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Alternative telomere maintenance
mechanism in Alligator sinensis provides
insights into aging evolution

Yu-Zun Guo,1,5 Yi Zhang,1 Qing Wang,2 Jun Yu,1 Qiu-Hong Wan,1 Jun Huang,3,4,* and Sheng-Guo Fang1,*

SUMMARY

Lifespan is a life-history trait that undergoes natural selection. Telomeres are hall-
marks of aging, and shortening rate predicts species lifespan, making telomere
maintenancemechanisms throughout different lifespans aworthy topic for study.
Alligators are suitable for the exploration of anti-aging molecular mechanisms,
because they exhibit low or even negligible mortality in adults and no significant
telomere shortening. Telomerase reverse transcriptase (TERT) expression is ab-
sent in the adult Alligator sinensis, as in humans. Selection analyses on telomere
maintenance genes indicated that ATM, FANCE, SAMHD1, HMBOX1, NAT10,
andMAP3K4 experienced positive selection onA. sinensis. Repressed pleiotropic
ATM kinase in A. sinensis suggests their fitness optimum shift. In ATM down-
stream, Alternative Lengthening of Telomeres (ALT)-related genes were clus-
tered in a higher expression pattern inA. sinensis, which covers 10–15%of human
cancers showing no telomerase activities. In summary, we demonstrated how
telomere shortening, telomerase activities, and ALT contributed to anti-aging
strategies.

INTRODUCTION

Natural selection is a process that modulates the genetics, physiology, and behavior of species, affecting

many different traits; and longevity is one of them.1–4 The disposable soma theory demonstrates that

species lifespan is determined by longevity mechanisms that should be adjusted for an optimal compro-

mise between effort in somatic maintenance and reproduction.5–7 Low extrinsic mortality species afford

more stress resistance investments that slow the intrinsic aging than high extrinsic mortality species.8 Aging

is a consequence of an increase in gene selective effect that influences the ‘‘theoretically inevitable’’

survival of early life and fecundity compared with those of late-life.9 Moreover, senescence has several

molecular characteristics, such as genomic instability, loss of protein homeostasis, and mitochondrial

dysfunction.10 Particularly, genomic stability of the chromosome ends, i.e. the telomeres, are hallmarks

of aging.11–13 The telomere is the DNA protein complex at the end of the chromosome in eukaryotic cells;

telomere binding proteins together form a special ‘‘cap’’ structure, which has an essential role in preventing

end-to-end fusion of chromosomes, maintaining the integrity of chromosomes, and controlling the cell-di-

vision cycle.14,15 Telomere length shortens with age owing to incomplete DNA replication at its 30

ends.12,16,17 In addition, telomere dysfunction caused by short telomeres or telomere structural changes

eventually results in chromosome instability and replicative cellular senescence.18

Nonetheless, a long telomere length is not consistent with long-living species. Humans have a longer life-

span with a telomere length of 5–15 kb in contrast to a shorter lifespan of mice, which have 20–50 kb of telo-

mere length.19,20 Of interest, a recent study revealed that telomere shortening rate is significantly related to

aging, with slower telomere shortening associated with longer lifespans in various vertebrate species.21For

example, in humans (maximum lifespan: 122.5 years), the telomere shortening rate is 70 bp/year,22

whereas, in elephants (maximum lifespan: 65 years), flamingos (maximum lifespan: 60 years), vultures

(maximum lifespan: 41.4 years), reindeer (maximum lifespan: 21.8 years), and mice (maximum lifespan: 4

years), the rates are 110, 110, 210, 530, and 7000 bp/year, respectively. In telomere maintenance, telome-

rase plays the role of reverse transcriptase in telomere elongation23; to activate or upregulate the telome-

rase reverse transcriptase (TERT) gene that encodes the catalytic component of telomerase can directly

achieve telomere elongation.24 Thus, whether telomeres actually determine the lifespan via telomere
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maintenancemechanisms (TMMs) remains questionable. For example, telomere elongation via telomerase

activity is known to counteract telomere attrition in human cancers and mouse somatic cells.25–27 In the so-

matic cells of adult mice, telomerase activity is often high, whereas corresponding TERT expression levels

are absent in somatic cells of humans.28–31TERT expression appears to be inactivated in long-living species

such as humans with slow telomere shortening.30,31 In contrast, active telomerase is associated with fast

telomere shortening in mice.21,27 Nonetheless, whether the telomere shortening status is critically related

to TMM-related longevity in species without telomerase activity remains unclear.

The evolution of aging occurs throughout diverse taxa. For example, vertebrates like giant tortoises, alli-

gators, whales, elephants, humans and rougheye rockfishes, do not cluster in the same evolutionary branch

despite their common long-living characteristic.9,32–34 Their life-history traits could have convergently

occurred in the outstanding performance of telomere maintenance, with slow telomere shortening rates.

