
RESEARCH ARTICLE

Modernising fish and shark growth curves

with Bayesian length-at-age models

Jonathan J. SmartID
1,2*, Gretchen L. Grammer1,2

1 SARDI Aquatic Sciences, West Beach, SA, Australia, 2 School of Biological Sciences, The University of

Adelaide, Adelaide, South Australia, Australia

* jonathan.smart@sa.gov.au

Abstract

Growth modelling is a fundamental component of fisheries assessments but is often hin-

dered by poor quality data from biased sampling. Several methods have attempted to

account for sample bias in growth analyses. However, in many cases this bias is not over-

come, especially when large individuals are under-sampled. In growth models, two key

parameters have a direct biological interpretation: L0, which should correspond to length-at-

birth and L1, which should approximate the average length of full-grown individuals. Here,

we present an approach of fitting Bayesian growth models using Markov Chain Monte Carlo

(MCMC), with informative priors on these parameters to improve the biological plausibility of

growth estimates. A generalised framework is provided in an R package ‘BayesGrowth’,

which removes the hurdle of programming an MCMC model for new users. Four case stud-

ies representing different sampling scenarios as well as three simulations with different

selectivity functions were used to compare this Bayesian framework to standard frequentist

growth models. The Bayesian models either outperformed or matched the results of fre-

quentist growth models in all examples, demonstrating the broad benefits offered by this

approach. This study highlights the impact that Bayesian models could provide in age and

growth studies if applied more routinely rather than being limited to only complex or sophisti-

cated applications.

Introduction

Understanding the growth of aquatic taxa such as fish, sharks, molluscs and crustaceans is

imperative for effective fisheries assessments. Specifically, information on growth is used to

assess species productivity and define population structure within integrated stock assessment

models [1]. Growth information is typically ascertained through length-at-age analysis using

models such as a von Bertalanffy growth model [VBGM; 2, 3]. However, biased sampling often

hinders growth estimation when not all length or age classes can be effectively sampled [4]. In

this situation, additional methods are often applied to account for imperfect data such as con-

straining model fits or interpolating data through methods such as back-calculation [5, 6].

While these can be effective, in many instances biologically implausible growth estimates can

still occur to varying degrees [4].
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Length-at-age models are most commonly fit using frequentist approaches such as non-lin-

ear estimation [1, 7]. When appropriate length-at-age samples are available, these methods

perform adequately and produce the necessary information to inform further population anal-

yses. However, there are often instances where unrepresentative samples compromise growth

estimates. For example, large species of sharks (>3 m total length) often have biased samples

as fishing gear is size selective and often cannot catch the largest or smallest size classes [8, 9].

These individuals are the most influential to growth estimation as they essentially anchor the

ends of the curve at minimum and maximum sizes [1]. Age zero individuals help define the

length-at-birth parameter (L0) while the largest individuals strongly influence estimates of

asymptotic length (L1). When omitted, resulting growth curves may adequately describe the

length-at-age over the length and age ranges available but may provide parameter estimates

that do not appropriately describe the growth of the species [9–11].

Bayesian approaches are an effective tool when frequentist approaches cannot determine

appropriate estimates from the data alone. Bayesian methods incorporate prior knowledge

into an analysis and produce a combined output using priors along with the data available [12,

13]. The combination of priors and model likelihoods produces posterior distributions for

each parameter, which represent the inclusion of additional information in the model. When

estimating species growth, prior information can be easily incorporated into length-at-age

modelling by creating informative priors for L0 and L1 based on known length-at-birth (often

close to zero for bony fishes) and the species maximum length, respectively. The inclusion of

informative priors in Markov Chain Monte Carlo (MCMC) analyses and have proved effective

in growth analyses where they have been applied [14–18]. However, of Bayesian approaches

for growth estimation are most commonly applied to more complex analyses or datasets such

as hierarchical modelling [19, 20], tag recapture data [21] or length-frequency data [22]. It is

reasonably rare for Bayesian approaches to be applied to standard length-at-age analyses,

despite their successful applications and suitability [14, 23].

The broader use of Bayesian methods in length-at-age analyses by incorporating priors on

maximum and minimum lengths could prove to be a valuable advancement in growth model-

ling. Length-at-birth and maximum length strongly relate to two of the three estimated param-

eters in growth analyses and are usually used as a cursory check for model appropriateness

following an analysis. Their formal inclusion in an analysis is therefore very sensible, hence

why it is surprising that the use of Bayesian methods have not flourished. This has likely not

occurred for two reasons: 1) there is lack of awareness of how Bayesian models could benefit

length-at-age analyses by overcoming basic and common challenges with sampling; and 2)

Bayesian analyses are more complicated than frequentist approaches, requiring greater knowl-

edge of statistical distributions, modelling processes, and specialised software [12] which

means they are only applied when sophisticated methods are essential. These issues mean that

Bayesian methods are often not considered when in fact they could provide an elegant solution

to fully considering a species’ biology in any growth analysis.

Here, we demonstrate the effectiveness of Bayesian methods for addressing sampling issues

in length-at-age analyses and their benefits. In doing so, we fully document a generalised

framework that is an extension of the multi-model paradigm; where multiple models are

applied and the best fitting model is selected [24–26]. This framework can be applied to any

length-at-age analysis that would normally be undertaken in a frequentist approach. We con-

tend that this approach could be used more regularly to estimate growth and aim to facilitate

this by providing an R package ‘BayesGrowth’ [27] that makes this analysis more accessible to

a general audience. This package is available at https://github.com/jonathansmart/

BayesGrowth.
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Materials and methods

Description of generalised Bayesian growth modelling framework

Multi-model paradigm for growth modelling. A contemporary modelling approach

rather than the a priori use of the VBGM is to fit multiple growth models to the data and com-

pare their fits using Akaike’s Information Criterion (AIC) [25, 28]. Multi-model approaches

are preferred as they reduce the chance of fitting a model that is not well suited to the data.

