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Abstract
Temporal changes of gene expression are a well-known regulatory feature of all cells,

which is commonly perceived as a strategy to adapt the proteome to varying external condi-

tions. However, temporal (rhythmic and non-rhythmic) changes of gene expression are also

observed under virtually constant external conditions. Here we hypothesize that such

changes are a means to render the synthesis of the metabolic output more efficient than

under conditions of constant gene activities. In order to substantiate this hypothesis, we

used a flux-balance model of the cellular metabolism. The total time span spent on the pro-

duction of a given set of target metabolites was split into a series of shorter time intervals

(metabolic phases) during which only selected groups of metabolic genes are active. The

related flux distributions were calculated under the constraint that genes can be either active

or inactive whereby the amount of protein related to an active gene is only controlled by the

number of active genes: the lower the number of active genes the more protein can be allo-

cated to the enzymes carrying non-zero fluxes. This concept of a predominantly protein-lim-

ited efficiency of gene expression clearly differs from other concepts resting on the

assumption of an optimal gene regulation capable of allocating to all enzymes and trans-

porters just that fraction of protein necessary to prevent rate limitation. Applying this concept

to a simplified metabolic network of the central carbon metabolism with glucose or lactate

as alternative substrates, we demonstrate that switching between optimally chosen station-

ary flux modes comprising different sets of active genes allows producing a demanded

amount of target metabolites in a significantly shorter time than by a single optimal flux

mode at fixed gene activities. Our model-based findings suggest that temporal expression

of metabolic genes can be advantageous even under conditions of constant external

substrate supply.
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Introduction
The cellular metabolism represents a network of thousands of chemical reactions and transport
processes, most of them catalyzed by specific enzymes and transport proteins. The function of
this network consists basically in the conversion of chemical compounds that are taken up by
the cell from the extracellular space (input) into a large variety of chemical compounds (out-
put) serving either as building blocks for the formation and maintenance of cellular structures
(e.g. organelles, cytoskeleton), extracellular structures in case of tissue cells (e.g. glycosamino-
glycans, collagens), donors of chemical energy needed to drive otherwise endergonic reactions
(e.g. ATP, GTP, CTP, UTP) or signaling molecules released from the cell (e.g. hormones, cyto-
kines, neurotransmitters). As the term ‘biomass’ is commonly reserved to designate all chemi-
cal compounds constituting a cell, tissue or organism, we will use the term ‘metabolic output’
to indicate all kinds of chemical compounds required to maintain the structure and
physiological functions.

The most important feature of the cellular metabolic network is its ability to adjust the met-
abolic output to varying external conditions as, for example, an increase in the concentration
of pro-inflammatory cytokines or growth factors, depletion of specific substrates (in particular
oxygen) or challenges by toxic compounds. This adjustment of the metabolic network to alter-
ations in the external conditions is achieved by selectively increasing or decreasing the capacity
of enzymes and membrane transporters. Short-term changes of enzyme activities on a time
scale of a few seconds are mainly accomplished by allosteric effects, reversible phosphorylation
and de-phosphorylation, and reversible protein-protein or protein-membrane association/dis-
sociation. Long-term changes of enzyme activities on a time scale of minutes, hours and even
days result from changes in the expression of enzymes, brought about by changes of the rate of
transcription (DNA to mRNA), translation (mRNA to protein) and proteolysis (protein to
amino acids).

Long-term regulation of enzyme capacities by temporal gene expression is constrained by
the condition that the total protein content of the cell has to be kept within rather narrow
bounds (”proteostasis”, i.e., variable allocation of proteins at homeostasis of the total protein
pool [1]) of 15–35 percent of cell volume [2, 3]. An upper bound of the protein content is de-
fined through the condition that molecular crowding should not reduce the aqueous space to
an extent which impairs the diffusive transport of proteins, metabolites and ions [4]. On the
other hand, reducing globally the concentration of metabolic enzymes and membrane trans-
porters lowers metabolic fluxes, as the maximal enzyme capacity is approximately a linear
function of the protein abundance. Therefore, regulation of metabolic networks by temporal
changes of enzyme expression can be expected to take place under the constraint of a relative
constancy of the total cellular protein abundance [2, 5, 6]. As a consequence of this constraint,
increasing the abundance of a larger group of enzymes belonging to metabolic pathways that
have to be operative under a given extracellular setting, should be accompanied by a decrease
of the abundance of enzymes belonging to pathways which are less important or even tempo-
rarily dispensable. This principle of “just-in-time” gene expression of metabolic enzymes ac-
cording to the actual metabolic needs, similar to the just-in-time production as pioneered in
the 50s by Toyota in particular, has been validated theoretically and experimentally [2, 3, 7].

Temporal gene expression is generally recognized as an important mechanism with which
cells and tissues adapt their metabolism to variations in the external conditions, see e.g. [6, 8].
However, temporary changes in the gene expression of metabolic enzymes and other cellular
proteins are also observed under virtually constant external conditions. A prominent example
is the so-called “metabolic cycling” with a typical period length of about 300 minutes observed
in dense chemostat cultures of budding yeast, Saccharomyces cerevisiae, when grown under
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nutrient-limited conditions [9]. For more than 50 years the cycling in yeast cultures was
thought to be directly coupled to the cell division cycle. However, recent studies have provided
evidence for the occurrence of cycling in single yeast cells from unsynchronized steady-state
(not growing) populations [10, 11]. This finding implies that the cycling is an intrinsic and au-
tonomous feature of yeast cells that is neither dependent on metabolic synchronization of cells,
nor an active cell cycle or carbon limitation. Hence, the compelling explanation of metabolic
cycling [4] as a means to separate the S-phase of the cell cycle from the oxidative metabolic
phase during which an enhanced formation of reactive oxygen species (ROS) through the re-
spiratory chain may occur has to be put into question. Other examples for metabolic cycles are
the occurrence of an ultradian metabolic rhythm between oxic and anoxic processes in the dia-
zotrophic cyanobacterium Cyanothece sp. ATCC 51142 under constant culture conditions [9],
and a self-sustained rhythm in glucose uptake by undifferentiated stem cells that is not coinci-
dent with rhythmic expression of clock genes [12].

Given that temporal variations in the expression of metabolic enzymes is a general feature
of the cellular metabolism that is not necessarily induced by temporal environmental changes,
the question remains what the evolutionary background of such metabolic variations might be.
Looking at the evolution of metabolic networks from a Darwinian perspective, one is tempted
to figure out the selective advantage that cells existing in a (idealized) constant environment
might have acquired by switching between several metabolic states. Here we hypothesize that
one possible reason for such metabolic switches is the shortening of the time period to generate
a demanded metabolic output with a fixed total amount of protein that can be invested into
metabolic enzymes and membrane transporters. The idea underlying our theoretical approach
can be illustrated by comparing the metabolic network with a factory that has to deliver a spe-
cific quantity of different items (e.g. different types of cars = target metabolites) with a constant
number of employees = enzyme protein. One may ask whether it is economically more favor-
able, i.e., saves total production time, to produce all of these different items all the time in fixed
proportions or to use the full man (and machine) power of the factory to produce these items
in different proportions over limited time spans. Analogously, we address in this theoretical
study the intriguing question whether even without changes of the external conditions (e.g.
availability of substrates, strength of hormonal signals etc.) temporal switches in the allocation
of protein to the various pathways of the cell’s metabolic network may be advantageous for an
efficient biomass production. Importantly, our theoretical approach does not envisage the pos-
sibility that the expression of genes can be always optimally tuned in a way that the amount of
protein allocated to an enzyme perfectly matches the flux it carries, a principle of gene regula-
tion that has been proposed in [5]. If such an hypothesis is adopted, the metabolic output of
the network regulated by a perfect allocation of protein amounts to enzymes and transporters
cannot be surpassed by switching between distinct metabolic phases differing by sets of active
and inactive genes, which is the framework developed in this paper.

