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Abstract: With diverse etiologies and clinical features, the management of pediatric auditory
neuropathy spectrum disorder (ANSD) is often challenging, and the outcomes of cochlear implants
(CIs) are variable. This study aimed to investigate CI outcomes in pediatric patients with ANSD of
different etiologies. Thirty-six children with ANSD who underwent cochlear implantation between
2001 and 2021 were included. Comprehensive etiological analyses were conducted, including
a history review, next-generation sequencing-based genetic examinations, and imaging studies
using high-resolution computed tomography and magnetic resonance imaging. Serial behavioral
and speech audiometry were performed before and after surgery, and the outcomes with CI were
evaluated using the Categories of Auditory Performance (CAP) and Speech Intelligibility Rating
(SIR) scores. By etiology, 18, 1, 1, and 10 patients had OTOF-related, WFS1-related, OPA1-related,
and cochlear nerve deficiency (CND)-related ANSD, respectively. Six patients had no definite
etiology. The average CI-aided behavioral threshold was 28.3 ± 7.8 dBHL, and those with CND-
related ANSD were significantly worse than OTOF-related ANSD. The patients’ median CAP
and SIR scores were 6 and 4, respectively. Favorable CI outcomes were observed in patients
with certain etiologies of ANSD, particularly those with OTOF (CAP/SIR scores 5–7/2–5), WFS1
(CAP/SIR score 6/5), and OPA1 variants (CAP/SIR score 7/5). Patients with CND had suboptimal
CI outcomes (CAP/SIR scores 2–6/1–3). Identifying the etiologies in ANSD patients is crucial
before surgery and can aid in predicting prognoses.
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1. Introduction

Auditory neuropathy spectrum disorder (ANSD) is an important entity in pediatric
sensorineural hearing loss (SNHL), accounting for approximately 10% of cases [1,2]. The
etiologies of ANSD are heterogeneous; both genetic causes (e.g., OTOF and PJVK vari-
ants) and acquired risk factors (e.g., prematurity, kernicterus, perinatal hypoxia) can con-
tribute to ANSD [3,4]. ANSD is characterized by impaired or absent auditory brainstem
responses (ABRs) with preserved otoacoustic emissions (OAEs) and/or cochlear micro-
phonics (CMs) [4,5]. The pathogenesis of ANSD encompasses a wide range of disease
mechanisms, and ANSD pathologies can be localized to multiple sites, from the inner hair
cells to the central auditory cortex [3].

The audiologic results often change during different audiometric examinations with
relatively poor correlations [6]. The clinical presentations of ANSD patients are diverse,
ranging from mild to profound SNHL [7], and the thresholds may fluctuate between
different examinations [4]. ANSD patients generally present disproportionately poor
speech recognition and language development [2,4], although approximately 5% of ANSD
patients reportedly develop normal speech and language performance without intervention [8].
Speech performance is highly variable even with the use of hearing aids or cochlear implants
(CIs) [9–11]. Therefore, the management of ANSD is often challenging in clinical practice [7].

Accumulating evidence reveals that CI outcomes correlate closely with the etiologies
of pediatric SNHL [12–15]. We recently demonstrated that comprehensive history-taking,
genetic examinations, and imaging studies were useful in addressing the etiological het-
erogeneity of pediatric ANSD and could help obtain information regarding the causes
of ANSD in 75% of the patients [6]. In this study, we applied this integrative approach
to analyze the etiologies of CI in recipients with pediatric ANSD and investigated the CI
outcomes across various etiologies.

2. Materials and Methods

ANSD patients who had undergone cochlear implantation at three referral CI centers
from 2001 to 2021 were enrolled. All patients were diagnosed with ANSD based on au-
diometric presentations: bilateral SNHL with absent ABRs and preserved OAEs and/or
CMs. Comprehensive etiological analyses were performed for all patients, including his-
tory ascertainment, genetic examinations, and imaging studies. There was no patient with
unilateral SNHL or cognitive comorbidities. All patients received complete etiological
analyses, and one patient with follow-up less than 6 months after cochlear implantation
was excluded.

