) 155 75.5 (33.2) 271 90.5 (32.8) 172 <0.001

Data are expressed in mean (standard deviation) or frequency (%). APOE4: APOE e4 allele; Ab42: 42-amino acid b amyloid pep-
tide; Ab40: 40-amino acid b amyloid peptide; p-tau: phospho-Tau; t-tau: total-Tau; pg: picogram; ml: milliliters; PET: Positron
Emission Tomography; SUVR: standard uptake value ratio; CL: centiloid; NC: normal cognition; MCI: mild cognitive impairment;
AD: Alzheimer’s disease; N/A: not available. *Post-hoc analysis: NC compared to AD (p < 0.001), NC compared to MCI
(p < 0.001), and MCI compared to AD (p < 0.001).

Fig. 1. Adjusted analyses of amyloid-positive normal cognition compared to mild cognitive impairment and Alzheimer’s disease subjects. (A) Soluble Ab42 levels in each diagnostic
category; (B) soluble Ab42 levels in each diagnostic category across CL tertiles. The estimated means of soluble Ab42 were adjusted for age, sex, education, APOE4, centiloids, p-tau
levels, and t-tau levels. The estimated means of soluble Ab42 by CL tertiles are adjusted for age, sex, education, APOE4, p-tau levels, and t-tau levels. *The corresponding SUVR analy-
sis, which demonstrated similar results, is shown in Supplementary Fig. 2.3. CL: centiloids (higher CL means greater amyloid burden); NC: normal cognition; MCI: mild cognitive
impairment, AD: Alzheimer’s disease.
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617.46 pg/ml; adjusted mean difference = +151.14 pg/ml; p < 0.001)
(Fig. 1A; supplementary Tables 2.1, 2.2). In the adjusted analysis, sol-
uble Ab42 was higher in NC compared to AD and in MCI compared to
AD in all SUVR or CL tertiles (Fig. 1B; supplementary Table 2.1; sup-
plementary Fig. 2.3). Sensitivity analyses for [18]F-florbetapir only and
excluding subject within 5% of the threshold in both tracers, yielded
similar results (supplementary Table 2.4). Soluble Ab42 were
inversely correlated with CL (r=�0.37; p < 0.001) and SUVR
(r=�0.37; p < 0.001) and positively correlated with soluble Ab40
(r = 0.54; p < 0.001). No correlations were found with p-tau (r = 0.01;
p = 0.86) or t-tau (r = 0.06; p = 0.11) (supplementary Table 2.5).

In adjusted analysis, the estimated effect size with Cohen’s d was
larger for soluble Ab42 (d = 0.82; CI, 0.59,1.04) than SUVR (d=�0.40;
CI, �0.62,�0.18) or CL (d=�0.42; CI, �0.64,�0.20) in the comparison
between NC and AD; larger for soluble Ab42 (d = 0.60; CI, 0.40,0.79)
than SUVR (d=�0.26; CI, �0.45,�0.07) or CL (d=�0.26; CI,
�0.45,�0.07) in the comparison between MCI and AD; larger for solu-
ble Ab42 (d = 0.82; CI, 0.59,1.04) than t-tau (d=�0.15; C.I, �0.36,0.07)
and p-tau (d = 0.12; C.I �0.10,0.34) in the comparison between NC and
AD; and again larger for soluble Ab42 (d = 0.60; C.I, 0.40, 0.79) than p-
tau (d = 0.10; C.I, �0.09,0.29) and t-tau (d=�0.11; C.I, �0.30,0.08) in
the comparison between MCI and AD (supplementary Table 2.6).