In the first part of the paper, we use a simplistic 3-reaction network to explain our computa-
tional concept. In the second part, we provide an application to a more comprehensive meta-
bolic network comprising several pathways of the intermediary carbon metabolism.

Results

Modelling approach
Ametabolic network is defined by a set ofm different metabolitesMi (i = 1, . . .,m) forming
the metabolite vectorM and n different biochemical reactions (including transport processes)
carrying the fluxes vj (j = 1, . . ., n), forming the flux vector v. We split the metabolite vector
into two parts,M =M� ]M#, where the vectorM� comprises the so-called target metabolites
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which have to be produced de novo. This production is necessary either to accumulate biomass
(this holds specifically in a proliferating cell) or to compensate for the utilization of biomass
components due to processes that are not part of the considered network (e.g. ATP consump-
tion by membranous ion pumps).M# is the vector of internal metabolites, i.e., those metabo-
lites which over a sufficiently long time interval are produced and utilized in same proportion
and thus do not accumulate or exhaust. Specifically, we will restrict our study to steady-state
flux distributions characterized by the condition that at any time all fluxes are constant, such
that the concentrations of internal metabolites do not change over time, dM

dt
¼ Sv ¼ 0, and the

target metabolites are produced with constant rates, dM
�

dt
¼ S�v. The elements of the stoichio-

metric matrices S and S� specify the number of molecules that are utilized and produced in the
reactions associated with the internal metabolites and target metabolites, respectively. We
study the production (or consumption) of target metabolites over a time interval of length τ>
0, which we decompose into a series of l (l� 1) consecutive shorter time intervals of length τk

(k = 1, . . ., l) whereby
Pl

k¼1 tk ¼ t. The flux distributions vk in the various time intervals can
be different from each other, but each fulfills the steady-state conditions S# vk = 0. The metabol-
ic output of the network produced in the k-th interval is given byMk ≔ τk S� v

k. Throughout
this article we will use the term ‘phase’ to denote a time period during which a distinct part of
the network is active. Note that some of the target metabolites (e.g. ATP) have to be produced
at all times. A reaction j that is producing such an indispensable target metabolite thus has to
be constrained,

vkj � mbj; ð1Þ

for each flux mode vk, k = 1. . ., l wherembj gives the flux rate required for maintenance.
Let Γ denote the demanded output of the network, i.e., the amount of target metabolites

that have to be produced (or consumed). For example, this can be the amount of nucleotides
required for DNA duplication during the S-phase of the cell cycle, or the amount of phospho-
lipids needed to double the surface of all cellular membranes. The aim is to determine flux
modes vk with intervals lengths τk, k = 1. . ., l, such that the network accomplishes the realiza-
tion of the demanded total metabolic output, i.e.,

Xl

k¼1

tk S
�vk � G: ð2Þ

within the shortest possible time span τ.
Obviously, this optimization problem makes only sense if the upper bounds of the fluxes in

the network are constrained. The upper bound of a flux vj is commonly given by kcj Ej, where
kcj is the turnover number of the catalyzing enzyme and Ej its amount. The time-dependent
variation of the enzyme amount Ej is the resultant of synthesis and degradation. In a simplified
manner this can be expressed through the equation

dEj

dt
¼ gj ksj A � kdj Ej

so that the amount of the j-th enzyme at steady-state is given by

Ej ¼
gj A ksj
kdj

ð3Þ

with gj being a binary variable indicating whether the related gene is active (gj = 1) or not active
(gj = 0), A representing the mass fraction of free amino acids, ksi representing an overall rate of
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protein synthesis (including all regulatory steps between transcription and ribosomal transla-
tion) and kdi being the first-order rate constant for the degradation (proteolysis) of the enzyme.
Setting the rate of protein synthesis to the product ksj�A takes into account the fact that the
availability of nutrients in general and of amino acids in particular determines the overall rate
of protein synthesis [13, 14]. As reasoned above, we make the assumption that a fixed total
mass of amino acids is available for the synthesis of the enzymes involved in the metabolic net-
work under consideration:

Atot ¼ AgA þ
P

i Eigi ð4Þ

Here γi denotes the molecular mass of the i-th enzyme and γA is the average molecular
weight of one amino acid (126 Da). Atot is the total mass of free and protein-bound amino
acids per gDW, while A and Ej are molar amounts also per gDW. Using the relations (3) and
(4), it follows that the amount of the j-th enzyme is given by

Ej ¼ gj Atot

Zj

gA þ
P

igigiZi
; ð5Þ

where the parameter ηj ≔ ksj/kdj controls the amount of protein if the coding gene gj is active
and thus will be referred to as expression efficiency. Equation (5) expresses the beneficial effect
of a spare protein expression: The more enzymes are switched off (gj = 0) and the larger the
molecular mass (γj) of these non-expressed enzymes the more protein can be allocated to the
active enzymes in the network. With equation (5), the upper bound on the flux rate depending
on enzyme Ej is given by

vj � ubj≔gjkcjAtot

Zj
gA þ

P
igigiZi

; ð6Þ

flux rates hence given in mol/gDW/h. The lower bounds are defined analogously by lbj ≔ −ubj,
assuming that the turnover number kc�j for the reverse direction has the same value as kcj for

the forward direction of reaction j. For irreversible reactions we set kc�j ¼ 0 and hence lbj = 0.

Constraining the set of simultaneously active genes. In order to determine biologically
meaningful solutions, one has to consider that individual genes cannot be arbitrarily activated
or inactivated, because certain groups of genes are typically under the control of common tran-
scription factors. In our approach, we adopt the concept of minimal flux modes [15, 16], and
introduce groups of collectively regulated genes asminimal gene sets (MGS). A MGS is defined
as a set of genes coding for a set of enzymes that catalyze the reactions of a stationary flux
mode which enables an optimal (according to a chosen objective function) flux through a single
target reaction. The steady-state flux distribution accomplished by an active MGS is calledmin-
imal flux mode (MFM). In general, the various target reactions related to the MGSs may either
produce an essential metabolite (anabolism) or remove a harmful metabolite (catabolism). In
order to assess whether successive switching between different MGSs leads to a decrease of the
total production time required for the accomplishment of the metabolic output, we introduce
the gain

Gl≔1� tðlÞ=tð1Þ; ð7Þ

where τ(l) is the optimal objective value with fixed l. Hence Gl gives the gain in time, when l dif-
ferent phases can be used instead of only one.
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Illustrating example
We first illustrate our approach for a simplistic metabolic network comprising three irrevers-
ible reactions (see Fig. 1). The network has one internal metabolite X, one uptake flux v0, and
two target fluxes v1 and v2, yielding the target metabolites P1 and P2 with demand Γ1 resp. Γ2.
We presuppose two MGSs, χ1 ≔ {g0, g1} and χ2 ≔ {g0, g2}.