2.1. Genetic Examinations

All patients underwent next-generation sequencing (NGS)-based genetic examination
targeting 220 deafness genes. Genomic DNA was extracted from the peripheral blood of the
patients to generate DNA libraries. Sample preparation, DNA sequencing, and NGS-based
genetic testing data analyses were performed as previously described [16,17]. Paired-end
reads were aligned, sorted, and converted using Picard version 1.134 (Broad Institute,
Cambridge, MA, USA) and BWA-MEM version 0.7.12. Variants, including single nucleotide
substitutions and small deletions/insertions, were called GATK HaplotypeCaller version 3.6
(Broad Institute, Cambridge, MA, USA). The pathogenicity of the variants was determined
according to American College of Medical Genetics and Genomics guidelines. Variants that
met the criteria of pathogenic/likely pathogenic were reported as disease-causing, and those
with conclusive genetic diagnosis were confirmed to have genetic causes.
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2.2. Imaging Studies

Both temporal bone high-resolution computed tomography (HRCT) and non-contrast
brain magnetic resonance imaging (MRI) were performed preoperatively in all patients to
evaluate the inner ear structures, cochlear nerve, and central auditory pathway [6]. Abnor-
malities on HRCT or MRI images were interpreted according to the published criteria [18,19].
Cochlear nerve deficiency (CND) was defined if the cochlear nerve was hypoplastic (the
diameter of the cochlear nerve being smaller than the facial nerve on oblique sagittal MRI in
the internal auditory canal) or aplastic (absent cochlear nerve on MRI) [18].

2.3. CI Outcome Evaluation

We performed serial behavioral and speech audiometry before and after cochlear
implantation according to the patients’ age and speech development. Audiologic examina-
tions were performed at 1, 3, 6, 9, and 12 months in the first year postoperatively. From the
second year, examinations were performed every 6 months or whenever indicated. Hearing
thresholds were calculated as the average of the four frequencies (0.5, 1, 2, and 4 kHz). The
Categories of Auditory Performance (CAP) [20] and Speech Intelligibility Rating (SIR) [21]
scores were evaluated whenever suitable for the patients. CI outcomes were determined
using behavioral audiometry, speech audiometry, and CAP and SIR scores. According to
our in-house data on Taiwanese patients, favorable CI outcomes were determined in those
with CAP scores ≥ 5 or SIR scores ≥ 3, whereas unfavorable CI outcomes were determined
in those with CAP scores < 5 and SIR scores < 3 [13].

2.4. Statistical Analysis

Categorical data were analyzed using Fisher’s exact test, and both ordinal and con-
tinuous data were analyzed using the Mann–Whitney U test or Kruskal–Wallis test. Post
hoc tests were conducted for multiple comparisons with Bonferroni correction. Statistical
significance was set at p values < 0.05 (two-sided). All statistical analyses were performed
using SPSS version 26 software (SPSS Inc., Chicago, IL, USA).

3. Results

A total of 36 patients (24 males and 12 females) were included in this study. Fourteen
(38.9%) patients received bilateral CI implantation. By etiology, 20 patients were confirmed
to have a conclusive genetic diagnosis (Table 1). Of these, 18 patients (50%) were diagnosed
with biallelic OTOF variants (i.e., the “OTOF variant” group). Pathogenic variants in
two rare dominant genes were identified in two (5.6%) patients, including one with the
WFS1 c.2051C>T (p.A684V) variant and one with the OPA1 c.1414T>C (p.C472R) variant,
respectively (i.e., the “rare gene variants” group). Ten (27.8%) patients were diagnosed
as having CND by MRI study (i.e., the “CND” group). Definite etiologies could not be
identified in the remaining six patients based on the history review, genetic examinations,
and imaging studies (i.e., the “indefinite” group). No anomalies in the inner ear other than
the CND and no lesions in the brain were identified.

The average age at implantation of the first ear was 3.9 ± 4.9 (1–27.7) years (Table 2),
probably reflecting the heterogenous etiologies and audiological features in our cohort. The
preoperative hearing thresholds were significantly better in patients with rare gene variants
(Kruskal–Wallis test, p = 0.022), probably because the retrocochlear nature of OPA1 and
WFS1 variants led to disproportionately poor speech recognition, necessitating an earlier
cochlear implantation at a better hearing level. Conversely, patients with CND showed
the worst preoperative hearing thresholds (Bonferroni-adjusted p = 0.03). There was no
significant difference in the average implantation age of the first ear, number of patients
receiving bilateral implantation, and follow-up period among the four groups (p > 0.05).
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Table 1. Subjects with confirmed genotype in this study.