Three growth models are commonly applied to aquatic taxa using a multi-model approach

[26]:the von Bertalanffy growth model,

La ¼ L1 � ðL1 � L0Þe
� ka;

the Gompertz growth model,

La ¼ L0e
ðlogðL1=L0Þð1� e� kaÞÞ;

and the Logistic growth model,

La ¼ ðL1L0e
kaÞ=ðL1 þ L0ðe

ka � 1ÞÞ:

where La is the length-at-age a, L0 is the length-at-birth, k is the growth completion parameter

and L1 is the asymptotic length. Note that the k parameter is unique to each model and cannot

be compared between them [26]. However, L0 and L1 have identical interpretations between

models, and in a multi-model paradigm, it is sensible to use L0 for the von Bertalanffy model

rather than t0 (as is common for bony fish species) to directly compare candidate model

parameters.

A multi-model approach culminates in model selection via AIC which is calculated as

AIC = nlog(σ2) + 2k, k is the total number of parameters +1 for variance (σ2) and n is the sam-

ple size. The model with the lowest AIC value (AICmin) has the best fit to the data and is the

most appropriate of the candidate models. Remaining models can be ranked using the AIC dif-

ference (ΔAIC) which can be calculated for each model (i = 1–3) as ΔAIC = AICi−AICmin.

Models with ΔAIC of 0–2 have the highest support while models with ΔAIC of 2–10 have con-

siderably less support and models with ΔAIC of>10 have little or no support [29]. AIC differ-

ences can be used to calculate AIC weights (AICw) which represent the probability of

choosing the correct model from the candidates:

AICwi ¼
exp � Di

2

� �

P3

j¼1
exp � Di

2

� �

In this study, we extend this multi-model paradigm beyond its this application into a gener-

alised Bayesian framework that can be applied equivalently to this frequentist approach. This

framework includes the same models, produces equivalent and interchangeable outputs, and

culminates in model selection. Additionally, this generalised Bayesian framework explicitly

includes valuable biological information as Bayesian priors.

Generalised framework for MCMC growth estimation. Extending the multi-model par-

adigm into a Bayesian approach requires the introduction prior information for the growth

parameters (k, L0 and L1). Each parameter requires a prior, which can take one of several dif-

ferent distributions. Length-at-age models are most often fit using multi-variate normal distri-

butions. However, each prior does not need to have the same distribution as its posterior

distribution. In this study and the ‘BayesGrowth’ R package, L0 and L1 have normally distrib-

uted priors determined from reported length-at-births and maximum lengths, respectively.

The remaining growth parameter (k) has a uniform distribution bounded from zero to a
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maximum probable value. The use of a uniform distribution produces a “non-informative

prior” where no additional information is provided for this parameter. Therefore, in this

model, prior knowledge of L0 and L1 is being included while no prior knowledge is provided

for k. This allows the model to fit closely to the species length-at-birth and maximum length

while permitting k to fluctuate and produce the necessary curvature. A fourth model parame-

ter, the residual standard error (σ) also requires a prior, which is also uniform. All model priors

are bounded at zero as they must remain positive. However, this means that the prior for L0
will become a half-normal distribution when this parameter approaches zero (as will likely

occur for teleost fishes). However, for species with lengths-at-birth that are far greater than

zero, this prior distribution will automatically become normally distributed. Note that as L0
has a direct biological meaning, it is easier to determine a prior for than t0.

This Bayesian structure is well suited to a multi-model paradigm for several reasons. Firstly,

L0, σ and L1 have consistent interpretations between candidate growth models and therefore

the same priors can be used across models. Secondly, as the growth completion parameter (k)

is different for each candidate model, the use of an uninformative prior again means that all

three candidate models can be specified with identical priors. However, it should be noted that

the upper bound for the priors of k and σ used in this framework should be set at values well

above the expected estimates of these parameters in each candidate model. For example, an

expected estimate of k for the VBGF may be 0.3 yr-1 and therefore a prior of U(0, 0.5) would

seem sensible. However, this would not be the case if the expected estimate of k for the logistic

mode was 0.7 yr-1 as the prior distribution does not extend to this value. In this example setting

a prior of U(0, 0.5) would constrain the fit of the logistic model. Therefore, if consistent priors

are to be used across candidate models in this framework then the upper bound of any uni-

form distribution must suit all models. Setting a cautiously high upper bound is sensible as this

won’t influence the model and will have little effect on how quickly a model converges. This

consistency in candidate model structure means that model selection is not reliant on the indi-

vidual model specifications but rather on which model shape best suits the application. This

significantly simplifies the use of multi-model approach in Bayesian growth model fitting.

The main outputs of Bayesian models are the posterior distributions of each model parame-

ter. The posterior distribution is determined from a prior distribution and a likelihood distri-

bution using Bayes’ theorem:

PrðyjYÞ ¼
PrðYjyÞPrðyÞ

R
PrðYjyÞPrðyÞdðyÞ

where Pr is the probability, Y is the length-at-age data and θ are the parameters (k, σ, L0 and

L1). The posterior distribution is Pr(θ|Y), the prior distribution is Pr(θ), the likelihood distri-

bution is Pr(Y|θ) and
R

Pr(Y|θ)Pr(θ)d(θ) is a normalising constant that which ensures that the

posterior distribution integrates to one.

Markov Chain Monte Carlo (MCMC) was used to apply Bayes theorem to growth estima-

tion. MCMC is a process for sampling from a posterior distribution via Markov chains to

determine parameter uncertainty from the posterior distribution. Each simulation is a random

draw where each is probabilistically related to the previous iteration. The MCMC produces a

vector of posterior parameter estimates, which can be summarised using a central tendency

(such as the mean, median or mode), and a variance (standard deviation or percentiles). Sum-

marising a normally distributed posterior distribution by using a mean and standard deviation

is equivalent to determining a frequentist parameter estimate and standard error.