The two associated MFMs are w1 = (v0, v1, 0) with v0, v1 > 0 and w2 = (v0, 0, v2) with v0, v2
> 0. The maximal number of different steady-states (and related phases) required to minimize
the production time of the demanded output cannot be larger than the number of different tar-
get metabolites (see Methods). Therefore, the maximal number of different metabolic phases
for this example is two and we thus have to compare four possible strategies, shown in Fig. 1.
Strategy A defines the reference case, i.e., all genes are constantly active. The other strategies as-
sume that during production of the metabolic output the network switches between two
phases. Strategy B consists in producing the two relevant products successively: First, the de-
manded amount Γ1 of product P1 is produced while the pathway for the production of P2 is
switched off. Then, the demanded amount Γ2 of product P2 is produced while the pathway for
the production of P1 is switched off. The switch between these two metabolic phases requires
the complete degradation of the enzymes constituting the P1-synthetizing pathway. As rapidly

Fig 1. Simplistic metabolic network with two target fluxes. Strategy A: All genes are constantly active, the demanded metabolic output is generated
during the time interval τ0 by a single flux mode composed of the two MinModesw1 andw2 (= reference case). Strategy B: The two minimal gene sets are
separately active, during the first time interval τ1 only the demanded amount of product P1 is generated, whereas in the second time interval τ2 only the
demanded amount of P2 is produced. Strategy C: During the initial time interval τ1 only the minimal gene set χ1 is active and only a certain fraction α< 1 of the
demand for P1 is produced. Thereafter, the second minimal gene set is additionally activated so that the products P1 and P2 are produced simultaneously.
Strategy D: During the initial time interval τ1 only the minimal gene set χ2 is active, thereafter the second minimal gene set is additionally activated so that the
products P1 and P2 are produced simultaneously. The gray-shaded panels illustrate the proportions in which the demanded amounts Γ1 and Γ2 of the two
output metabolites are produced in strategies A-D.

doi:10.1371/journal.pone.0118347.g001
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proliferating cells (without S0-phase of the cell cycle) continuously accumulate biomass during
growth without any significant degradation of proteins [17], strategy B should realistically
apply to non-proliferating cells. In strategies C and D, during the first metabolic phase time pe-
riod only one product is produced, and in the second metabolic phase both products are pro-
duced simultaneously. Also here switching between the two metabolic phases requires a partial
degradation of enzymes of the initially active pathway in order to allocate protein to the second
pathway. For this simple system an analytical solution of the optimization problem can be
found (see Supplement, S1 Text).

Example. With Atot = 1.8�106, equal expression efficiencies (ηj = 1, j = 0, 1, 2) and molecu-
lar weights (γj = 60,000, j = 0, 1, 2) and catalytic constants kc0 = 10 h−1, kc1 = kc2 = 1 h−1, ne-
glecting the additive constant γA = 126 in the denominator of equations (5) and (6), the upper
boundaries read:

ðAÞ ub0 ¼ 100; ub1 ¼ 10; ub2 ¼ 10 for v1 ¼ ðv10; v11; v12Þ> ðreference caseÞ

ðBÞ ub10 ¼ 150; ub11 ¼ 15; ub12 ¼ 0 for w1 ¼ ðw1
0;w

1
1; 0Þ>

ub20 ¼ 150; ub21 ¼ 0; ub22 ¼ 15 for w2 ¼ ðw2
0; 0;w

2
2Þ>

For the production of Γ1 = 10 units of P1 and Γ2 = 50 units of P2 it needs a production time
of τ = 10 h in case (A) and only τ = 6.67 h in case (B).

Note that for this concrete example, the concept of perfect gene regulation [5] would allow
an even shorter production time of τ = 2.2 h to be achievable with an optimal single flux mode
v. Up to scaling by some α> 0, it is fixed to v = (v0, v1, v2)

> = α � (6, 1, 5)> mol/gDW/h (see S1
Text). Perfect gene regulation means that all enzymes work at their maximal capacity, i.e., ub =
α � (6, 1, 5)> mol/gDW/h. With the given values for the molecular weights and the catalytic
constants this is achieved by choosing the gene expressions g 2 [0, 1]3 to be g0 = 0.12, g1 = 0.2
and g2 = 1. The resulting upper bounds are then ub = (ub0, ub1, ub2)

> = 4.545 � (6, 1, 5)> = v.
For Γ1 + Γ2 = 100 units, the optimal solution with strategy B always needs τ1 + τ2 = 6.67 h,

whereas the time needed with a single flux mode (strategy A) varies between τ(1) = 5 h in the
case Γ1 = Γ2 = 50 units to τ(1) = 9 h for Γ1 = 90 units, Γ2 = 10 units. When we fix Γ1 = Γ2 = 50
units and vary instead the catalytic constants kc1, kc2, strategy B becomes preferable when the
constants are sufficiently different. For example, with kc1 = 0.5 h−1 and kc2 = 5 h−1 we get for
strategy A ub1 = 5 h−1 and ub2 = 50 h−1 and therefore τ(1) = 10 h. For strategy B the bounds are
reciprocally increased by the factor 3/2 or zero and they allow production of Γ in a time of τ1 +
τ2 = 6.67 h + 0.67 h = 7.3 h only.

Empirical analysis. The minimal time span required to produce a prescribed amount Γ1

of product P1 and Γ2 of product P2 in the four different gene activation strategies depends on
the turnover number, molecular mass and expression efficiencies of the catalyzing enzymes.
The minimal production times were computed by randomly varying the numerical values of
these parameters in the range from 0.1 to 10 (and in the range [0.01, 100], see S1 Fig.). The rela-
tively small amount of free amino acids was neglected by setting γA = 0. For the two strategies,
the distribution of the values for the gain function (7) is shown in Fig. 2.

For strategy B, in about 82% of all trials the gain was larger than zero, i.e., the production
time was shorter than in the reference case (see Fig. 2 A black bars). We performed a statistical
analysis of all trials to figure out those parameter constellations for which a switch between two
different metabolic phases is not favorable. This analysis revealed that the success of the strate-
gy to shorten the production time is basically determined by the relationship between the mo-
lecular masses and the turnover numbers of the enzymes. The larger the amount of protein
allocated to the upstream pathway (v0), which is mandatory active, compared with the amount
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of protein allocated to the enzymes of the two downstream pathways (v1 and v2) between
which can be switched, the lower the benefit of strategy B (Fig. 2 A white bars). In the extreme
cases simulated here (γ0 = 100γ1, γ1 = γ2), strategy B is not favorable for even 55% of the simu-
lated cases. Conversely, if a significantly larger portion of available protein is spent on the
downstream operating enzymes, strategy B enables a reduction of the production time in virtu-
ally all cases (Fig. 2 A gray bars).

The strategies C and D combine strategy B (exclusive production of only one product) with
strategy A (simultaneous production of both products). For fixed α they are on average less ef-
ficient than strategy B, but nevertheless yielded a reduction of the production time in a substan-
tial number of cases. When we fix the share of Γ1 produced in the two intervals to be equal,
strategy C has a shorter production time with 66% of the parameter samples. Strategy D shows
the same distribution of gain values as strategy C due to the symmetry of the example network.
However, it depends on the actual parameter set whether strategy C or D is more beneficial
(see Fig. 2 C). Generally, a large benefit of one strategy renders the other strategy less beneficial.
There are no parameter combinations allowing for high gains of strategy C and D at the same
time. Naturally, there are parameter combinations causing high negative gains in both strate-
gies. Only for 6.5% of the sampled parameter sets, strategies C and D were both favorable. This
implies that for a small number of parameter sets the success of one strategy (C or D) entails a
failure of the other strategy, because full independency of the parameters sets should result in
11.6% cases (= 34% of 34%) where strategies C and D are both favorable. In summary, despite

Fig 2. Frequency distribution of the gain achievable with strategies B or C relative to strategy A. The computation of the gainG1 = 1 − τ(2)/τ(1) was
carried out for 20000 trials, where the turnover number, molecular mass and expression efficiencies of the three enzymes were randomly varied in the range
[10−1; 10], while the free amino acids were neglected by setting γA = 0. A) Strategy B, black bars, all parameters randomly varied; strategy B, white bars,
relative molar masses set to: γ0 = 100, γ1 = γ2 = 1; strategy B, gray bars, relative molar masses set to: γ0 = 1, γ1 = γ2 = 100 B) Strategy B, black bars, all
parameters randomly varied; strategy C, white bars, all parameters randomly varied and α = 0.5. C) Density plot of gain of strategy C versus the gain of
strategy D.

doi:10.1371/journal.pone.0118347.g002
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its simplicity this example points to the important and plausible fact that selective usage of dif-
ferent gene sets and related metabolic steady states should be of specific advantage in cases
where the temporary shut-down of certain pathways saves a significant amount of amino acids
that can be spent on other pathways to improve their capacity. This principle finding is in line
with the results of a recent theoretical study demonstrating that protein abundance of pathway
enzymes influences the timing of their activation [18].