Genotype Cases (N)

OTOF
OTOF c.[1498C>T];[5098G>C] 1
OTOF c.[2521G>A];[5098G>C] 2

OTOF c.[3704_3719del];[5098G>C] 2
OTOF c.[3864G>A];[5098G>C] 1
OTOF c.[4030C>T];[5098G>C] 1

OTOF c.[4961-1G>A];[5098G>C] 1
OTOF c.[5000C>A];[5098G>C] 1
OTOF c.[5098G>C];[5098G>C] 7
OTOF c.[5098G>C];[5203C>T] 1
OTOF c.[5098G>C];[5566C>T] 1

Other rare genes
WFS1 c.[2051C>T];[2051=] 1
OPA1 c.[1414T>C];[1414=] 1

Table 2. Basic characteristics of patients with auditory neuropathy spectrum disorder in different groups.

OTOF Variants
N = 18

Rare Gene Variants a

N = 2
CND

N = 10
Indefinite

N = 6
Total

N = 36 p Value

Sex (M:F) 13:5 0:2 5:5 6:0 24:12 0.034 b

Age at implantation of the first ear (y),
mean ± SD [range]

2.8 ± 1.3
[1–5.5]

9.0 ± 9.1
[2.6–15.4]

3.1 ± 1.7
[1.3–6.2]

6.6 ± 10.4
[1.7–27.7]

3.9 ± 4.9
[1–27.7] 0.734 c

Preoperative hearing thresholds
(dBHL), mean ± SD [range]

88.2 ± 14.5
[57.5–106.3]

66.3 ± 20.6
[53.8–90]

100.9 ± 12.1
[80–120]

97.3 ± 8.7
[90–110]

91.2 ± 15.9
[53.8–120] 0.022 c

Bilateral implantation (N) 9 1 2 2 14 0.457 b

Follow up (y), mean ± SD [range] 4.3 ± 2.4
[0.8–7.6]

3.2 ± 0.9
[2.6–3.8]

3.5 ± 4
[1–13.8]

4.3 ± 4.3
[0.6–10.1]

4.0 ± 3.1
[0.6–13.8] 0.707 c

a Rare gene variants including variants in WFS1 and OPA1, b Fisher’s exact test, c Kruskal–Wallis test. Abbrevia-
tions: CND, cochlear nerve deficiency; SD, standard deviation.

After cochlear implantation, the average CI-aided hearing threshold in all 36 patients
was 28.3 ± 7.8 (18.8–55) dBHL, and the median CAP and SIR scores were 6 and 4, re-
spectively (Table 3). The average CI-aided hearing threshold in patients with CND was
significantly higher (Kruskal–Wallis test, p < 0.001) and was especially higher than that
in patients with OTOF variants and rare gene variants (Bonferroni-adjusted p = 0.003 and
0.001, respectively). Twenty-seven patients (75%) showed favorable CI outcomes with
CAP ≥ 5 or SIR ≥ 3. Both CAP and SIR scores were significantly worse in the CND group
than in the other groups (Kruskal–Wallis test, p = 0.021 and 0.006, respectively). Specifically,
the CAP and SIR scores were significantly lower in the CND group than in the OTOF
variant group (Bonferroni-adjusted p = 0.021 for CAP and p = 0.001 for SIR). Overall, the CI
outcomes were good in most ANSD patients except in those with CND.

Table 3. Cochlear implantation outcomes in patients with auditory neuropathy spectrum disorder of
different etiologies.

OTOF Variants
N = 18

Rare Gene
Variants a

N = 2

CND
N = 10

Indefinite
N = 6

Total
N = 36 p Value

CI-aided hearing thresholds
(dBHL), mean ± SD [range]

25.6 ± 4.1
[20–35]

20.8 ± 1.9
[18.8–22.5]

38.9 ± 9.3
[25–55]

28.3 ± 0.7
[27.5–28.8]

28.3 ± 7.8
[18.8–55] <0.001 b

CAP score, median [range] 7 [5–7] 7 [6,7] 4 [2–6] 5 [2–7] 6 [2–7] 0.021 b
SIR score, median [range] 5 [2–5] 5 [5] 1 [1–3] 4 [1–5] 4 [1–5] 0.006 b

a Rare gene variants including variants in WFS1 and OPA1, b Kruskal–Wallis test, Abbreviations: CAP, Categories
of Auditory Performance; CI, cochlear implant; CND, cochlear nerve deficiency; SIR, Speech Intelligibility Rating.
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3.1. CI Outcomes in ANSD Patients with Biallelic OTOF Variants

Eighteen patients were confirmed to have biallelic OTOF variants, including seven
with homozygous c.5098G>C variants and eleven with compound heterozygous variants.
Nine (50%) patients underwent bilateral implantation, one of whom received bilateral
simultaneous implantation. The preoperative hearing threshold was 88.2 ± 14.5 (57.5–106.3)
dBHL, and the CI-aided hearing threshold was 25.6 ± 4.1 (20–35) dBHL. The median CAP
and SIR scores at the latest follow-up were 7 (range, 5–7) and 5 (range, 2–5), respectively,
indicating that these patients showed excellent outcomes.