This convergence may result from selections in the same gene or by occurrence of the same mutational

changes.35,36 Ectothermic tetrapods like giant tortoises, crocodiles, and alligators are well suited

to explore their molecular mechanisms of anti-aging since they exhibit little to no relationship between

fecundity and aging, and low or even negligible mortality in adults.37–40 Furthermore, alligators are the

remaining species since the earliest crocodilians appeared 240 Mya.41,42 Their anti-aging strategies and

adaptations in longevity become a fair question to explore, as they are characterized by uncertain growth

patterns, little to no relationship between bone texture change versus aging, negligible mortality and

remarkable adaptations in stressful environments.43,44 In cellular senescence mechanisms, accumulated

cell cycle arrest exhibits the aging-related secretory phenotype in species individuals,45,46 whereas the pro-

cesses and mechanisms in crocodilians are not fully understood.47 Therefore, exploring telomere short-

ening andmaintenancemechanisms in alligators provides a better understanding of their aging and critical

insights for anti-aging and longevity processes. In this study, we monitored telomere shortening status and

explored the TMMs in Alligator sinensis and representative long-living species.

RESULTS

Telomere shortening and the TERT expression pattern cannot explain the aging ofA. sinensis

We first measured the relative telomere lengths (rTLs) in all blood cells at different ages of the long-living

A. sinensis and other four related species: Nipponia nippon, Colombia livia, Pelodiscus sinensis and Xen-

opus laevis. rTLs of A. sinensis increased with the age (b = 0.312, p-value = 0.015; Figure 1A). On the con-

trary, for N. nippon, C. livia, P. sinensis, and X. laevis, the rTLs decreased significantly with age (b = -0.32 to

-0.43, p-values < 0.05; Figures 1B–1E). Higher telomerase activities are more acknowledged at telomere

elongation in cell culture experiments25–27; therefore, to explore whether themore efficient telomeremain-

tenance is owing to higher telomerase activities, we further measured the TERT expression levels of all

blood cells at different ages of all five species. A. sinensis TERT expression was low since birth and was

lower than detectable range at seven years (Figure 1A). As expected, for N. nippon, C. livia, P. sinensis,

and X. laevis, the TERT expression levels decreased with increasing age (Figures 1B–1E). These results sug-

gested that although the decrease in TERT expression is known to explain the telomere shortening and life

span, an alternative mechanism shall be responsible for the extraordinary performance of telomere main-

tenance in A. sinensis throughout their extremely long lifespan.

Telomere maintenance genes under positive selection in alligators and modern long-living

taxa

Lifespan is the one of most important life-history traits that can affect the generation time, offspring num-

ber, genetic diversity, mutation load, and selective efficacy.48–53 Therefore, lifespan is commonly thought

to be limited by natural selection.9,52 Therefore, to explore the underlying genetic mechanism implicated in

aging-related natural selection, we identified signatures of positive selection on 225 protein-coding genes

of 38 species representing lifespan gradients (Tables S1 and S2), using phylogenetic analysis. The

maximum lifespans of species were obtained from the Anage database.38,54 We obtained a 22-mammal

phylogenetic clade and a 16-non-mammal clade (Figure 2A). In the mammal clade, the maximum lifespan

ranged from 4 years for M. musculus to 122.5 years for Homo sapiens, whereas in the non-mammal clade

the maximum lifespan varied from 5.5 years for Danio rerio to 138 years for Terrapene carolina triunguis

(Figure 2A).

Among all 225 genes studied, we identified genes under significant positive selection at the external

branches, resulting in 79 genes for the non-mammal clade and 111 genes for the mammal clade
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(Tables S3 and S4). Particularly, six genes were found to experience positive selection in A. sinensis: ATM,

FANCE, SAMHD1, HMBOX1,NAT10, andMAP3K4; and 13 genes in Alligator mississippiensis: BLM, RFC5,

PRKCQ, MAPK3, MEIOB, PRKDC, NABP2, PRKCA, CBX3, TNKS1BP1, FANCE, CHEK1 and ERCC1. Some

identified genes were related to double-strand break repair (DSB), such as ATM and BLM. To explore

whether these selected genes are related to large lifespan species, we sorted 106 telomere maintenance

genes commonly under positive selection among three or more species based on their median values of

themaximum lifespan across the species harboring these genes. Eleven genes putatively experienced pos-

itive selection based on the top 10% median values of the maximum lifespan’s distribution (>61 years;

Table S5), such as the ataxia telangiectasia mutated (ATM) in A. sinensis,Gorilla gorilla, Tursiops truncatus,

Chrysemys picta bellii, and Varanus komodoensis; meiosis-specific cohesin subunit SA3 (STAG3) in Balae-

noptera musculus, Loxodonta africana,Macaca mulatta, and Equus caballus; chromobox protein homolog

3 (CBX3) inA. mississippiensis, C. abingdonii and V. komodoensis; and DNA-dependent protein kinase cat-

alytic subunit (PRKDC) in A. mississippiensis, C. abingdonii, V. komodoensis and C. picta bellii (Figure 2B).