For a growth curve fit using MCMC, the posterior distributions are influenced by both the

length-at-age data (likelihood distributions) and the known species length-at-birth and
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maximum length (prior distributions). A scenario where the likelihood distributions have nar-

row variance means that the growth model fits the data well. Therefore, posterior distributions

will be strongly weighted towards it. However, a situation where the likelihood distributions

have wide variance (due to poor fit or large residuals), posterior distributions will be more

strongly influenced by the priors. In this instance, inclusion of prior knowledge of the species

maximum length or length-at-birth will adjust the model towards these known values. The

inclusion of additional information through priors also produces more precise length-at-age

predictions. These are valuable in future analyses that rely on these estimates to convert

between ages and lengths. Two circumstances are particularly well suited to Bayesian methods:

when data are sparse or when data are unreliable and incomplete [12]. Length-at-age samples

regularly fall into these two categories [5], hence the potential improvement that can be offered

by MCMC methods.

Model selection for Bayesian models can be accomplished through several different meth-

ods. However, leave-one-out-cross-validation (LOOCV) is the most contemporary and robust

method presently available [30]. LOOCV estimates pointwise out-of-sample prediction accu-

racy using the log-likelihood evaluated at the posterior parameter distributions. Using

LOOCV, leave-one-out-information-criterion (LOOIC) can be calculated which has the same

application as AIC in a frequentist setting. LOOIC weights (LOOICw) for each candidate

model can also be calculated and have identical interpretation as AICw for model selection.

BayesGrowth R package. The implementation of MCMC growth models is more compu-

tationally demanding and complicated than frequentist growth models. Several computer pro-

grams exist that perform the MCMC computations, one of which is ‘Stan’ [31]. Stan allows

users to perform MCMC using both Hamiltonian Monte Carlo (HMC) and No U-Turn Sam-

pling (NUTS), both of which are computationally efficient. Stan also calculates LOOIC which

is also computationally expensive. Stan can be used in the R programming environment [32]

to build MCMC models via the ‘rstan’ R package [33] and perform LOOIC using the ‘loo’ R

package [34].

The generalised growth modelling framework presented here has been encapsulated in the

BayesGrowth R package [27]. This package provides a series of wrapper functions around

rstan models, allowing the users to perform an MCMC growth analysis (using NUTS) much

more simply. Three growth models are included in ‘BayesGrowth’: the VBGM, Gompertz and

Logistic growth models. These are fit with a normal residual error structure (σ) and their

parameters are directly comparable to a standard growth model fit using the ‘nls’ function in

‘R’ [32]. The BayesGrowth package will fit an MCMC model via rstan while providing neces-

sary control to the user. A rstan model object is returned from the estimation function, which

allows the user to take advantage of all the auxiliary functions such as model summary statistics

and diagnostic plots that exist in the supporting R packages. The BayesGrowth package also

contains functions that provide credibility intervals around the growth curve (these are analo-

gous to bootstrapped confidence intervals), as well as functions that facilitate model selection

using LOOIC as part of a multi-model paradigm. The only additional step to fit an MCMC

model using BayesGrowth is to provide priors based on known length-at-birth and maximum

length.

Comparison of Bayesian and frequentist growth model applications

To demonstrate the improvements offered by Bayesian over frequentist growth models, two

analyses are presented. The first compares the accuracy and precision of both approaches

when using simulated datasets with various sampling complications caused by gear selectivity.

The second demonstrates the application of both approaches to four case studies, each of
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which represents a different species life history or a common sampling problem in growth

studies.

The generalised Bayesian framework described previously was used in every application

using the Bayesgrowth package. In each application four MCMC chains with 10,000 simula-

tions were used to determine parameter posterior distributions. A burn in period of 5000 sim-

ulations was used, and initially, no thinning was performed. All models were checked for

convergence using the Gelman-Rubin test, and diagnostic plots produced using the ‘Bayesplot’

R package [35] were examined to check that chains had mixed, and that autocorrelation did

not occur. Autocorrelation can be present as each Markov chain simulation is reliant on the

previous one and are therefore not independent. Autocorrelation can be accounted for by

‘thinning’, where every nth simulation is kept and the others discarded, thus reducing autocor-

relation. Simple models or univariate models often do not require this and in most situations,

thinning is not advised as it throws away data and increases runtimes [36]. However, in

length-at-age modelling, some autocorrelation can occur, and therefore thinning should be

considered when present. Autocorrelation was checked using diagnostic plots from the ‘Bayes-

plot’ R package [35] and if present, thinning was implemented, and the number of iterations

accordingly increased until no autocorrelation occurred. All frequentist models were fit using

the AquaticLifeHistory R package [37].

Case studies. To demonstrate the real-world application of Bayesian growth analysis, four

examples are provided for species with different life histories or sampling issues. Both a fre-

quentist approach and a Bayesian model are fit to these data. For blue mackerel (Scomber aus-
tralasicus), an additional model where L0 is fixed at zero is also included. Three models were

fit for each species: VBGM, Gompertz and Logistic models with model selection performed

using LOOIC. The priors for each species are provided in Table 1. In each case study, the stan-

dard errors of L1 and L0 priors were initially set as 10% of the maximum length and length-at-

birth, respectively. These were used in an initial fit and increased or reduced as needed if the

initial bias in the growth model estimates remained unresolved. The MCMC diagnostic plots

for each case study and the code used to produce them are presented in S1 Appendix.

Reef ocean perch (Helicolenus percoides) from continental shelf-waters off the coast of

South Australia were used to demonstrate the MCMC model versus frequentist growth models

on a dataset lacking older fish (n = 153). These fish live their entire lives on the seafloor at

depths up to 350 m, are long-lived (>40 years) and can attain lengths >40 cm [38, 39]. Ocean

perch are live bearing (lecithotrophic)—most bony fish spawn eggs—and produce a gelatinous

mass containing fully-developed larvae [40].

Silvertip sharks (Carcharhinus albimarginatus) from Papua New Guinea were used in a

length-at-age analysis by Smart et al [10] from a limited sample. Silvertip sharks are born at

63–81 cm total length (TL) and can reach ~300 cm TL [41]. However, the sample in Smart

et al [10] contained a length range of 95–250 cm TL from 48 sharks. Consequently, the growth

estimates for these data had overestimated values of L0 and L1. Back-calculation [42] was

applied to increase the interpolated sample size and better model L0. However, L1 was still

overestimated with back-calculated data [10]. Here the observed data was used as case study to

demonstrate the improvements offered by Bayesian models for both the L0 and L1
parameters.