In adjusted analyses, each standard deviation increase in CSF
Ab42 increased the odds of NC versus AD (OR, 6.26; 95% CI,
3.54�11.07, p < 0.001) to a greater extent than CL (OR, 0.50 95% CI,
0.35�0.73, p < 0.001); the odds of NC versus MCI (OR, 1.42; 95% CI,
1.10- 1.82, p = 0.006) to a greater extent than CL (OR= 0.79 95% CI,
0.61�1.03, p = 0.085); and the odds of MCI versus AD (OR, 3.06; 95%
CI, 2.11�4.42, p < 0.001) to a greater extent than CL (OR, 0.68; 95% CI,
0.54�0.87, p = 0.002). All these differences were maintained across
all SUVR and CL tertiles (Fig. 2a, 2b, 2c; supplementary Table 2.7).

3.2. CSF Ab42 in neuropsychological performance and hippocampal
volume

In adjusted analyses, each standard deviation increase in CSF
Ab42 levels was linearly associated with better ADNI-MEM (RC,
0.34; 95% CI, 0.27�0.41; p < 0.001) (Fig. 3A; supplementary Table
2.8) and ADNI-EF scores (RC, 0.41; 95% CI, 0.32�0.51; p < 0.001)
(Fig. 3B; supplementary Table 2.8). There was also a linear associa-
tion between each standard deviation increase in CSF Ab42 levels
and hippocampal volume (RC, 122.34; 95% CI, 74.49�170.18;
p < 0.001) (Fig. 3C; supplementary Table 2.8) after adjusting for ICV
and other covariates. The effect sizes of these adjusted associations
on neuropsychological performance and hippocampal volume were
greater for CSF Ab42 levels than for SUVR or CL levels (supplemen-
tary Table 2.8). Hippocampal volume (mm3) was significantly larger
in NC vs. MCI (3667.0 vs. 3392.0 p < 0.001), NC vs. AD (3667.0 vs.
3002.4 p < 0.001), and MCI vs. AD (3392.0 vs. 3002.4 p < 0.001)
across all CL tertiles (supplementary Fig. 2.9) and SUVR tertiles
(data not shown). Higher Ab42 levels were associated with larger
hippocampal volumes in MCI (p = 0.004) with borderline association
in AD (p = 0.065). There was no association between hippocampal
volume and CL levels in any cognitive category (supplementary



Fig. 2. Adjusted probability of amyloid-positive normal cognition versus Alzheimer’s disease (A), normal cognition versus mild cognitive impairment (B), and mild cognitive
impairment versus Alzheimer’s disease (C) with levels of soluble Ab42 by SUVR tertiles of brain amyloid. SUVR: standardized uptake value ratio; NC: normal cognition; MCI: mild
cognitive impairment; AD: Alzheimer’s disease. The results are adjusted for age, sex, education, APOE4, p-tau levels, and t-tau levels.

Fig. 3. Adjusted association of CSF Ab42 with cognitive assessments (A, B) and hippocampal volume (average right and left) (C) in the amyloid PET-positive cohorts. SUVR: stan-
dardized uptake value ratio; ADNI memory score; ADNI-EF: ADNI executive function; CI: confidence interval. The results are adjusted for age, sex, education, APOE4, centiloids, p-
tau levels, and t-tau levels including intracranial volume for hippocampal volume analysis.

Fig. 4. Adjusted association of CSF Ab42 with hippocampal volume (average right and left) by SUVR tertiles of brain amyloid. SUVR: standardized uptake value ratio. The results are
adjusted for age, sex, education, APOE4, p-tau levels, t-tau levels, and intracranial volume.
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Table 2.10). Ab42 levels were linearly associated with larger hippo-
campal volumes across each SUVR tertile (Fig. 4, supplementary
Table 2.10).

3.3. Conversion of diagnostic categories

Only 3 subjects converted from NC to AD, 24 from NC to MCI, and
103 from MCI to AD. The NC-to-MCI conversion was associated with
age (p = 0.003) (supplementary Table 2.11). In unadjusted analysis,
the MCI-to-AD conversion was associated with SUVR (p < 0.001), CL
(p < 0.001), p-tau (p < 0.001), t-tau (p < 0.001), and Ab42 (p = 0.003)
(supplementary Table 2.12). In adjusted analyses, each standard devi-
ation increase in CSF Ab42 increased the odds of MCI non-conversion
(OR, 1.68; 95% CI, 1.14�2.46, p = 0.009) to a greater extent than SUVR
(OR, 0.70; 95% CI, 0.51�0.94, p = 0.02) or CL (OR, 0.68; 95% CI,
0.50�0.92, p = 0.012) (supplementary Table 2.13).