Conserved mutations among long-living species potentially change protein activity

Genetic selection can increase the frequency of positive mutation; therefore, we further evaluated point

mutations present in the telomere maintenance genes under positive selection. We found 73 amino acid

replacements were identified in Alligator spp. among ATM, PRKDC, protein kinase C theta (PRKCQ),

CBX3, chaperonin containing TCP1 subunit 2 (CCT2), and tankyrase 1 binding protein (TNKS1BP1)

(Table S6). These genes play a common role in DSB repairs, whereas ATM,55,56 PRKDC,57,58 and

TNKS1BP159 are serine and threonine kinases for DNA damage response (DDR). CCT2 is a chaperonin-con-

taining T-complex (TRiC) component that mediates the folding of WRAP53/TCAB1, subsequently regu-

lating telomere maintenance.60

To further explore whether the conservation of these amino acids changes protein chemical properties,

Sorting Intolerant From Tolerant (SIFT)61,62 was used to test whether these substitutions affected protein

functions based on UniRef90.63 We found that most substitutions, such as D1815N, S1816G and T3031I

in ATM and S904G, S3229A and V3961T in PRKDC (Figure 3) of A. sinensis and extreme long-living species,

were predicted to affect protein functions (Scores < 0.05) (Table S7). In addition, the mutations CCT2D177N

inAlligator spp. and giant turtles, and CCT2Q380K inAlligator spp. may increase the capability of chromatin-

and DNA-binding when the hydrophilic amino acid residues are presented on protein surfaces. In Alligator

spp. andC. abingdonii, the ATM replaced serine or threonine in S1816G and T3031I, respectively (Figure 3),

were notable substitution sites, substitutions at which potentially decrease serine- or threonine-protein ki-

nase activities.64,65 S904G, S3229A and V3961T mutations in PRKDC kinase and PRKCQA536S in Alligator

spp. (Figure 3) may affect protein kinase activities. Notably, the ATMD1815N mutation was commonly shared

by long-living mammals and non-mammals, covering Alligator spp., B. musculus, Orcinus orca, T. trunca-

tus, C. picta bellii and T. carolina triunguis. Ancestral state inference of ATMD1815N indicated that at the

1815 site the ancestral amino acid was aspartic acid, whereas asparagine was presented in modern species

of extreme long-live (Figure 4A). The replacements of asparagine residues possibly change the local

electrostatic field upon ATM protein surface. The aspartic acid residue with negatively charged side chain

(pI = 2.77) was replaced by asparagine, a hydrophilic amino acid residue (pI = 5.41), which may increase

nucleotide-binding efficiency (Figure 4B).

ATM expression is repressed, but Alternative Lengthening of Telomeres (ALT) related genes

were clustered in a higher expression pattern in A. sinensis

To explore expression patterns of ATM in A. sinensis, we sorted ATM expression patterns within a normal

distribution of total expression in A. sinensis, and compared them with those ofN. nippon, C. livia, X. laevis

and P. sinensis. The RNA samples were extracted fromwhole blood cells around the sexual maturity time of

each species (see STAR methods). ATM expression distributions in A. sinensis were less than 10% (logged

FPKM = -0.720; p-value = 0.071) within the whole expressed genes, which is lower than that in N. nippon

Figure 1. rTL measurements for Alligator sinensis

Nipponia nippon, Colombia livia, Pelodiscus sinensis, and Xenopus laevis using monochrome multiplex quantitative PCR

assay (MMQPCR), and relative expression of TERT was measured by RT-qPCR in individuals of different ages for Chinese

alligator (A. sinensis), (B) crested ibis (N. nippon), (C) rock dove (C. livia), (D) softshell turtle (P. sinensis), and (E) African

clawed frog (X. laevis). Each point represents a different individual. Note that scales of RT-qPCR are fixed for clearer

observation of variations.
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(logged FPKM = 0.801; p-value = 0.485), C. livia (logged FPKM = -0.131; p-value = 0.238), P. sinensis

(logged FPKM = 0.378; p-value = 0.386), and X. laevis (logged FPKM = -0.5; p-value = 0.137), the four

TERT positive species (Figure 5B). ATM, as a pleiotropy gene, regulates multiple signaling pathways

covering DSB repair, cell cycle checkpoint, apoptosis and senescence (Figure 5A).66–68 Repressed ATM

expression in A. sinensis together with critical mutations in ATM conservative regions suggested their

fitness optimum shift.69 Clustering analysis of the expression of telomere maintenance genes indicated

that the genes thought to be required for alternative lengthening of telomeres (ALT) were clustered in a

higher expression pattern; for example, BLM, SMC6, FANCA and TPP1 were the only high expression clus-

ter inA. sinensis (Figure 5C). In ATMdownstreampathways, BLM RecQ helicase and structural maintenance

of chromosomes 6 (SMC6) are required ALT proteins for homologous recombination. Upregulated BLM