Minimizing the biomass production time in a model of the central carbon
metabolism

Definition of the network and metabolic objectives. Next we investigated a physiologi-
cally more meaningful example and applied the proposed optimization approach to minimize
the production rate of biomass components in a simplified metabolic network of the cellular
carbon metabolism. The reaction scheme of this network is shown in Fig. 3. The network com-
prises as main metabolic pathways glycogenesis, glycolysis and gluconeogenesis, the pentose
phosphate cycle composed of the oxidative and non-oxidative branch, the synthesis of triglyc-
erides and the oxidative energy metabolism. The citric acid cycle, the respiratory chain and the
synthesis of free fatty acids and triglycerides are only represented by lumped overall reactions.
The considered final output of the network is the production of four macromolecules which
are central for maintaining the integrity of the cell and which in dividing cells have additionally
to accumulate in the growth phase (G1 of the cell cycle) before cell division: Synthesis of glyco-
gen (an important carbohydrate store), nucleic acids (RNA + DNA), triglycerides (an impor-
tant energy store), and proteins. The cellular network can exchange oxygen and the
metabolites glucose and lactate with the environment. The uptake rate of O2 is not constrained;
the rate of the membrane transporters for glucose and lactate is subject to the same constraints
as all other enzymatic reactions. As already stated in the introduction, some of the metabolic
objectives of a network have to be permanently fulfilled during the whole life cycle of a cell,
and thus cannot be temporarily switched off. For the exemplary network in Fig. 3, this pertains
to the metabolites GSH and ATP. The anti-oxidant GSH protects the cell from reactive radicals
and has to be continuously replenished from GSSG. Furthermore, besides the ATP consuming
processes utilized by reactions that explicitly occur in the network, a certain fraction of ATP is
continuously utilized (termed +ATP utilization in Table 1) to maintain essential cellular pro-
cesses as, for example, active membrane transport or cell motion. Table 1 quantifies for an av-
erage human cell type the demanded output and the brutto reactions relating the metabolites
produced in the network to the output of macromolecules. Note that the prescribed fluxes
through the target reactions GSSG reduction and surplus ATP production convert into the
quantities of ATP and GSH that have to be obligatorily produced in any time interval (see Eqn.
1). The optimization problem (P1) (see Methods) to minimize the production time for the four
target metabolites glycogen, protein, nucleic acids and lipids thus has to be solved by taking
into account the possible consumption of the two alternative substrates glucose and lactate and
the two indispensable target (maintenance) reactions ATP consumption and GSSG reduction
(see Table 1).

Determination of minimal gene sets
For each of the two substrates glucose or lactate, we computed 6 minimal gene sets (MSGs),
each defining an optimal flux mode (MFMs) that produces the maximal amount of one of the
four biomass components and the two maintenance metabolites ATP and GSH (see Table 1).
Operating at a minimal protein cost implies that spending the total available amount of amino
acids to this minimal flux mode maximizes the production rate of the target metabolite. To
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these 2 × 6 = 12 MGSs we added another group of 8 MGSs which maximize the flux through
the four target reactions yielding glycogen, protein, nucleic acids and lipids while maintaining
the indispensable target fluxes, i.e., vj �mbj for j 2 {GSHox, ATPase}. These 20 MGSs (see S2
Table for the corresponding MFMs) were used to constrain the simultaneous activation and in-
activation of genes when solving the optimization problem.

Specification of turnover rates and molecular masses
Numerical values for the turnover rates kcj and molecular weights γj were taken from the
BRENDA data base (http://www.brenda-enzymes.org/). Transport rates for glucose and lactate

Fig 3. Scheme of the network of the central carbonmetabolism, with glucose or lactate as substrates. The metabolic output, i.e., production of
triglycerides, nucleic acids, proteins and glycogen are shown in red as well as the permanent energy consumption (ATPase) and oxidative stress (GSHox).
Names of all reactions can be looked up in supplemental S1 Table. The metabolites are Lactate (Lac), Glucose (Glc), Glucose-6-P (Glc6P), Fructose-6-P
(Fru6P), Fructose-1, 6-bisphosphate (Fru1, 6P2), Glucose-1-P (Glc1P), UDP-Glucose (UDP-Glc), Dihydroxyacetone phosphate (DHAP), Glyceraldehyde
phosphate (GraP), 1, 3-Bisphosphoglycerate (1, 3P2G), 3-Phosphoglycerate (3PG), 2-Phosphoglycerate (2PG), Phosphoenolpyruvate (PEP), Pyruvate
(Pyr), Oxalacetate (OA), Acetyl-Coenzym-A (ACoA), Gluconate-6-P (6PG), Ribulose-5-P (Ru5P), Xylulose-5-P (X5P), Ribose-5-P (R5P), Sedoheptulose-7-P
(S7P), Erythrose-4-P (E4P) and Phosphoribosyl pyrophosphate (PRPP).

doi:10.1371/journal.pone.0118347.g003
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were taken from [22, 23], respectively. For the overall reaction ‘citric acid cycle’, we took the
turnover number of the rate limiting enzyme isocitrate dehydrogenase. The fatty acid synthesis,
FS, was assigned a turnover number of 43 s−1, according to [24] and oxidative phosphorylation
was assigned a turnover rate of 80 s−1, which is the minimum of the values for the individual re-
actions, as retrieved from BRENDA. For Glucose-6-P-dehydrogenase we assigned a turnover
rate of 14 s−1 according to [25]. The molecular masses assigned to lumped reactions were taken
as the sum of the molecular masses of the involved individual enzymes. The numerical values
for the catalytic constants and molecular masses used in our calculations are listed in S1 Table.
Furthermore we assume that the few unknown turnover numbers are not rate limiting for the
network, the respective fluxes are unbounded.

Specification of the reference case (no switching)
To define the reference case where the network operates with a single stationary flux mode, in
which all genes are constantly active and thus all enzymes are constantly expressed, the value
of the total mass of available amino acids, Atot, was chosen such that the minimal time for the
production of the demanded metabolic output given in Table 2 was 8 hours. A value of 8h for
the biomass duplication time lies between doubling times reported for yeast cells (1.25–2
hours) and cancer cells in culture derived from metastatic tumors (* 24 hours). Slightly differ-
ent values of Atot were obtained depending on the availability of the substrates glucose and

Table 1. Demand of output metabolites and associated energy consumption.