4. Discussion

This is the first study in humans assessing the mechanistic
hypothesis that normal cognition among individuals with brain
amyloidosis may require the preservation of high levels in the
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soluble Ab42 precursor, aiming to explain the paradox that normal
cognition is possible in the setting of brain amyloidosis. This analy-
sis showed that soluble Ab42 levels were significantly higher, in a
dose-dependent manner, in amyloid-positive individuals with nor-
mal cognition than in those with mild cognitive impairment or
dementia, and that higher soluble Ab42 levels were associated
with better cognitive performance and greater hippocampal vol-
ume. The effect size of changes in soluble (CSF) Ab42 levels for nor-
mal cognition and hippocampal volume compared to dementia
was larger than that of changes in insoluble (PET) Ab42. Higher
Ab42 levels, on average above 800 pg/ml, were associated with
normal cognition regardless of brain amyloid burden. Conversely,
the adjusted OR for conversion from MCI to AD, the cognitive cate-
gory change with sufficient data for analysis, was higher for
decreases in soluble Ab42 than increases in brain amyloidosis.
These data collectively suggest that in individuals with brain amy-
loidosis, a reduction in soluble Ab42 may be more critical in the
development of AD than an equivalent increase in the burden of
brain amyloid, favoring a loss-of-function mechanism in the
dementia associated with brain amyloidosis.

The reduction in soluble Ab42 is, in general, described as a conse-
quence of its aggregation into brain amyloid fibrils and plaques, and,
thus, it inversely correlates with brain amyloidosis [13]. However,
the data showed that this inverse relationship vary among individu-
als with different cognitive statuses even if across similar levels of
brain amyloid burden. A comparable discordance was reported in a
smaller study, in which amyloid PET-positive subjects with normal
CSF Ab42 levels (n = 13) had NC or early MCI whereas amyloid PET-
negative subjects with low levels of CSF Ab42 (n = 7) had poorer cog-
nition and higher CSF tau [20]. While the correlation between high
brain amyloid plaque load and dementia is poor, that of low CSF
Ab42 and dementia appears to be robust [21]. The depletion of solu-
ble Ab42 may be necessary for dementia and hippocampal atrophy
to develop in amyloid PET-positive individuals to a greater extent
than the corresponding increase in insoluble Ab42. This is consistent
with the known role of soluble Ab42 in many essential biological
functions [5], including neurogenesis [22] as well as synaptic plastic-
ity and memory [23].

The higher levels of t-tau and p-tau in AD dementia subjects
reflect an active, more extensive neurodegeneration in this group as
compared with MCI. The association with dementia is greater for the
early reduction of CSF Ab42 than for later increases in t-tau and p-tau
when studied over a decade-long time window [24]. For instance, a
study that analyzed longitudinal data from patients with a confirmed
genetic mutation in PSEN1, PSEN2, or APP participating in the Domi-
nantly Inherited Alzheimer Network (DIAN) showed that the reduc-
tion of soluble Ab42 begins around 25 years before the estimated
onset of AD, and 10 years before the increase in tau [6,25]. In our
analysis, the effect size of changes in soluble Ab42 was indeed larger
compared to changes in p-tau or t-tau in discriminating NC from AD
and MCI from AD. We speculate that the loss of Ab42 is more impor-
tant in driving initial toxicity whereas the increase in t-tau and p-tau
may represent a later manifestation of the neurodegenerative process
[26]. In agreement with these findings, absolute levels of Ab42 have
been reported to be lower, not higher, even among autosomal-domi-
nant AD patients participating in DIAN [6,25] as well as in Down syn-
drome patients with APP duplication [27]. Also, the g-secretase
inhibitor semagacestat [28] and the b-secretase enzyme BACE1 inhib-
itor verubecestat reduced the levels of soluble Ab42 in a dose-depen-
dent manner and significantly worsened cognition and accelerated
hippocampal atrophy [29]. Altogether, these observations suggest
that a reduction in soluble Ab42, beside serving as a marker of wors-
ened outcome, may be responsible for the expression of cognitive
deterioration in both hereditary and sporadic forms of the disease.