RecQ helicases were correlated with ALT by DSB repair via homology recombination70 whereas Fanconi

anemia group A (FANCA) are required for the recombination-dependent restart of stalled telomeric

DNA replication.71 TPP1 is part of POT1-TPP1 telomere complex and stabilizes POT1, promoting efficient

telomere maintenance as a component of the telomere shelterin complex.72,73 ALT was found in 10–15% of

human cancers in contrast to 85–90% TERT-positive cancers.74,75

DISCUSSION

Telomere dynamics are related to aging, but telomere length depends on diverse factors, including telo-

merase activity, genetic factors, hormone characteristics reflecting gender, environmental factors such as

UV-radiation and oxidative stress, exposure to diseases and socio-ecological variables that may be used as

bio-markers of aging and stress exposure.76–80 Large variations of telomere length usually occur in the

early-life of species, which may become a driver for natural selection.81 In this case, more sensitive and

younger individuals may have different telomere lengths and maintenance dynamics, and these individuals

may not be fully captured owing to premature death compared with other individuals in the same popula-

tion, which underlines the difficulty of having relevant patterns in the comparison between species. There-

fore, we measured the telomere length together with the evaluation of the telomere maintenance ability of

species, such as telomerase activity or ALT to link telomere maintenance and longevities. Although telo-

merase is commonly known to elongate telomeres, A. sinensis obviously has a different TMM as the

TERT expression was below detection levels in the adult stage and no significant telomere shortening

was observed. Similar results were also reported in Mus musculus and humans; whereas the telomere
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(A) Phylogenetic relationships for selective pressure analyses in telomere maintenance genes among 38 species, including reptiles, birds, amphibians, fish

and cyclostomes (clade one); and mammals (clade two). Maximum lifespans of each species are shown in the bar chart.

(B) Distributions of 106 telomere maintenance genes under selection by the median values of the maximum lifespan distribution across the species, in which

the external branch exhibited significant signatures of positive selection. Boxes order follows median values of the maximum lifespan from low to high. (C)

The top 10 percent of median values of maximum lifespan distribution are highlighted in red, showing identified genes and related species.
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shortening rate was 100-fold higher in M. musculus than in humans,20,22 no expression of TERT could be

detected in the adult stage of the latter.23,28,29 Telomerase is active during early human development,

but transcriptional silencing occurs between 12 and 18 weeks of gestation.30,31 ATM could play an essential

role in long-living species and was found to experience positive selection in A. sinensis and many long-

living taxa (longevity > 61 years). DSB repair pathways may be strongly related to telomere maintenance

without telomerase.55,82 For example, the TMM of 85–90% of human cancer cells is via telomerase,83–85

but 10–15% of cancers show no telomerase activities, and their TMM via ALT74,75,86 and is achieved by

DSB repair via homology recombination.71,84,87 The chief mobilizers that activate DSB repair signaling,

the ATM kinase, and the assembled double-strand repair proteins, MRE11 and RAD5055,56 are potentially

involved in DSB repair via homology recombination. The same ATMD1815N mutation occurred in extremely

long lifespan groups of marine mammals, giant tortoises and Alligator spp. In this case, A. sinensis and

other long-living species with a similar longevity phenotype resulted from the same genetic change

through parallel evolution.35,36 Independently evolved long-lived species have similar traits and genetic

adaptations of anti-aging mechanisms, such as TP53 in anti-cancer mechanisms, IGF1 in metabolism,

and DSB repair mechanisms.9,32,88,89 We further suggested that telomere maintenance via the DSB repair

mechanism in long-lived vertebrates was strongly related to their extraordinary telomere maintenance.

ATM as a pleiotropy gene acts at the center of multiple downstream pathways and modulates many ATM-

dependent pathways covering DSB repair, checkpoint arrest, cellular senescence, and apoptosis.68,90,91

Genetic adaptations in pleiotropy are expected to be strongly stabilizing because it influences many sepa-

rate fitness optima.92,93 In contrast to ATM expression in the other four representative species, the ATM of

A. sinensis expressed in a down-regulated level together with critical mutations in conservative sequence

regions, which reflects their fitness optimum shift, and could dominate the benefits throughout themultiple

downstream pathways, such as anti-aging mechanisms and stabilizing their telomere lengths. In ATM
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downstream, the up-regulated BLM suggested that the enhancement of homology recombination plays an

essential role in TMMs of A. sinensis.