Silky sharks (Carcharhinus falciformis) from Papua New Guinea were used in length-at-age

analysis by Grant et al [43] from a sample of n = 553. Silky sharks are born at 56–87 cm total

length (TL) and can reach ~330 cm TL [41]. Grant et al [43] were able to produce a biologically

plausible growth curve from these data, which corresponded to length-at-birth and resembled

maximum length. These data are included as an example to compare a Bayesian model to a

well performing frequentist growth model
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Lastly, Blue mackerel (Scomber australasicus) were collected off the southern coast of New

South Wales, Australia (n = 789). Blue mackerel are a small pelagic fish (forage fish) found

throughout the Pacific Ocean in coastal and continental shelf waters. Younger fish usually live

in inshore waters, while larger adults form schools in deeper waters (40–200 m) across the con-

tinental shelf [44]. Blue Mackerel reach sizes of up to 44 cm and at least 8 years in the Great

Australian Bight [45, 46]. This dataset illustrates the fit of the Bayesian model to data for a fast-

growing species where smaller fish are under-represented.

Selectivity scenario simulations. To compare the performance of Bayesian and frequen-

tist growth models, three length-at-age datasets for scenarios with different selectivity func-

tions were simulated from a VBGM. The results of the Bayesian and frequentist models were

then compared to the known values used to simulate these data. The length-at-age data were

drawn from a VBGM with a multiplicative error structure:

La � Nð�La;
�La

sÞ;

�La ¼ L1 � ðL1 � L0Þe
� ka

where �La is the mean simulated length-at-age a and �La
s is the multiplicative error of length a.

The VBGM parameters used to simulate these data were L1 = 250, k = 0.2yr-1, L0 = 0 and σ =

0.5. Using a multiplicative error structure represents the increasing individual variation in

growth that occurs with age.

Table 1. Bayesian and frequentist of length-at-age results for four case studies.

Species Parameter Prior Best fitting MCMC

Model

MCMC

posterior

Best fitting nls

model

nls parameter estimates

(free L0)

nls parameter estimates

(fixed L0)

Silvertip shark L1 N(300, 30) VBGM 296.2 ± (22.53) VBGM 899.4 ± (1429) -

k U(0, 0.3) 0.06 ± (0.01) 0.009 ± (0.02) -

L0 p[0, 1][N(68,

5)]

77.22 ± (4.26) 100.7 ± (6.4) -

σ U(0,100) 11.71 ± (1.33) 10.28 -

Silky shark L1 N(280, 15) Logistic 269 ± (5.41) Logistic 268.3 ± (6.05) -

k U(0, 5) 0.14 ± (5e-3) 0.14 ± (6e-3) -

L0 p[0, 1][N(77,

5)]

82.3 ± (1.57) 82.6 ± (1.71) -

σ U(0, 100) 14.7 ± (0.45) 14.63 -

Reef ocean

perch

L1 N(47, 0.5) VBGM 46.2± (0.5) Logistic 30.4 ± (0.4.9) -

k U(0, 1) 0.07 ± (3e-3) 0.27 ± (0.03) -

L0 p[0, 1][N(1,

0.1)]

1 ± (0.1) 0.84 ± (1.4) -

σ U(0,100) 3.3 ± (0.2) 2.21 -

Blue mackerel L1 N(44, 5) VBGM 31.8 ± (0.43) VBGM (Free and

fixed L0)
37.8± (2.37) 2.93 ± (0.13)

k U(0, 1) 0.66 ± (0.04) 0.15 ± (0.03) 0.99 ± (0.03)

L0 p[0, 1][N(0,

1e-3)]

0 ± (8e-4) 20.9 ± (0.59) -

σ U(0, 100) 2.43 ± (0.088) 1.94 2.17

All lengths are total length (TL) in cm. Values in brackets are the SD and SE of MCMC and frequentist models, respectively. Model results are displayed for the best

fitting models, as determined by DIC and AIC (Table 2). An nls model with a L0 fixed at zero was only applied for Blue mackerel.

https://doi.org/10.1371/journal.pone.0246734.t001
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The probability of sampling different ages in each scenario was dependent on the selectiv-

ity-at-age a (Sa) and the survivorship-to-age a (la). Survivorship-to-age a is important as rela-

tively fewer older individuals are present in a population as the probability of survival

decreases with age. Therefore, the probability of sampling any given La was expressed using

a multinomial observation process where the probability of sampling an individual of age a
was:

PðLaÞ � Multð1; la�SaÞ

where the survivorship-to-age a (la) was calculated in each scenario using a natural mortality

(M) of 0.2 yr-1 as

la ¼ la � 1 � e� M:

Three selectivity functions were used in each scenario:

1) a logistic function where selectivity increases with age,

Sa ¼ 1=ð1þ e� slope�ða� a50ÞÞ

where the slope was 0.7 and the age-at-50%-maturity (a50) was 12 years,

2) a logistic function where selectivity decreases with age,

Sa ¼ 1=ð1þ eslope�ða� a50ÞÞ;

where the slope was 1 and the age-at-50%-maturity (a50) was 1.5 years,and 3) a dome shaped

selectivity which was normally distributed with a mean age of 10 years and a standard devia-

tion of 2 years,

Sa � Nð10; 2Þ

The code to reproduce this analysis is provided in S2 Appendix.

Choice of informative priors

As the priors for L0 and L1 are normally distributed, they require a standard error to be speci-

fied which will affect how wide or narrow the prior distributions are. As a more precise prior

will provide greater weight to the posterior this means that the choice of standard error can be

influential. Particularly, this will occur when sample sizes are low as the precision of the likeli-

hood component of the Bayesian model will be lower. To demonstrate the effect of prior preci-

sion for L0 and L1 on Bayesian growth models; two of the case studies (Silvertip sharks and

silky sharks) were examined further. These two examples were chosen as they have large

lengths-at-birth and therefore the L0 parameters will be greater than zero and the standard

errors of the priors will be more influential. In these examples, the Bayesian models were fit

three times using the original priors (base case priors) and priors with less precision that were

set at 25% and 50% of the mean value used for each prior. The silvertip shark example demon-

strates the effect prior precision with a low sample size (n = 48) while the silky shark example

demonstrates this for a larger sample size (n = 553). The code to reproduce is provided in S3

Appendix.
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Results

Case studies

The Bayesian analysis improved the length-at-age results for silvertip sharks, blue mackerel

and ocean perch, while returning negligible differences to length-at-age estimates from the fre-

quentist model for silky sharks (Fig 1). The Bayesian model for silvertip sharks produced simi-

lar length-at-age results to the frequentist model between ages 3 and 14, after which the

Bayesian model asymptoted sooner (Fig 1). This provided a more appropriate L1 that corre-

sponded to the species biology Similarly, the L0 was estimated lower for the Bayesian model

which more closely matches the known length-at-birth.