Metabolic output of the reaction network

Target
metabolite

biomass reaction for producing 1 unit of target molecule demanded units

Glycogen 50,000 UDP-Glc ! 1 glycogen + 50,000 UDP 5.6 � 10−6 mmol/gDW 1)

Triglycerides 3 palmitate + 1 glycerol-3-P + 3 ATP ! 1 triglyceride + 3
AMP

0.2 mmol/gDW 2)

Proteins 400 OA + 1600 ATP ! 1 protein + 400 AMP + 1200 ADP 0.016 mmol/gDW 3)

Nucleic acids RNA: 3000 PRPP + 21.000 ATP ! 1 RNA + 21.000 ADP 4.48 � 10−5 mmol/gDW
4)

DNA: 6 � 109 PRPP + 42 � 109 ATP ! 1 DNA +42 � 109 ADP 5.3 � 10−13 mmol/gDW
4)

GSSG reduction 1GSSG + NADPH ! 2 GSH + NADP 0.002 mmol/gDW/h 5)

+ATP utilization ATP ! ADP 5 mmol/gDW/h 6)

1. Average number of glucose moieties in a glycogen molecule = 50,000. Average MW of glycogen = 70μg/

mg protein [19].

2. 0.167 g/gDW lipid [20]. Average MW per triglyceride = 176 + 42 n D with n = length of fatty acids. With n

= 16 (palamitate) MW = 848 D.

3. 0.78 g/gDW protein [20]. Average size of protein = 400 amino acids. Average MW per amino acid = 126

D. As amino acids are not included into the network model the metabolite oxaloacetate (OA) involved in the

transamination of many amino acids is used here as a place holder, i.e., the consumption of amino acids

for protein synthesis equals the consumption of OA.

4. DNA: 0.0103 g/gDW [20]. Length DNA (double strand) = 6 � 109 nucleotides. Average MW of single

nucleotide = 325 D. RNA: 0.0437 g/gDW [20]. Average length RNA = 3000 nucleotides.

5. GSSG reduction rate in erythrocytes representing a cell type with a high oxidative load [21].

6. Value chosen such that 40% of total ATP utilization is spent on active membrane e processes

(predominantly Na-K-ATPase).

doi:10.1371/journal.pone.0118347.t001
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lactate (see Table 2). The critical amount of amino acids Acrit
tot just sufficient to produce the flux

through the two maintenance reactions (GSHox and ATPase) without generation of the four
biomass components is about Acrit

tot ¼ 0:023mg/gDW, i.e., 20% to 27% of the total available
amino acids pool has to be spent on pathways enabling these two permanently active mainte-
nance reactions (see Table 2). Of importance, the flux through the maintenance reactions may
even increase under challenging conditions, e.g. if the cell is exposed to a higher osmotic pres-
sure that necessitates the activation of membranous ATP-depending ion pumps to preserve the
osmotic equilibrium, or at a higher load of reactive oxygen species (peroxides) enhancing the
utilization of GSH. In such situations, at fixed value of Atot, an increase of the flux through the
maintenance reactions above the normal values results in a delayed production of the biomass
components (see Fig. 4). The times needed for biomass production decrease monotonously
with increasing Atot.

Minimizing biomass production time by consecutive switches between
active gene sets
Having defined the reference case, we solved the minimization problem (P1) (see Methods) to
check whether switching between different sets of active genes may significantly reduce the
minimal production of the metabolic output. In these computations, the numerical values of
the expression efficiencies were put to unity for all enzymes, i.e., the abundance of enzymes ac-
cording to expression (6) is only controlled by the number and molecular masses of active
genes. An optimal solution of the minimization problem does not require more phases than
there are different metabolic objectives. Thus we fixed the maximal number of phases where
different sets of genes are active to l = 4 and solved the optimization problem for an increasing
number of phases, l = 1, 2, 3, 4. Note that the case l = 1 is not identical with the reference case.
Solving (P1) with l = 1 allows inactivating parts of the network, whereas all genes are active in
the reference case. As a result the times τ(1) are below 8h, see Table 3.

The minimal production times obtained when the number of possible phases was increased
stepwise from l = 2 to l = 4 are depicted in Table 3 (see Fig. 5 and supplement S2 Fig. and S3
Fig. for the visualization of the l = 4 optimal solutions). Intriguingly, the most significant drop
of the minimal production time was already obtained by allowing two phases, i.e., switching
the network once between two different steady states. A larger number of phases resulted only
in a marginal further improvement. The best solution with a minimal production time τ = 4.78
h was obtained with three switches between l = 4 phases and glucose and lactate as allowed sub-
strates. The relative proportions of the biomass components produced within the four phases
and the corresponding flux modes are shown in Fig. 6 and Fig. 5. Although the sequence of

Table 2. Minimal total molecular mass of amino acids.

substrate Acrit
tot in mg/gDW Atot in mg/gDW

glc and lac 0.023 0.087

glc 0.023 0.115

lac 0.024 0.087

Minimal total molecular mass of amino acids Atot required to produce the metabolic output within 8h at

different modes of substrate supply. Acrit represents the minimal total molecular mass of amino acids

required for only accomplishing the maintenance reactions. All genes were set to be active in

these computations.

doi:10.1371/journal.pone.0118347.t002
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phases is arbitrary, we ordered them such that the amount of protein that has to be newly syn-
thesized in the transitions between the different activity states in consecutive time intervals be-
comes minimal. This choice was motivated by the consideration that both the degradation of
proteins and the de novo synthesis of mRNA and proteins consumes energy and other metabol-
ic resources. Since the whole protein pool is distributed in every phase, degradation and synthe-
sis are balanced and the cost for degradation is implicitly contained in the synthesis costs.

According to our solutions of the optimization problem, the rate of synthesis of the four bio-
mass components should vary in different phases. In particular, the synthesis of glycogen and
nucleic acids (dominated by the de novo synthesis of DNA) is predicted to occur only in short
phases, whereas the production of the more abundant components (lipids and proteins) occurs
in more than one phase. The optimal solutions depend critically on the availability of sub-
strates. If, for example, only glucose is available, the total time interval during which the genes
related to protein synthesis are active is longer than in a situation where both glucose and lac-
tate can be used (see Fig. 6 A, B). Interestingly, if the two substrates glucose and lactate are

Fig 4. Dependence of the minimal biomass production time in the base condition (all genes active) on
the magnitude of the flux through the maintenance reactions. The fluxes through the maintenance
reactions were increased. GSHox flux was increased up to 50-fold and ATPase flux 4-fold of their normal
values. The surface starts at the bottom with the minimal production time of 8h with all genes active and
maintenance demand of 0.002, 5 mmol/gDW/h, see Table 1. Only if ATP consumption by the maintenance
reactions is increased by a factor� 2.5, the minimal production time is prolonged. This is due to the fact that
fulfillment of the metabolic objectives requires ATP production in all metabolic phases. As long as the
responsible reactions are not rate limiting, i.e., their catalyzing enzymes do not operate at the upper flux
bound, the rate of ATP synthesis can be increased to balance the additional ATP demand of the maintenance
reactions up to an increase to the 2.5-fold of the normal. Below this threshold, only GSSG reduction acts as a
bottleneck for biomass production. With 15 mmol/gDW/h of ATP consumption the time for production
becomes 13.1 h and if the consumption rate tends towards 18.7 mmol/gDW/h, the total available amount of
amino acids has to be allocated to the ATP-producing flux mode, and de novo production of biomass is not
possible anymore. In contrast, owing to its smallness, variations of the flux through the GSH oxidase reaction
have only little impact on the minimal production time. An even 5-fold higher rate of GSH oxidation prolongs
the minimal production time by only 0.06 h.

doi:10.1371/journal.pone.0118347.g004
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both available, they are used differently within the four phases. During the synthesis of nucleic
acids and glycogen, both substrates are used in parallel. In the last phase, where the majority of
protein is synthesized, lactate serves as the only substrate.

The quantities of biomass output in the four flux modes with glucose and lactate as sub-
strates are depicted in Fig. 6. Due to the high demand for protein synthesis and the high cost of
fatty acid synthesis, the solutions are dominated by these requirements.