3.2. CI Outcomes in ANSD Patients with Rare Gene Variants

Two patients were identified with rare gene variants, one with WFS1 c.[2051C>T];[2051=]
(Figure 1A) and the other with OPA1 c.[1414T>C];[1414=] (Figure 2A). The patient with
the WFS1 c.2051C>T (p.A684V) variant was diagnosed with bilateral ANSD at 3 months
(Figure 1B), and behavioral audiometry showed profound SNHL (Figure 1C). She under-
went cochlear implantation at 2.6 years and exhibited good CI outcomes, with CAP = 6 and
SIR = 5 at 3.8 years postoperatively. The CI-aided hearing threshold was 21.3 dBHL with
good speech perception (word recognition score (WRS): 92%) (Figure 1D).

A patient with the OPA1 c.1414T>C (p.C472R) variant presented with slowly progres-
sive hearing loss that deteriorated to moderate-to-severe SNHL in her teens (Figure 2B).
However, the speech recognition deteriorated rapidly (WRS = 12–16%). The patient under-
went bilateral sequential cochlear implantation. During the surgery, the electrically evoked
compound action potentials (ECAPs) were only recorded at high-frequency electrodes with
regular settings but became more robust when the stimulating pulse width was increased
from 25 µs to 50 µs (Figure 2C). Despite the abnormal ECAPs, the patient showed good
auditory and speech performance after cochlear implantation, with a CAP of 7, SIR of 5,
and WRS of 88–92% (Figure 2D).

3.3. CI Outcomes in ANSD Patients with CND

Ten patients were diagnosed with CND based on imaging studies, including five
males and five females. Two (20%) patients received bilateral implantations. Of the 12 ears
implanted, 5 had aplastic and 7 had hypoplastic cochlear nerves. The hearing thresholds
were 100.9 ± 12.1 (80–120) dBHL before cochlear implantation. The average CI-aided
hearing threshold in these 10 patients was 38.9 ± 9.3 (25–55) dBHL, which was worse
than that in the other groups (Kruskal–Wallis test, p < 0.05). In addition, the median CAP
and SIR scores at the latest follow-up were 4 (range, 2–6) and 1 (range, 1–3), respectively.
Two patients showed relatively favorable CI outcomes with CAP = 5 and SIR = 3 and
CAP = 6 and SIR = 2, respectively. Two patients showed improved auditory perfor-
mance (both CAP = 5) despite poor speech performance (SIR = 2 and 1, respectively) after
cochlear implantation. The other six patients with CND showed unfavorable CI outcomes
(CAP < 5 and SIR < 3). In general, patients with hypoplastic cochlear nerves showed similar
auditory performance with CAP scores (Mann–Whitney U test, p = 0.69) but significantly
better speech performance with SIR scores (Mann–Whitney U test, p = 0.032) than those
with aplastic cochlear nerves after receiving CI (Figure 3). Notably, one patient with a
hypoplastic cochlear nerve implanted at 1.3 years showed poor sound detection and poor
speech development (CAP = 2, SIR = 1) (Figure 4). However, one patient without an
identified cochlear nerve on MRI studies presented fair speech recognition despite poor
language development (CAP = 5, SIR = 1).



Biomedicines 2022, 10, 1523 6 of 13
Biomedicines 2022, 10, x FOR PEER REVIEW 6 of 14 
 

 

Figure 1. Cochlear implantation outcome in a patient with WFS1 c.[2051C>T];[2051=]. (A) The het-
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2B). However, the speech recognition deteriorated rapidly (WRS = 12–16%). The patient 