How does ATM kinase affect senescence? Researchers have shown that telomere shortening caused by

telomere protective structure or capping factor loss is similar to the one-ended DSBs mechanism and

causes DNA damage response (DDR).94,95 ATM is a DDR signal kinase that activates DSBs repair signaling

and assembles double-strand repair proteins.55,56 However, DSB repair is very less efficient when DDR oc-

curs in telomeres and triggers persistent DDR.96–98 Prolonged DDRs in telomeres are usually correlated

with cell senescence.99,100 In contrast, inhibiting DDR signal kinases (ATM, ATR, CHK1, and CHK2) causes

senescent cells to re-enter the cell cycle.94,100,101 In contrast to other representative species, the down-

regulated expression of ATM kinase in A. sinensis may strongly suggest that their anti-aging mechanism

was related to inhibition of DDR signal kinases to prevent accumulated cell cycle arrest.64,65 Extremely

long-living reptiles, such asAlligator spp., V. komodoensis and giant tortoises may affect the protein kinase

activities by replacing serine or threonine, such as in S1816G and T3031I of ATM or S904G and S3229A of

PRKDC, which potentially reduce phosphorylation levels of these DDR signal kinases.

On the other hand, why does A. sinensis not activate TERT to counteract telomere attrition? DNA repair

mechanisms are highly adapted in long-living species, which may be because of their extraordinary telo-

mere maintenance. These species have improved mechanisms to avoid the telomere shortening effects

of environmental factors, such as ultraviolet irradiation and oxidative stress, whereas these mechanisms

are not present in short-living species.102–105 For instance, long-living primates can repair UV-induced dam-

age, whereas long-living rodent species show higher DNA repair rates than short-living rodents.106 Thus,

short-lived species have less efficient DNA repair mechanisms; therefore, telomerase activities may

become necessary to slow down their fast telomeres shortening. On the other hand, long-living species

show anti-cancer adaptations.107–109 High telomerase activities might not be an advantageous TMM for

long-living species and can provide extra opportunities for tumor cell activation.85,110,111 Downregulated

TERT expression is typically observed in long-living birds to protect against tumor development.112 In
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most common human cancers, somatic mutations in the proximal promoter region of human TERT are

thought to be noncoding.113–117 Therefore, dominant TERT inhibition could be an anti-tumor adaptation

in the TMM evolution of extreme long-living species.

Limitations of the study

As cross-sectional studies only reveal individual differences, a telomere shortening trend was not observed

in long-living species possibly because of the limited scale of ages of individual samples. The maximum

lifespans of species are much higher than their average lifespans, but the scarcity of older individuals

limited the sample size in this study.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data (RNA-seq) of Alligator sinensis 1 This paper. Sequences data accession

No.(SRA) SRX18535475;

Raw data (RNA-seq) of Alligator sinensis 2 This paper. Sequences data accession No.(SRA)

SRX18523405;

Raw data (RNA-seq) of Alligator sinensis 3 This paper. Sequences data accession No.(SRA)

SRX18523014;

Raw data (RNA-seq) of Alligator sinensis 4 This paper. Sequences data accession No.(SRA)

SRX18521814;

Raw data (RNA-seq) of Alligator sinensis 5 This paper. Sequences data accession No.(SRA)

SRX18521813

Raw data (RNA-seq) of Nipponia nippon 1 This paper. Sequences data accession No.(SRA)

SRX18547918;

Raw data (RNA-seq) of Nipponia nippon 2 This paper. Sequences data accession No.(SRA)

SRX18545429;

Raw data (RNA-seq) of Nipponia nippon 3 This paper. Sequences data accession No.(SRA)

SRX18544770;

Raw data (RNA-seq) of Nipponia nippon 4 This paper. Sequences data accession No.(SRA)

SRX18537049;

Raw data (RNA-seq) of Nipponia nippon 5 This paper. Sequences data accession No.(SRA)

SRX18535756.

Raw data (RNA-seq) of Columba livia 1 This paper. Sequences data accession No.(SRA)

SRX18637365;

Raw data (RNA-seq) of Columba livia 2 This paper. Sequences data accession No.(SRA)

SRX18634217;

Raw data (RNA-seq) of Columba livia 3 This paper. Sequences data accession No.(SRA)

SRX18633397;

Raw data (RNA-seq) of Columba livia 4 This paper. Sequences data accession No.(SRA)

SRX18632104

Raw data (RNA-seq) of Pelodiscus sinensis 1 This paper. Sequences data accession No.(SRA)

SRX18631083

Raw data (RNA-seq) of Pelodiscus sinensis 2 This paper. Sequences data accession No.(SRA)

SRX18549066

Raw data (RNA-seq) of Pelodiscus sinensis 3 This paper. Sequences data accession No.(SRA)

SRX18549036

Raw data (RNA-seq) of Xenopus laevis 1 This paper. Sequences data accession No.(SRA)

SRX18637368

Raw data (RNA-seq) of Xenopus laevis 2 This paper. Sequences data accession No.(SRA)

SRX18637570

Raw data (RNA-seq) of Xenopus laevis 3 This paper. Sequences data accession No.(SRA)

SRX18661685

Raw data (RNA-seq) of Xenopus laevis 4 This paper. Sequences data accession No.(SRA)

SRX18641864
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Yu-Zun Guo, email: yuzun78@163.com.