Minimizing biomass production time by successive activation of genes
The optimal solutions in the preceding section were obtained by allowing genes and the related
enzymes to be switched on and off in different metabolic phases. This is an unlikely situation
in rapidly dividing cells, which run quickly through the G1-phase of the cell cycle without a no-
table degradation of proteins [17]. To account for this situation, we repeated the calculations
under the additional constraint that genes can only be progressively turned on, i.e., that the
number of active genes increases monotonously in time. Note that the constraint of a constant
total protein pool requires that also in this scenario, a partial degradation of enzymes of the
preceding phase has to take place, in order to make amino acids available for the synthesis of
the additionally activated enzymes in the next phase. The results are listed in Table 4. The gain,
i.e., the relative reduction of biomass production times was only marginally lower than in the
preceding section, where gene sets could also be temporarily switched off in subsequent phases.
Intriguingly, although the additional constraint that genes can only be turned on results logi-
cally in a smaller total number of gene switches (see Tables 3 and 4) the predicted four phases
of biomass production are very similar to those obtained if genes are allowed to be alternatingly
turned on and off.

Robustness of optimal solutions against random variations of model
parameters
The computations presented above were carried out under the assumption that the expression
efficiencies of all enzymes are equal (ηj = 1 for all j). However, expression efficiencies may

Table 3. Minimal production times in 1, 2, 3 and 4 different phases.

Switching MinModes On and Off

substrates l τ(l) [h] τ1 [h] τ2 [h] τ3 [h] τ4 [h] # gene switches # active genes

glc, lac 1 7.344 0 41 (i)

2 5.394 2.815 2.580 10 33, 43 (ii)

3 4.788 2.434 0.177 2.177 28 (14+14) 31, 41, 35 (iii)

4 4.774 2.451 2.090 0.099 0.134 31 (12+10+9) 31, 35, 37, 40 (iv)

glc 1 7.513 0 41 (v)

2 5.330 2.113 3.217 15 38, 33 (vi)

3 4.812 3.217 1.439 0.157 15 (9+6) 33, 32, 38 (vii)

4 4.794 0.095 0.057 1.425 3.217 17 (6+2+9) 36, 34, 32, 33 (viii)

lac 1 7.344 0 41 (ix)

2 5.929 0.706 5.222 6 41, 35 (x)

3 5.857 5.222 0.202 0.433 8 (2+6) 35, 37, 39 (xi)

4 5.848 3.052 2.161 0.202 0.433 10 (2+2+6) 33, 35, 37, 39 (xii)

MGS can be switched On and Off from one phase to the next. Times of optimal solutions with 1, 2, 3 and 4 phases. The flux mode of solution (iv) is

visualized in the network in Fig. 5.

doi:10.1371/journal.pone.0118347.t003
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considerably vary as meanwhile convincingly demonstrated by the generally poor correlation
between mRNA and protein levels (see e.g. [26]). Several reasons may account for this observa-
tion. The translational efficiency of mRNAs can be controlled by RNA-binding proteins as well
as small RNAs, and the half-life of proteins may vary between several minutes and days. There-
fore, in order to exclude that the results obtained in the preceding sections critically depend on
the choice of the expression efficiencies, we randomly varied their numerical values from a log-
normal distribution, i.e., ηj * lnN(0, 0.362). As in the preceding sections, we determined for
each sample the minimal value of Atot with which the demanded metabolic output can be

Fig 5. Steady-state flux distributions related to the active gene sets within the four different phases of biomass production. The shown flux
distributions correspond to the optimal solution (iv) in Table 3. The line width of the arrows corresponds to the flux rate, inactivated reactions are drawn in
gray. For the identification of rate limiting reactions, those fluxes which attain their upper bounds are marked in red.

doi:10.1371/journal.pone.0118347.g005
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accomplished within 8h in the reference state (see Fig. 7). As expected, variations of the expres-
sion efficiencies had a large impact on Atot with deviations of up to a factor of 3 from the unper-
turbed value Atot = 0.087 mg/gDW.

Then, for each sample, we solved the optimization problem for l = 1, 2, 3, 4 different phases
and different combinations of glucose and lactate as available substrates. Fig. 8 shows the range
of obtained times τ(l), l = 1, 2, 3, 4. Remarkably, for all random samples the strategy of alternat-
ing gene switches resulted in a reduction of the total biomass-production-time. Thus, the find-
ings of the preceding section, according to which a variable use of selected gene sets in different
metabolic phases allows a reduction of the biomass production time, turn out to be robust
against variation of enzyme expression efficiencies.

Fig 6. Flux rates through the biomass producing target reactions within various phases for the solution of the optimization problemwith l = 4
different phases. The size of the colored areas correspond to the amount of biomass component produced in the respective time interval. (A) Glucose and
lactate are available substrates, (B) Glucose is the only substrate, (C) Lactate is the only substrate. For the dividing cell, where we assume that genes are
only progressively activated (Tab. 4), the resulting production profiles are very similar (not shown).

doi:10.1371/journal.pone.0118347.g006
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Table 4. Minimal production times if genes can only be switched on.

Switching MinModes only On

substrates l τ(l) [h] τ1 [h] τ2 [h] τ3 [h] τ4 [h] # gene switches # active genes

glc, lac 1 7.344 0 41 (i)

2 5.394 2.580 2.815 10 43, 33 (ii)

3 4.850 2.053 0.180 2.618 18 (6+12) 37, 43, 31 (iii)

4 4.847 2.006 0.089 0.131 2.621 18 (2+4+12) 37, 39, 43, 31 (iv)

glc 1 7.513 0 41 (v)

2 5.729 2.512 3.217 10 43, 33 (vi)

3 5.180 1.782 0.181 3.217 16 (6+10) 37, 43, 33 (vii)

4 5.170 0.086 0.086 1.780 3.217 12 (2+6+4) 41, 43, 37, 33 (viii)

lac 1 7.344 0 41 (ix)

2 5.929 0.706 5.222 6 41, 35 (x)

3 5.885 0.433 0.230 5.222 8 (2+6) 39, 41, 35 (xi)

4 5.876 0.433 0.230 3.044 2.169 12 (2+8+2) 39, 41, 33, 35 (xii)

Times of optimal solutions with 1, 2, 3 and 4 consecutive flux modes. Calculated with the additional constraint that genes can only be turned on, but not

deactivated from one interval to the next. Solutions (iv), (viii) and (xii) are visualized in the network in the Supplement, S4 Fig. to S6 Fig.

doi:10.1371/journal.pone.0118347.t004

Fig 7. Impact of variations in the enzyme expression efficiencies on the minimal total amino acid mass Atot required to produce the metabolic
output within 8h in the base condition (all genes active, no switch). The frequency distributions are the outcome of 2000 computations of Atot where the
values of the expression efficiencies were sampled from the lognormal distribution ηj * lnN(0, 0.362). The unperturbed values, i.e., ηj = 1 for all reactions j,
are marked in green.

doi:10.1371/journal.pone.0118347.g007
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Discussion

General
We have presented a theoretical framework to study the impact of variable usage of genes and
related metabolic enzymes on the efficiency of cells to accomplish their metabolic output. The
main conclusion of this study is that even in a constant metabolic environment, a temporary
switch between different metabolic phases could be a regulatory mechanism that allows a faster
and thus more efficient production of the metabolic output. We deliberately emphasize the
constancy of the metabolic environment, i.e., the constant availability of nutrients and oxygen,
as our approach does not consider that switches between different metabolic states of the cell
can be accomplished by other factors such as, for example, hormones, circadian variations of
substrate supply, or changes of internal metabolites that upon accumulation or depletion may
invoke transcriptional networks. From the evolutionary point of view, exploiting consecutively
only certain parts of the whole metabolic network in order to minimize the time required for
the production of the metabolic output at limited amount of investable protein could have
been one relevant factor that has led to the establishment of temporary gene expression. In this
light, temporal gene expression does not only serve as a means to adapt the metabolic output of
different cells, tissues and organs to the varying needs of the organism, but also as a strategy to
accomplish this output with high efficiency. This view holds in particular for a rapidly dividing
cell which may acquire an advantage if its biomass can be reproduced faster than that of
its competitors.