Fig 1. A comparison between length-at-age estimates determined from an MCMC analysis performed using Bayesian and frequentist models for the four case

studies: Blue mackerel, ocean perch, silvertip shark and silky shark. All four case studies had a frequentist model with a freely estimated L0 included. Additionally, blue

mackerel had a frequentist model with an L0 fixed at zero. Shaded areas correspond to 95% credibility intervals for the Bayesian length-at-age estimates and bootstrapped

confidence 95% intervals for the frequentist models.

https://doi.org/10.1371/journal.pone.0246734.g001
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Blue mackerel had greatly improved fits provided by the MCMC model, which fit well to

the length-at-age data and had an L0 and L1 that better matched known length-at-birth and

maximum length (Table 1). The two frequentist models provided poor fits as neither produced

biologically appropriate parameters. The model with a fixed L0 underestimated L1 while, the

model with a freely estimated L0 overestimated this parameter and L1 (Fig 1).

The frequentist model for ocean perch initially appears to fit the data well (Fig 1). However,

prior knowledge that this species can reach 42 years of age and 47 cm TL demonstrates that

the absence of older and large fish has compromised these estimates. The Bayesian model was

able to overcome this by producing a growth curve with appropriate length-at-age estimates

and L1 (Fig 1). A VBGM was selected by LOOIC which differed to a Logistic model that per-

formed better in the frequentist analysis (Table 2).

The Bayesian model and frequentist model for silky sharks produced only marginally differ-

ent results to one another (Fig 1; Table 1). The best fitting model for both frequentist and

Bayesian methods was the Logistic model, as determined by AIC and LOOIC, respectively

(Table 2). Therefore, a Bayesian model produces effectively the same results as a frequentist

model when a sufficient sample is available to estimate growth without need for S1–S3

Appendixes.

Simulated length-at-age comparisons

The Bayesian framework provided more accurate and precise length-at-age and growth

parameters in eight out of nine simulations (Table 3; Fig 2). The frequentist model in the

dome-shaped selectivity scenarios provided an L1 that was similar to the actual L1 value but

had large imprecision (Table 3). However, the L0 parameter was overestimated with very little

precision (Table 3; Fig 2). Consequently, k was also underestimated and imprecise (Table 3).

Conversely, The Bayesian model provided good precision for all three parameters with accu-

rate estimates of k and L0 and a reasonable estimated of L1 (Table 3). Therefore, the resulting

growth curve closely matched the actual growth curve that the data was drawn from (Fig 2).

The scenarios where selectivity decreases with age via a logistic function represents a gear

selectivity that targets younger individuals. In this scenario the frequentist estimates of k and

L0 were accurate and precise, while L1 had low precision (Table 3). The Bayesian estimates

were also more accurate and precise in these scenarios for each parameter, with the only

Table 2. LOOIC and AIC results of Bayesian and frequentist length-at-age analyses for each case study.

Species Model LOOIC LOOICw AIC (Free L0) AICw (Free L0) AIC (fixed L0)

Silky shark VBGM 4357 0 4348 0 -

Logistic 4322 1 4321 1 -

Gompertz 4333 0 4332 0 -

Silvertip shark VBGM 374 0.69 365.8 0.36 -

Logistic 378 0.09 366.1 0.31 -

Gompertz 376 0.22 365.9 0.33 -

Reef ocean perch VBGM 1516 1 1392.01 0.05 -

Logistic 1799 0 1386.69 0.72 -

Gompertz 1679 0 1388.98 0.23 -

Blue mackerel VBGM 7282 1 6925.11 0.69 7102.73

Logistic 14946 0 6929.41 0.08 Did not converge

Gompertz 14620 0 6927.28 0.23 Did not converge

Best fitting models identified in bold typeface.

https://doi.org/10.1371/journal.pone.0246734.t002
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exception being the simulation with a sample size of 50 (Table 3). In this scenario, the frequen-

tist estimates were more accurate. However, they also had unreasonably large imprecision,

especially when bootstrapped confidence intervals were calculated (Fig 2). The Bayesian

growth curves matched the actual growth curve very closely with good precision (Fig 2). How-

ever, L1 remained overestimated in comparison to the other selectivity scenarios. This was

caused by the L1 prior of 275 cm which was used to represent that maximum length is often

larger than L1. Subsequently, the posterior of L1 in this scenario was strongly weighted

toward this prior (Table 3).

The scenarios where selectivity increased with age via a logistic function represents gear

selectivity that targets older individuals while excluding juveniles. The frequentist model for

these scenarios provided precise and accurate estimate of L1 but an overestimate of L0 for all

three sample sizes (Table 3). Therefore, k was underestimated (Table 3). The estimates of L0
also had a very low level of precision, although this didn’t affect length-at-age estimates for

older age classes (Table 3; Fig 2). The Bayesian model for these scenarios provided precise

parameter estimates that closely matched the actual growth parameters (Table 3). The resulting

growth curve had a high level of accuracy and precision (Fig 2).

The Bayesian models were less influenced by sample size in each selectivity scenario when

compared with the frequentist models (Fig 2). Posterior precision increased with sample size

in each scenario while there was little change in the overall accuracy of each growth curve

(Table 3; Fig 2). Conversely, the frequentist models were more strongly influenced by sample

size, particularly in the scenario where selectivity increased with age. Here the accuracy of L0
was particularly influenced by sample size.