Materials availability

This study did not generate new unique reagents.

Data and code availability

RNA-seq data have been deposited at Sequence Read Archive (SRA) data in NCBI and are publicly avail-

able as of the date of publication. Accession numbers are listed in the key resources table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The total blood cells of 221 individuals were sampled for rTL analyses, and that of another 221 individuals

were sampled for TERT expression analyses. These individuals were from A. sinensis and four representa-

tive species (N. nippon, C. livia, P. sinensis and X. laevis). Blood samples from A. sinensis were obtained

from the Changxing Yinjiabian Chinese Alligator Nature Reserve, China. Individuals from 0–7 years of

age were reared in separate ponds. At seven years of age, individuals implanted with microchips were

released into the main ponds; therewith, the accurate age of elderly individuals was known. For

N. nippon, blood samples were collected from the Xiaozhu Lake Crested Ibis Breeding Base, Deqing

County, China. Microchips were attached to individuals at a known age before release into the wild; there-

fore, their accurate ages were known after the recapture of elderly individuals. C. livia, P. sinensis and

X. laevis were provided by animal farms (Tables S8 and S9) with legal breeding licenses, as permitted by

the Animal Ethics Committee of Zhejiang University, China. The keepers identified the individuals’ ages.

All blood samples were collected after obtaining ethical approval and permission from the Animal Ethics

Committee of Zhejiang University, China (ZJU20200142).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Primers for GC-clamp GAPDH in for MMQPCR, see Table S10 This paper N/A

Primers for TERT and GADPH

primers for qRT-PCR see Table S12

This paper N/A

Software and algorithms

Origin version 2018 Moberly et al.135 N/A

Prank Löytynoja et al.128 N/A

Snapgene version 6.1.2 https://www.snapgene.com/

RAxML version 8 Stamatakis et al.130 N/A

Gblocks version 0.91b Castresana et al.129 N/A

Sorting Intolerant from Tolerant (SIFT) Ng and Henikoff61; Sim et al.62 N/A

Reconstruct Ancestral State in Phylogenies (RASP) Yu et al.133 N/A

Other

TRIzol LS reagent extraction kit Invitrogen, Carlsbad, CA, USA 2107B

NEBNext Ultra Directional RNA

Library Prep Kit for Illumina

New England Biolabs,

Ipswich, MA, USA

E7420

TaKaRa PrimeScript RT Reagent Kit Takara,shiga,Japan RR037A

TB Green� Premix Takara,shiga,Japan RR820B (A 3 2)

CFX Manager Real-time PCR System Bio-Rad Laboratories,

Hercules, CA, USA

1855201

NanoDrop 8000 Spectrophotometer Thermo Fisher Scientific ND-8000-GL
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All blood samples were stored immediately in liquid nitrogen for further DNA and RNA extractions. Blood

cells were collected for transcriptome analyses from the individuals around their sexual maturity. A. sinensis

samples were collected from seven-year-old individuals (five individuals: onemale and four females, female

sexual maturity: 2191 days),N. nippon from three-year-old individuals (five individuals: three males and two

females, sexual maturity: 2–4 years), C. livia from five-month-old individuals (four individuals: two females

and two males, sexual maturity: 140 days), P. sinensis from four-year-old individuals (three individuals: one

male and two females, sexual maturity: 4 years), and X. laevis from six-month-old individuals (four individ-

uals: one male and three females, female sexual maturity: 183 days). All blood samples were collected after

obtaining ethical approval and permission from the Animal Ethics Committee of Zhejiang University, China

(ZJU20200142).

METHOD DETAILS

DNA extraction, MMQPCR, and relative telomere length (rTL) analysis

Genomic DNA of whole blood cells was extracted using a GENEray DNA extraction Kit (Shanghai, China),

following the manufactures instructions. Telomeres from blood cells were evaluated to account for differ-

ences in telomere lengths in multiple cell types, as Demanelis et al.12 revealed that telomeres from blood

cells can effectively reflect the individual telomere status. Sample quality was assessed by electrophoresis

on 1% agarose gels. DNA concentrations were measured using a NanoDrop 8000 Spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, USA) and standardized to 20 ng/mL for use in the monochrome

multiplex quantitative PCR (MMQPCR).