Basic assumptions
One basic assumption made in our approach is that the amount of metabolic enzymes (as well
as that of any other protein in the cell) is constrained by the general condition that the total
protein mass cannot exceed a certain threshold value without reducing the aqueous phase to
an extent that effective communication and catalysis inside the cell gets impaired. This condi-
tion was implemented into our approach by rendering the upper bound of fluxes dependent on
the number of simultaneously expressed enzymes: The less enzymes are required, and the
smaller their molecular masses, the more protein they can acquire. With this constraint on the

Fig 8. Robustness of optimal solutions. Possible variation ranges of the gain obtained with different numbers of metabolic phases and glucose and lactate
as allowed substrates. (A) Genes can be switched on and off, (B) Genes can only be switched on. The red mark represents the base condition (ηj = 1 for j = 1,
. . ., n).

doi:10.1371/journal.pone.0118347.g008
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upper bound of fluxes, the reduction of the biomass production time achieved by the strategy
of alternating switches between different metabolic phases appears to be very robust against
variations in the expression efficiency of the enzymes in the considered network. Importantly,
compared to the approach in [5] also dealing with the implications of molecular crowding for
the computation of feasible flux distributions, we deliberately do not allege that the expression
efficiency of individual enzymes can be optimized such that an individual enzyme receives just
that amount of protein which is necessary to adjust its upper flux bound to the flux it has to
carry. A perfect adaptation of the gene expression of metabolic enzymes to flux requirements
seems unlikely for several reasons. First, this assumption would entail that all enzymes are satu-
rated, i.e., operate at their maximal capacity (vmax). In contrast, all metabolic pathways studied
so far have in common that only few enzymes (mostly only a single one) are rate limiting,
while the others are not saturated with their ligands, and therefore possess a large overcapacity
compared to the actual flux they carry. Second, an investigation of the control of metabolic flux
in the model bacterium Bacillus subtilis by quantifying fluxes, transcripts and metabolites in
eight metabolic states enforced by different environmental conditions revealed that for the ma-
jority of enzymes in central metabolism, enzyme concentrations were insufficient to explain
the observed fluxes [27]. In line with this finding, a suboptimal control of gene expression was
reported to be widespread in bacteria [28]. Third, from an evolutionary point of view, a perfect
economical allocation of proteins to the enzymes and transporters of the cellular reaction net-
works is unlikely to occur, as biological systems that perform multiple tasks face the fundamen-
tal trade-off that a given phenotype cannot be optimal at all tasks [29]. Moreover, the
capability of cell’s to adapt their proteome to the environmental requirements is restrained by
the structure and kinetic properties of the underlying regulatory network [30]. Contemporary
gene regulatory networks always bear traces of their evolutionary history: Regulatory circuits
as, for example, the operon concept enabling the simultaneous activation and inactivation of
genes in functional clusters that may have allowed a perfect adaptation to long-lasting and sta-
ble environmental conditions, became highly conserved among different species [31]. Finally,
regulation of the cell’s protein abundances is constrained by osmotic and energetic conditions.
Maintaining the flux through a reaction while reducing the amount of the catalyzing enzyme
unavoidably leads to an increase of the concentration of the reaction substrates—the lower the
enzyme capacity, the higher the substrate concentration. This increase of metabolite concentra-
tions may impair the osmotic equilibrium between the cell and its external milieu—a phenom-
enon that accounts for the impairment of cells in certain types of inborn enzyme deficiencies.
The above arguments of course do not deny the existence of a gross relationship between flux
strength and enzyme abundances. Taking a more subtle regulation of gene expression into ac-
count in our approach would clearly cheapen the gain achievable with metabolic switches. In
our calculations of the gain, we neglected the additional costs and the additional time-delay
caused by the metabolic switches. Degradation of proteins (mostly by the ubiquitin-protea-
some system) and de novo protein synthesis consumes some extra ATP. For a rough estimate
of the additional costs associated with the de novo synthesis of enzymes in various metabolic
phases, we added up the mass of protein allocated to those enzymes that are additionally ex-
pressed when switching from one phase to the next. This gave an additional ATP demand of
9% resp. 8% for the non-dividing resp. dividing cell, compared with the basal (maintenance)
ATP production flux of 5 mmol/gDW/h. Taking into account this extra ATP demand when
solving the optimization problem for varying metabolic phases, there was no significant change
of the gain in biomass reproduction time. Regarding the time-delay caused by switching from
one enzyme expression pattern to the next, experimental observations suggest this switch to
occur in a smooth fashion in that the degradation of proteins (and related mRNAs) active in
the preceding metabolic phase goes hand in hand with the synthesis of new proteins of the next
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metabolic phase. Such a tight coupling between protein degradation and synthesis assures the
homeostasis of the cellular amino acid pool [32]. The remaining short delay between onset of
enhanced proteolysis and onset of de novo protein synthesis thus should only marginally pro-
long the total production time of biomass.

Metabolic targets
Regarding the choice of metabolic targets for the concrete metabolic network studied in this
work, one has to admit that they are not fully independent from each other. For example, a cer-
tain basic level of protein synthesis is indispensable at any time for the synthesis of those en-
zymes required in the current flux state. This, in turn, requires also a basic level of mRNA
synthesis at any time. Therefore, the optimal solutions obtained by our approach can only rep-
resent rough approximations to the reality just indicating the general trend. Indeed, similar as
in our computations, a clear phase shift between the peak activities of the pathways of carbohy-
drate, lipid, amino acid and nucleotide metabolism has been observed in liver cells [33]. Gener-
ally, the conclusion of our study applies to all types of metabolic output as, for example,
replacement of damaged cellular building blocks, accumulation of building blocks in growing
and dividing cells, or export of metabolites.

Minimal gene sets
In our approach, the activation and inactivation of genes is accomplished by the regulation of
so-called minimal gene sets. These are defined as sets of genes that can only be collectively
turned on and off, because they are under the control of common transcription factors. This
concept takes into account the existence of signaling pathways and related transcription factors
(TFs) that specifically control metabolic pathways of the cell. For example, up-regulation of the
transcription factor HIF-1 under hypoxic conditions leads to a higher expression of genes cod-
ing for glucose transporters and glycolytic enzymes. Transcription factors belonging to the
group of peroxisome proliferator-activated receptors (PPAR) are known to specifically enhance
the expression of genes related to lipid storage (PPAR-γ) and lipid oxidation (PPAR-α). The
cellular synthesis of proteins can be globally enhanced by the serine/threonine protein kinase
mTOR. Hitherto, the gene regulatory mechanisms underlying the activation of metabolic en-
zymes by various TFs and the mutual interactions of different TFs at one and the same promo-
tor are not exactly known. Hence, our concept of minimal gene sets appears to be at the
moment a reasonable surrogate for the still not completely understood gene regulation of met-
abolic enzymes. It has to be critically noted, however, that the results of our optimization ap-
proach, i.e., the strategy used to sequentially activate metabolic pathways strongly depend on
the assumptions made on the cistronic regulation of pathway enzymes [18]. In particular, with-
out constraining the activation of single genes to the activation of commonly regulated gene
sets, reduction of biomass production times by alternating metabolic phases becomes even
more pronounced.