A L1 prior that was intended to represent a maximum length that was larger than the actual

L1 was appropriate for the dome-shaped selectivity scenario and the scenarios where selectiv-

ity increased with age (Table 3; Fig 2). Here, consistent model estimates were produced regard-

less of sample size. In the scenario where selectivity decreased with age, it was apparent that

this prior was more influential and caused some overestimation of L1 regardless of the sample

size (Table 3; Fig 2). This highlights that when older individuals cannot be sampled, particular

care should be placed on selecting a prior for L1.

Table 3. Comparison of parameter estimates produced by frequentist and Bayesian models using simulated length-at-age data from known parameters under dif-

ferent selectivity scenarios and sample sizes.

Frequentist estimate (SE) Bayesian estimate (SE)

Scenario Parameter Known

value

Priors n = 50 n = 100 n = 150 n = 50 n = 100 n = 150

Dome based selectivity L1 250 N(275, 27.5) 246.9 (15.15) 268.4

(21.16)

239 (9.0) 249.59

(9.34)

257.31

(7.82)

240.3

(5.27)

k 0.2 U(1e-5, 0.5) 0.20 (0.07) 0.15 (0.05) 0.22 (0.05) 0.19 (0.02) 0.19 (0.01) 0.22 (0.02)

L0 0 p[0, 1][N(0, 1e-

3)]

0.01 (91.68) 34.76 (37.3) 0.01 (44.0) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01

Selectivity decreases with age

(Logistic)

L1 250 N(275, 27.5) 255.6 (49.1) 269.6

(40.41)

285.9

(38.82)

269.01

(24.22)

271.4

(22.38)

278.2

(21.3)

k 0.2 U(1e-5, 0.5) 0.20 (0.05) 0.18 (0.04) 0.17 (0.02) 0.19 (0.02) 0.18 (0.02) 0.18 (0.02)

L0 0 p[0, 1][N(0, 1e-

3)]

0.16 (1.39) 0.18 (0.97) 0.08 (0.8) 0.01 (0.01 0.01 (0.01 0.01 (0.01

Selectivity increases with age

(Logistic)

L1 250 N(275, 27.5) 286490 (1.838e

+09)

321.5 (162) 261 (13.62 248.68

(6.13)

252.63

(4.26)

250.57

(3.5)

k 0.2 U(1e-5, 0.5) 0.00001 (0.088) 0.04 (0.08) 0.13 (0.06) 0.21 (0.03) 0.2 (0.02) 0.2 (0.01)

L0 0 p[0, 1][N(0, 1e-

3)]

176.8 (29.65) 161.8 (39.8) 96.79

(55.24)

0.01 (1.65) 0.01 (0.01) 0.01 (0.01)

https://doi.org/10.1371/journal.pone.0246734.t003
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Choice of informative priors

Altering the precision of L0 and L1 priors only affected the silvertip shark application where

the sample size was n = 48 (Table 4; Fig 3). The silky shark application which had a much

larger sample size (n = 553), had only negligible changes to its posteriors and resulting growth

curve (Table 4; Fig 3). The posteriors for all parameters changed according to the priors used

for silvertip sharks with L0 and L1 better matching the known maximum size and length-at-

birth when the priors were more precise (Table 4). Additionally, the standard error of the with

L0 and L1 had much greater precision when a narrower prior was used (Table 4). The greatest

Fig 2. Accuracy and precision of Bayesian (purple) and frequentist (green) growth models when fit to simulated data drawn from different selectivity functions

and sample sizes (n = 50, n = 100 and n = 150). Growth models with different sample sizes are shown in each row for the corresponding selectivity curves with relative

sampled ages (product of selectivity and survivorship at age) in the left-hand panels. Shaded areas around the growth curves are the 95% bootstrapped confidence

intervals for the frequentist models (green shading) and the 95% Bayesian credibility intervals (purple shading) for the Bayesian growth models. The true growth curve

used to generate the length-at-age data is represented by the dashed blue line.

https://doi.org/10.1371/journal.pone.0246734.g002
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amount of variation occurred for with L1 which increased by approximately 40% when a

weakly informative prior used rather than the base case prior (Table 4). However, the results of

all of these Bayesian models provide more precise parameter estimates than the corresponding

frequentist models for silvertip sharks (Tables 1; 4).

Table 4. Comparison of prior precision for L0 and L1 for silvertip sharks and silky sharks.

Silvertip sharks (n = 48)

Parameter Base case prior SE is 25% of mean SE is 50% of mean

Prior Posterior (SE) Prior Posterior (SE) Prior Posterior (SE)

L1 N(300, 30) 296.2 (22.53) N(300, 75) 357 (47.71) N(300, 150) 419.7 (84.32)

k U(0, 0.3) 0.06 (0.01) U(0, 0.3) 0.04 (0.01) U(0, 0.3) 0.03 (0.01)

L0 p[0, 1][N(68, 5)] 77.22 (4.26) p[0, 1][N(68, 17)] 91.13 (5.24) p[0, 1][N(68, 34)] 94.55 (5.23)

σ U(0,100) 11.71 (1.33) U(0,100) 10.79 (1.2) U(0,100) 10.64 (1.16)

Silky Sharks (n = 553)

L1 N(280, 15) 269 (5.41) N(280, 70) 268.7 (5.78) N(280, 140) 268.7 (5.79)

k U(0, 5) 0.14 (0.01) U(0, 5) 0.14 (0.01) U(0, 5) 0.14 (0.01)

L0 p[0, 1][N(77, 5)] 82.3 (1.57) p[0, 1][N(77, 19.25)] 82.59 (1.67) p[0, 1][N(77, 38.5)] 82.58 (1.66)

σ U(0, 100) 14.7 (0.45) U(0, 100) 14.68 (0.45) U(0, 100) 14.67 (0.45)

https://doi.org/10.1371/journal.pone.0246734.t004

Fig 3. A comparison of Bayesian growth models fit to silvertip and silky sharks using different levels of precision on the L0 and L1 priors. The base case scenarios

(yellow) represent the priors used in each case study (Table1). The other scenarios include priors where the standard error (SE) is 25% of the value used in each prior

(green) and 50% of the value used in each prior (purple).

https://doi.org/10.1371/journal.pone.0246734.g003
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Discussion

Bayesian methods have previously been applied in shark and fish growth models with great

effectiveness [14, 16, 17, 23, 47]. However, these applications have been mostly limited to more

complex analyses rather than typical length-at-age analyses, presenting an opportunity to

broaden their use. Given that Bayesian models can formally include information on species

biology, it is surprising that this technique has not become more common for growth model-

ling as is the case in other ecological studies [48]. The generalised framework presented here

directly addresses this by providing a flexible approach that could be broadly applied to stan-

dard growth analyses and will provide improved or equivalent results to a frequentist

approach.