The cross-sectional design of this study is the major limitation of
our analysis, even if embedded in a prospectively evaluated cohort.
In this cohort, only 3 amyloid PET-positive ADNI participants con-
verted from NC to AD and 24 from NC to MCI. In the modestly larger
sample of MCI to AD converters (103), the OR was larger for soluble
Ab42 than for brain amyloidosis. The small number of conversions
among amyloid-positive NC subjects supports the observation that
brain amyloid accrual alone is insufficiently “toxic” to initiate the
development of dementia. Another limitation is the use of two differ-
ent radiotracers for the PET amyloid acquisition, which may have
introduced variability around the SUVR estimates. However, the
results were confirmed using the CL derivation to reconcile this
potential source of variability. Also, when using only data from the
[18]F-florbetapir and excluding subjects within 5% of the threshold in
both tracers the results were unchanged. This limitation is attenuated
by the fact that Ab40 is less fibrillogenic than Ab42 in CSF, rendering
it less relevant for the study of brain amyloidosis [2]. Finally, although
the findings obtained in this study were based on robust statistical
and sensitivity analyses, they did not come from a “perfect” study,
which would have directly measured soluble Ab42 in the brain, with
such techniques as microdialysis or fresh-frozen brain tissue biopsies,
and corrected for the number of active neurons, the volume and flow
rate of CSF, and the presence of other brain pathologies to understand
the influence of local levels of Ab42 in brain tissues and the influence
of neuronal activity. However, the logistical and ethical difficulties of
conducting such a study are enormous.

These analyses alone cannot definitely settle the question of
whether the pathogenetic mechanisms of proteinopathies are associ-
ated with normal protein depletion (loss-of-function model) or
abnormal protein accumulation (gain-of-function model) and the
extent to which either or both of these contribute to the underlying
clinical phenotype. The data also cannot explain why some amyloid-
positive individuals maintain adequate levels of soluble Ab42 despite
having extensive levels of brain amyloidosis while others exhibit
comparable insoluble Ab42 accumulation accompanied by soluble
Ab42 depletion. Resolving the source of compensatory increase in
Ab42 may uncover novel targets for treatment. Nevertheless, our
findings support the evaluation of disease-modifying replacement
strategies using soluble, non-aggregating forms of Ab42. As there
may still be direct toxicity associated with an excessive increase of
aggregated Ab42 (e.g., mass effect, mislocation of other proteins), we
are exploring the viability of such a replacement therapy strategy
using more stable versions of Ab42, which preserve their biological
function but are unable to transform into amyloids [30]. This can only
be an initial, “rescue medicine” approach. True precision medicine
requires identifying and targeting, at the individual level, the patho-
genic factors providing the nucleating triggers for the soluble-to-
insoluble phase transformation of proteins. As the type of nucleating
trigger is expected to vary between affected individuals, an individu-
alized disease-modifying approach is anticipated.

In conclusion, in individuals with brain amyloidosis, high soluble
Ab42 is associated with normal cognitive function and brain volume,
whereas low soluble Ab42 with cognitive impairment and hippocam-
pal atrophy. Tentatively, these results favor a loss-of-function mecha-
nism for AD with a clinical and neurodegenerative onset in those
with brain amyloidosis predominantly mediated by the depletion of
soluble Ab42. Pending confirmation in a prospective study, these
data warrant the evaluation of therapeutic strategies that increase
soluble Ab42 in amyloid PET-positive individuals with mild cognitive
impairment or dementia and cerebrospinal Ab42 levels below the
compensation threshold of 800 pg/ml.
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