The rTL wasmeasured using theMMQPCRmethod as described by Cawthon,118 and referring toMorinha’s

guidelines for the telomere qPCR method.119 The ratio of the telomeric sequence to a single-copy gene is

the T/S value, which was assayed in the same plate to reduce measurement error during qPCR analysis.

DNA samples were assayed using TB Green Premix (TaKaRa, Shiga, Japan) and telomere primers telg

(50-ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT-30) and telc (50-TGTTAGGTATCCCTAT

CCCTATCCCTATCCCTATCCCTAACA-30). The single-copy gene glyceraldehyde 3-phosphate dehydro-

genase (GAPDH) primers with GC-clamp (Table S10) were used as control. All primers were diluted to

900 nM. Melt-curve analysis showed no primer-dimer detected. MMQPCR was performed in an initial re-

action volume of 20 mL, containing 10 mL of TB Green Premix (TaKaRa), 6 mL nuclease-free water, 1 mM for-

ward and reverse primers, and 2 mL DNA (the negative controls with 2 mL ribonuclease-free water).

MMQPCR was performed on a CFX Manager Real-time PCR System (Bio-Rad Laboratories, Hercules,

CA, USA) with the following protocol: 95 ºC for 15 min; 2 cycles at 94 ºC for 15 s and 49 ºC for 15 s; and

32 cycles at 94 ºC for 15 s, 62 ºC for 10 s, 74 ºC for 15 s (for telomere amplification), or at 84 ºC for 10 s

and 88 ºC for 15 s (for GC-clamped single-copy gene amplification). The reference samples’ serial dilutions

(5 3 dilutions, from 100 to 0.032 ng/mL) were used to generate standard curves to measure amplification

efficiency. A sample containing 20 ng/mL DNA was used for calibration. Each experimental sample was as-

sayed three times; therefore, the average of three T/S values became the rTL of the sample (coefficient of

variation < 0.05; otherwise, the data were excluded from analyses). CFX Manager (Bio-Rad 3.1 Standard

Edition Optical System Software) was used to export raw data, and LinRegPCR120 was used to calculate

amplification efficiencies. The reaction efficiencies of each species are listed in Table S11. Values for rTL

were calculated as described by Pfaffl.121

RNA extraction, cDNA library construction, and sequencing

Total RNA extraction was performed using a TRIzol LS reagent extraction kit (Invitrogen, Carlsbad, CA,

USA). Each blood sample (30 mL) was mixed with 1 mL TRIzol LS reagent and subjected to a 30 min vortex,

and following procedures were performed accordingly to the manufacturer’s instructions. RNA quality was

assessed by electrophoresis on 1% agarose gels. RNA concentrations were quantified using a NanoDrop

8000 Spectrophotometer. RNA from A. sinensis samples were collected from seven-year-old individuals

(five individuals, female sexual maturity: 2191 days),N. nippon from three-year-old individuals (five individ-

uals, sexual maturity: 2–4 years), C. livia from five-month-old individuals (four individuals, sexual maturity:

140 days), P. sinensis from four-year-old individuals (three individuals, sexual maturity: 4 years), and X. laevis

from six-months-old individuals (four individuals, female sexual maturity: 183 days) that were selected for

further complementary DNA (cDNA) library construction and sequencing. Briefly, 3 mg RNA of each sample

was used for strand-specific cDNA library construction using a NEBNext Ultra Directional RNA Library Prep

Kit for Illumina (New England Biolabs, Ipswich, MA, USA), according to the manufacturer’s protocol. Library

quality was checked using a Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA).
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Clustered and index-coded samples were generated using a TruSeq PE Cluster Kit v3-cBot-HS on a cBot

Cluster Generation System (Illumina, San Diego, CA, USA). Library sequencing was performed on an Illu-

mina Novaseq platform, and 150 bp paired-end reads were generated. Raw reads in fastq format were

pre-processed using in-house Perl scripts available with Biomarker Technologies Co. Ltd. (Beijing, China).

Adapters, poly-N sequences, and low-quality reads were removed from analysis before calculating the

Q20, Q30, and GC contents of the remaining reads for subsequent analyses.

RNA-seq analysis

RNA-sequencing (RNA-seq) pre-processed reads were mapped to the reference genomes of A. sinensis

(GCA_000455745.1), N. nippon (GCA_000708225.1), C. livia (GCA_000337935.2), P. sinensis (GCA_000

230535.1), and X. laevis (GCA_001663975.1) in GenBank assemblies using Hisat2 (v2.0.5).122 Transcripts

were assembled and quantified using StringTie (v1.3.3b). The numbers of reads mapped to each gene

were counted using featureCounts (v1.5.0-p3). Fragments per kilobase million (FPKM) and the log10 trans-

formation of the FPKM values for telomere maintenance genes were calculated according to the genome

annotations.