The greatest improvement offered by this generalised Bayesian framework is the ability to

account for missing older individuals caused by decreased selectivity with age. It is common

for older individuals to be under sampled, particularly for large or long-lived species as the

probability of surviving to older ages can be low for fished populations. While methods such as

fixing L0 or applying back-calculation can account for the opposite scenario (missing younger

individuals), to date there have been few approaches that have effectively accounted for miss-

ing older individuals. Some studies have attempted to fix L1 to the known maximum size [49–

51]. However, this has resulted in poor model performance when applied as part of a multi-

model paradigm [51]. Here, the inclusion of a prior on maximum length effectively improved

the estimate of L1 when older individuals were missing in both the simulated example and the

Silvertip shark case study. To date, this may be the greatest solution to under sampling of older

individuals due to gear selectivity or age truncation that has hindered numerous growth stud-

ies [9–11].

While using maximum length as a prior for L1 was effective in these examples, there may

situations when further refinement is required. For example, L1 represents the average length

of fully grown individuals [7, 52] and therefore maximum length is likely to be larger than this

value for many species. In situations where L1 is underestimated, using maximum length as

the L1 prior will be beneficial as it will increase the L1 posterior and account for this underes-

timation, as demonstrated here for Blue Mackerel. However, when L1 is overestimated, using

maximum length as the prior for L1 will be less influential than if it were underestimated. The

Silvertip example provided in this study demonstrates this, although biologically appropriate

results were still produced. The simulations where selectivity decreased with age demonstrated

that when older individuals were sparse, some overestimation of L1 occurred when setting its

prior based on a hypothetical maximum length that was 5% larger than the actual value. This

demonstrates that the prior for L1 requires the most consideration, especially when older

individuals are under sampled in order to gain the most benefit from a Bayesian approach.

Contemporary growth modelling approaches incorporate a multi-model paradigm, where

several models are fit and the best performing model is selected [24, 25]. This approach has

been extended into the Bayesian space through several studies that applied multiple models

[20, 53–56]. However, one complication posed by a Bayesian approach is that parameters differ

between models. This requires different priors to be specified; a complication which had no

previous solution [57]. Therefore, many of multi-model Bayesian applications have compared

models that were similar or variants of the same model shape (i.e. VBGM). Model selection of

Bayesian growth models with fundamentally different shapes is more complicated, since a can-

didate model that is poorly specified may not be selected, even if its shape best fits a species’

growth form. This would occur if an inappropriate prior were place on a candidate model’s

growth completion parameter (k). In this situation the resulting posterior distribution may be

heavily weighted to the prior and effect model selection. Determining priors for the growth
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completion parameters is more complicated as these parameters have no biological interpreta-

tion. Therefore, applying a weakly information or uninformative prior for k may be more

appropriate to avoid miss specification. The framework presented here allows consistent priors

to be applied across three different candidate models. This is achieved by ensuring that all

models are parameterised to use L0 and L1—which have informative priors—while applying

uninformative priors on remaining parameters. The application of a Bayesian multi-model

framework is now greatly simplified, because model specification will not affect model perfor-

mance, allowing the most suitable model for the species to be selected.

The results of both analyses presented here demonstrate the improvements offered by

Bayesian over frequentist approaches. Bayesian models provided the closest match to known

growth parameters that were used to generate length-at-age data based on different selectivi-

ties. In each example, frequentist models tended to over or under-estimate length-at-ages

depending on missing age classes that were omitted due to selectivity. Meanwhile, the inclu-

sion of priors allowed the Bayesian models to better match those growth curves, providing

more accurate and precise results. Selectivity has been previously examined through similar

simulation studies with Frater and Stefansson [58] determining techniques that can account

for this bias. However, these techniques required knowledge of the selectivity function which

is not always known and can cause increased parameter bias if miss-specified [4]. The Bayesian

framework presented here overcame these selectivity scenarios without knowledge of the selec-

tivity function, offering a simple method that can improve growth model results without the

risk of introducing additional bias.

Improved growth estimates were also produced in three out of four case studies presented

here using the Bayesian framework. In each of these examples, known issues with the growth

curves were overcome with previously poorly estimated L0 or L1 now better matching biologi-

cally plausible values. The only example where no definitive improvement was produced was

for Silky sharks, which had a larger sample size and included all age classes [43]. In this exam-

ple, almost identical length-at-age estimates were produced by both Bayesian and frequentist

approaches. One could therefore argue that if sufficient samples were available, then there is

no need for a Bayesian approach, and the added complexity may introduce error. However, an

opposing conclusion would be that applying a Bayesian approach can only improve growth

estimates. We therefore conclude that there is little to be lost by using a Bayesian approach,

and instead, much to be gained.

Several alternatives to a Bayesian approach have been applied extensively in growth studies

to account for sampling limitations. Given that L0 and L1 have biological interpretations, it

has been common to fix these parameters at corresponding values. Fixing L0 at zero is espe-

cially common for bony fish species, which have a larval phase and are born at a size close to

zero. However, growth model parameters co-vary [19], and fixing one parameter to a specific

value biases the others [59]. For example, fixing L0 to a single value is not advised as slight inac-

curacies in assigning the true length-at-birth can adversely bias the remaining parameters [59].