Relevance of our findings to the explanation of metabolic cycles
In our computations we have assumed a situation where the cell has to produce a defined meta-
bolic output with minimal production time. Contingent on the simplicity of the chosen exem-
plary metabolic network, the metabolic output was restricted to some central biomass
components as neutral lipids, nucleic acids, proteins and glycogen. In a non-dividing (”rest-
ing”) cell, the metabolic output does not lead to an accumulation of the total biomass but in-
stead serves to replenish the permanent loss of biomass components by various degradation
and damage processes (lipid oxidation, proteolysis, glycogen consumption, RNA degradation).
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Let ε< 1 denote the fraction of biomass components that is lost in a given time and that needs
to be restored within this time period (= homeostasis) to prevent severe cell damage or loss of
cell functions. Then the solution of our optimization problem (P1) (see Methods) predicts that
switching between different metabolic phases permits a faster reproduction of the demand ε Γ
than achievable with a constant metabolic steady state. This scenario would periodically repeat,
thus resulting in a so-called metabolic cycling where each cycle produces only a certain fraction
ε Γ such that, without permanent loss, after 1/ε cycles the complete biomass would have dou-
bled. From this consideration one may conclude that the economic usage of the protein pool
that can be allocated to metabolic enzymes is one possible explanation for the periodic switches
between distinct metabolic states observed in various non-proliferating cell types as, for exam-
ple, yeast cells in batch cultures [10, 11]. Independent from external signals, such metabolic cy-
cles can be triggered by cell-autonomous oscillators, i.e., central genes that govern groups of
transcription factors and which themselves are periodically varied in their activity by negative
feed-back loops, similar as known for the regulation of the central circadian oscillator operating
in the neurons of the suprachiasmatic nucleus [34]. In mammals, such oscillators have been
found in almost all peripheral cell types [35, 36]. Ex vivo experiments have clearly demonstrat-
ed that such cell-intrinsic oscillators may work independently from circadian changes of the
cell’s environment (e.g. variations in the concentration of nutrients or hormones) and phases
of the cell cycle [37].

Materials and Methods

Formulating the optimization problem
To find a sequence of flux modes v1, . . ., vl (in mol/gDW/h) that produces all required amounts
of metabolic output while maintaining the indispensable target fluxes in all phases, and which

minimizes the total time t ¼ Pl
k¼1 tk (in h), we solve the following optimization problem:

Minimize
Xl

k¼1

tk such that

S#vk ¼ 0; mb � vk;

� gjZj
gA þ

P
igigiZi

kc�j Atot � vkj � gjZj
gA þ

P
igigiZi

kcjAtot; ðP0Þ

Xl

k¼1

tkS
�vk � G;

with l 2 N; k ¼ 1; . . . ; l; j ¼ 1; � � � ; n;
and variables tk 2 R�0; v

k 2 R
n; gk 2 0; 1f gn:

Including the activation by MGS. We denote the MGS associated with the accomplish-
ment of a flux through the target reaction s by the binary vector χs, with wsj ¼ 0 if wsj ¼ 0 and

wsj ¼ 1 otherwise, where ws is the related MFM. In our model, we assume that an arbitrary gene

is active if and only if it is member of at least one active MGS. Furthermore, we make the as-
sumption that enzymes coded by inactive genes are also inactive, i.e., the transient phase be-
tween switching off genes and degrading the related proteins is not considered. Note also that
one gene can be a member of different MGSs. In order to include the additional constraint of
collectively activated and inactivated genes into the optimization problem, we introduce binary
variables bs, s = 1, . . ., t, where t is the total number of MFMs, to indicate whether the gene
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group χs is active or inactive. It follows that gj = 1 if and only if there exists s 2 {1, . . ., t} with
wsj ¼ 1 and bs = 1. To formulate this as a linear constraint, let sj ¼ fs j ws

j 6¼ 0g be the set of
MinModes using reaction j. Then we have to require that

gj � P
s2sj bs; for all j ¼ 1; . . . ; n; and

bs � gj; for all s ¼ 1; . . . ; t; and wsj ¼ 1:

We can now add these constraints to the optimization problem (P0). We will call the result-
ing optimization problem (P1), it performs the same optimization, but on a more restricted
solution space.

All computations were implemented in Matlab. To solve the optimization problem we used
the Gurobi Optimizer 5.6 (http://www.gurobi.com) via Matlab.

The optimization problems (P0) and (P1) contain as an unknown the number l of allowed
different metabolic phases. It can be shown that an optimal solution can always be achieved
with some l bounded by the number of target metabolites. Moreover, the solution of the opti-
mization problem does not depend on the order in which the differently activated MGSs are
used, unless further constraints are added evaluating the costs of switching from one phase to
the next.

Upper bound for the number of flux modes in an optimal solution
The number l of metabolic phases in (P0) resp. (P1) is a priori not known. We show now that if
the problem is feasible, there always exists an optimal solution using at most as many flux
modes v1, . . ., vl as there are target metabolites inM�. Hence, in the optimisation problem (P0)
resp. (P1), we can fix l = jM�j.

To prove this statement, assume there is an optimal solution consisting of flux modes v1,

. . ., vl and associated durations t�1; . . . ; t
�
l with l> jM�j. The constraintsPl

k¼1 tkS
�vk � G spec-

ifying the metabolic output can be written as (S� V)τ� Γ, where V is the (n × l)-matrix whose
columns are the flux modes v1, . . ., vl, and τ is the column vector (τ1, . . ., τl)

> (where �> denotes

transposition). Consider the linear optimisation problem minfPl
k¼1 tk j ðS�VÞt � G; t � 0g.

By definition, t� ¼ ðt�1; . . . ; t�l Þ> is an optimal solution. From the theory of linear program-
ming (see e.g. [38] Thm. 4.7, p. 121), we know that the corresponding problem in standard

form minfPl
k¼1 tk j ðS�VÞt� t0 ¼ G; t; t0 � 0g has a so-called basic optimal solution

�t; �t 0 � 0, for which the number of non-zero components �tk > 0 is at most jM�j (the number
of rows of S� V). Such a solution �t describes how to produce the demanded output in minimal
time, using at most jM�j of the flux modes v1, . . ., vl. To find such an optimal solution, it is
enough to solve (P0) resp. (P1) for the fixed value l = jM�j.

Supporting Information
S1 Fig. Frequency distribution of the gain in the minimal example with a wider parameter
range. To confirm the independence of the empirical results on the parameter range, the com-
putations for Fig. 2 were repeated, varying the turnover number, molecular mass and expres-
sion efficiencies in the range [0.01, 100]. Not surprisingly, the extreme cases of very high gain
occur in higher frequency. The conclusions in the main text are not affected by
these differences.
(EPS)
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S2 Fig. Glucose as substrate. The shown flux modes correspond to solution (viii) in Tab. 3,
see also Fig. 5.
(EPS)

S3 Fig. Lactate as substrate. The shown flux modes correspond to solution (xii) in Tab. 3,
see also Fig. 5.
(EPS)

S4 Fig. Glucose and lactate as substrates. The shown flux modes correspond to solution (iv)
in Tab. 4.
(EPS)

S5 Fig. Glucose as substrate. The shown flux modes correspond to solution (viii) in Tab. 4.
(EPS)

S6 Fig. Lactate as substrate. The shown flux modes correspond to solution (xii) in Tab. 4.
(EPS)

S1 Text. Analysis of the minimal example.
(PDF)

S1 Table. Reaction Names and Parameters.
(ODS)

S2 Table. MinModes.
(ODS)

S1 Files. Matlab scripts and model file.
(ZIP)
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