Telomerase reverse transcriptase (TERT) gene expression

Total RNA extracted for RNA-seq was also used for gene expression analysis. One microliter of RNA in a

final volume of 20 mL was reverse-transcribed (RT) using a TaKaRa PrimeScript RT Reagent Kit. RT-qPCR

was performed in 10 mL containing 5mLTB Green Premix, 0.5 mL forward and reverse primers, 1 mL cDNA

(NTCs with 1 mL ribonuclease-free water), and 3 mL ribonuclease-free water. Cycling was controlled using

a CFX Manager PCR System as follows: 95 ºC for 3 min, followed by 40 cycles of 94 ºC for 10 s, the

primer-specific annealing temperature for 30 s (Table S12), and fluorescence acquisition. Primers were de-

signed using the Premier Primer 5.0 software. All primers showed amplification efficiencies of 0.95–1.05 (R2

> 0.98), in which the primer’s efficiency was highly dependent on their specificities. The 2�DDCt method was

used to quantify TERT expression.123 Single reference genes (group standard deviation of Ct< 0.2) were

selected for each species.124

Phylogenetic, evolutionary, and structural analyses of telomere maintenance genes

In total, 38 vertebrates were used in the selective pressure analyses, showing the maximum lifespan

gradient of 1–10 years in five species, 11–20 years in four species, 21–30 years in six species, five species

in 31–40 years, four species in 41–50 years, six species in 51–70 years, and seven species more than 70

years), which covered 16 orders of mammal and 14 orders of non-mammal vertebrates (Table S2). The ratios

ensure less than 1.5:1 between mammals and non-mammal species in each lifespan interval during species

selection. Telomeremaintenance genes were functionally analyzed using the Bioconductor package125 in R

to determine their gene ontology (GO) enrichment. In total, 225 genes were chosen for the positive selec-

tion test (Table S1), as described in Foley study,126 which were combined with 45 target genes fromMorgen

et al. study.127

OrthoFinder (v2.4.0) was used for ortholog searching of all 225 genes frommammals and non-mammal ver-

tebrates. After 1:1 orthologs were identified, Prank128 was used for protein-coding sequence search and

single-copy gene family alignments, and large insertions/deletions were removed from alignments by

Gblocks.129 In total, 115 orthologs were identified for mammals, and 87 core orthologs were found in

non-mammal species. Phylogenetic trees of mammals and non-mammal species were constructed using

the Maximum Likelihood method with RAxML.130 Positive selection analysis was carried out using the Co-

deml software in PAML package131 implemented in the python pipeline "OH-SNAP" (Optimized High-

throughput Snakemake Automation of PAML; available at https://github.com/batlabucd/OHSNAP), which

required inputs of phylogenetic trees, alignments, leading branches labeled in taxa, and set-up models.

Leading branches were set for all mammal and non-mammal species in parallel. OH-SNAP_CHECK was

performed for system checking before OH_SNAP_RUN_CLUSTER analysis for positive selection in the

branch-site model (model A versus model null).132 A likelihood ratio test and c2 with one degree of

freedom were used to detect significance in the two tests q-values were corrected by the FDR

method (q < 0.05).

Sequence alignment analyses were performed by using the Snapgene software to identify mutations and

important residues of ATM, APEX1, CBX3, CCT2, CDK2, MYC, POLD1, PRKDC, PRKCQ, STAG3 and

TINKS1BP1 of species amongA. sinensis, A. mississippiensis, V. komodoensis, C. picta bellii, C. abingdonii,
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T. carolina triunguis, P. sinensis, P. muralis, N. scutatus, N. nippon, P. colchicus, C. livia, C. anna, X. laevis, H.

sapiens, G. gorilla, C. didactylys, M. musculus, H. glaber, M. myotis, M. brandtii, P. tigris, O. orca, T. trun-

cates, B. musculus, L. africana, E. caballus, D. rerio, C. auratus, A. anguilla, and A. ruthenus in Table S13.

Sorting Intolerant from Tolerant (SIFT)61,62 was used to test affected protein function in substitutions of

amino acid in the proteins by UniRef90. Reconstruct Ancestral State in Phylogenies (RASP)133 was used

to reconstruct phylogenetic relationship in amino acid ATMD1815N mutations among Alligator spp.

and the representative species above. The homology models of Alligator spp. were built using the most

similar template for the NMR structure of ATM (PDB code: 5NP0, resolution: 5.70 Å) proteins and the

SWISS-MODEL software.134 Graphical analysis in the heatmap were generated with cluster method in

‘ward’ and cluster distance in ‘Euclidean’ by Origin 2018.135

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis were performed by Origin 2018.135

ADDITIONAL RESOURCES

A total of 38 vertebrates’ reference genomes used for comparative genomics analyses were listed in

Table S2, and that of protein coding genes for sequence alignment analyses were listed in Table S13.
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