Some authors have also attempted to fix both L0 and L1 while only estimating k [49–51]. How-

ever, this resulted in a poor model fit in each of these studies and was quickly dismissed as a

candidate model in multi-model approaches. Gwinn et al [4] examined this topic in detail by

simulating a population that was exploited under different fishery selectivity types and

attempting to overcome biased sampling using different strategies. However, there was no

overall strategy that could be applied across all sampling circumstances without biasing esti-

mates. Finally, back-calculation has been applied to several species to determine theoretical

lengths-at-age from older individuals [5, 42, 60]. This can effectively overcome sampling bias

when large individuals have been sampled but smaller individuals are omitted. However, this

cannot account for situations where larger individuals are under sampled, which often leads to
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overestimating L1 [9–11]. The Bayesian approach presented here is the first technique that

has addressed the under sampling of large individuals and their effect on growth estimation.

There are several advantages to the Bayesian framework we present, aside from the

improved growth estimates demonstrated in these examples. It is intuitive to include known

biological traits of a species as explicit components of a growth model. Maximum length and

length-at-birth are regularly deemed synonymous with L0 and L1, respectively [4, 59], and

thus acknowledging this through priors is reasonable. Posterior distributions of model param-

eters also contain a great deal more information than point estimates and standard errors pro-

vided by frequentist models. For example, posterior distributions may reveal multiple modes,

or show the probability mass to be concentrated in a certain area [12]. Convergence issues are

easier to diagnose in Bayesian models as more information is returned to user. The user can

use this additional information to step through the diagnostic tests outlined in this study and

improve model fit.

The Bayesian approach detailed here is widely applicable, however, there are a few minor

disadvantages to discuss. Firstly, there are more diagnostics to examine for Bayesian models

than frequentist models, which can make them seem overly complex for simple analyses. How-

ever, if a model has been correctly specified, then these diagnostics add substantial confidence

to the analysis. Secondly, one area where Bayesian statistics lags behind frequentist statistics is

user-friendly software [12], which has likely prevented the uptake of Bayesian methods for

growth modelling. The goal of our study was to directly address this with a user-friendly R

package for Bayesian growth modelling. Lastly and most importantly, users of this approach

need to embrace a Bayesian philosophy to model fitting. Frequentist statisticians would argue

that the need to introduce priors is a weakness of Bayesian approaches and introduces subjec-

tivity [12]. However, some degree of subjectivity is often unavoidable in any analysis, and here,

the strength of Bayesian methods lies in its direct acknowledgement and justification. Includ-

ing a range of sensible priors will often produce the same results as a frequentist model when

data is unbiased [12], as demonstrated here in the case study for silky sharks.

Determining priors for the four case studies in the present study was not complicated. In

each example, a standard error was initially set as 10% of the maximum length and length-at-

birth. This was used in an initial fit and was increased or reduced as needed if the initial bias in

the growth model estimates remained unresolved. The resulting growth estimates in all four

instances produced growth estimates that fit the length-at-age data well and provided estimates

of L0 and L1 that corresponded to species’ biology. The same approach was used in the selec-

tivity scenarios and produced appropriate results in each application. The model framework

here does not require priors of k and σ to be determined on a case-by-case basis, as these priors

are uninformative. Therefore, these priors only require an upper bound to their uniform dis-

tributions. Whether these upper bounds are appropriate is determined by whether or not their

resulting posteriors are normally distributed.

In any Bayesian analysis, the user should judiciously document and explain their choice of

priors, which for length-at-birth and maximum length is straightforward. However, the stan-

dard error of each of these distributions can be more complicated to determine. A narrower

standard error may weigh the posterior distribution more toward the prior distribution than

the likelihood distribution, although the extend of this can be dependent on sample size. For

example, a wider standard error applied when sample size is large may be insufficient to update

the posterior from the likelihood distribution, as seen in the present study for Silky sharks.

Therefore, a narrower standard error on certain parameters may be required to ensure prior

information is adequately incorporated into the model. Alternatively, when sample size is

small, narrower priors can have far more influence on the posteriors, as seen in the present

study for Silvertip sharks. In this example, a narrower prior on L1 was justified as the initial

PLOS ONE Bayesian growth curves

PLOS ONE | https://doi.org/10.1371/journal.pone.0246734 February 8, 2021 16 / 21

https://doi.org/10.1371/journal.pone.0246734


frequentist model could not match the biology of the species. Wide priors on L1 improved the

results but the Bayesian model that provided the best representation of species’ biology was

produced with narrower priors on L0 and L1. In some instances, information may be available

to determine a standard error for the L0 and L1 priors. A recent example for L0 was performed

using predicted lengths-at-age-zero from back-calculations to determine the mean and stan-

dard error of this prior [61]. Similarly, a recent study also used the lengths of the largest indi-

viduals documented in the literature to determine the prior mean and standard error for L1
[62]. Justifications such as these can be important when using Bayesian models and demon-

strate the opportunity for researchers to include as much biological information as possible in

their analysis, thus improving the results. These considerations are the most important deci-

sions when implementing a Bayesian growth model and can add the most benefit to the

analysis.

Conclusions

The generalised framework presented here demonstrates the impact that Bayesian methods

could make for standard length-at-age studies. Previously, Bayesian has been more compli-

cated to implement than frequentist alternatives for growth modelling, since considerably

more statistical and programming expertise is needed. However, the BayesGrowth R package

helps remove this barrier and introduce more users to Bayesian growth modelling. Its applica-

tion in the present study to the four case studies and selectivity simulations, demonstrates the

improvements offered over comparable frequentist models. Additionally, this generalised

framework may be further tailored by users who seek more specified or sophisticated models.

For example, some occasions may require different priors, error structures or candidate mod-

els to be applied in a similar framework. Examples already exist where biphasic or Schnute

models have been used in Bayesian growth models [17, 23, 63]. Likewise, more sophisticated

models can incorporate hierarchical structures [16, 19, 22, 64], identify growth morphs [54],

account for autocorrelation in back calculations [65], or examine environmental drivers [64,

66]. The framework we have presented sits alongside this existing body of research by provid-

ing an entry point to Bayesian growth modelling that can be applied to standard growth

modelling scenarios. With the information and guidance provided in this study, there is great

opportunity for the field of Bayesian growth modelling to continue to expand and possibly

become the standard approach for estimating fish growth.
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