Figure 1. Cochlear implantation outcome in a patient with WFS1 c.[2051C>T];[2051=]. (A) The
heterozygous WFS1 c.2051C>T (p.A684V) variant identified in the proband. (B) Cochlear micro-
phonics were recoded despite no wave V identified at 95 dBnHL on auditory brainstem response
examinations bilaterally, showing the typical presentation of auditory neuropathy spectrum disorder.
(C) Preoperative behavioral audiometry reveals profound sensorineural hearing loss with a hearing
threshold of approximately 90 dBHL. (D) Postoperative behavioral and speech audiometry show
ideal cochlear implant-aided hearing threshold and good speech perception. Abbreviations: Con,
condensation; Rar, rarefaction; SRT, speech recognition threshold; WRS, word recognition score.
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Figure 2. Cochlear implantation outcome in patient with OPA1 c.[1414T>C];[1414=]. (A) The heterozy-
gous OPA1 c.1414T>C (p.C472R) variant identified in proband. (B) Preoperative pure tone audiogram
shows bilateral moderate-to-severe hearing loss (~60–80 dBHL) with poor speech discrimination
(word recognition scores: 16% on the right and 12% on the left). Red and blue lines represent the
hearing thresholds of right and left ear, respectively. (C) The electrically evoked compound action
potentials were only recordable at high-frequency electrodes (i.e., electrodes #2, 3, 4, 5, and 8) with
regular setting but became more robust with an increase in stimulating pulse width from 25 µs
to 50 µs. (D) Postoperative behavioral and speech audiometry show ideal cochlear implant-aided
thresholds bilaterally and good speech perception. Abbreviations: SRT, speech recognition threshold;
WRS, word recognition score.
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Figure 3. Comparison of the cochlear implantation outcomes in patients with hypoplastic and aplas-
tic cochlear nerves. (A) The postoperative Categories of Auditory Performance (CAP) scores were
similar between the two groups. (B) The postoperative Speech Intelligibility Rating (SIR) scores were
significantly better in patients with hypoplastic cochlear nerves than those with aplastic cochlear nerves.
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Figure 4. Cochlear implantation outcome in a patient with hypoplastic cochlear nerve. (A) Oblique
sagittal view of the T2-weighted images on magnetic resonance imaging reveals hypoplastic cochlear
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microphonics are recorded. (C) The preoperative behavioral thresholds show profound hearing
loss (~110 dBHL). (D) Poor speech performance after implantation with CAP = 2 and SIR = 1
despite elevated aided hearing threshold (~40 dBHL). Abbreviations: CAP, Categories of Auditory
Performance; Con, condensation; Rar, rarefaction; SDT, speech detection threshold; SIR, Speech
Intelligibility Rating.
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3.4. CI Outcomes in ANSD Patients with Indefinite Etiologies

After comprehensive etiological analysis, no specific etiology or risk factors were
identified in the six patients. All six patients in this group were male, and two (33.3%)
underwent bilateral implantation. The average hearing threshold before cochlear implanta-
tion was 97.3 ± 8.7 (90–110) dBHL, and the postoperative CI-aided hearing threshold was
28.3 ± 0.7 (27.5–28.8) dBHL. The median CAP and SIR scores in this group were 5 (range,
2–7) and 4 (range, 1–5) at the latest follow-up, respectively. Three patients had favorable
CI outcomes (CAP = 6–7 and SIR = 4–5), while the other three showed unfavorable CI
outcomes (CAP = 2–4 and SIR = 1–2).

4. Discussion

In this study, we evaluated the CI outcomes of 36 pediatric ANSD patients, including
18 with OTOF-related ANSD, 1 with WFS1-related ANSD, 1 with OPA1-related ANSD,
10 with CND, and 6 without definite etiology. Auditory and speech performance varied
according to etiology. Patients with OTOF-related, WFS1-related, and OPA1-related ANSD
showed favorable CI outcomes, whereas patients with CND mostly exhibited unfavorable
CI outcomes. The CI outcomes in patients with indefinite etiologies were variable, with
three patients showing favorable outcomes and the other three unfavorable CI outcomes.

The highly variable outcomes of CI could be a reflection of the diverse pathogenic
mechanisms and auditory presentations of ANSD. In a recent review, patients with ANSD
demonstrated similar CI outcomes to patients with SNHL, despite the heterogeneity in
the etiological background [22]. Still, approximately 25% of pediatric ANSD patients
garnered limited benefits from CI [9]. Presynaptic pathologies have been proposed as
good prognostic factors for CI, and those with postsynaptic pathologies show variable CI
outcomes [7,23]. In this study, we analyzed CI outcomes in patients with ANSD of various
etiologies. Our results are generally consistent with those of previous studies; patients with
presynaptic pathologies (such as OTOF-related ANSD) typically showed good CI outcomes.
However, we demonstrated that patients with certain postsynaptic pathologies, such as
WFS1- and OPA1-related ANSD, could also exhibit favorable CI outcomes.

Pathogenic variants in the OTOF gene (OMIM:603681), which have been linked to
autosomal recessive non-syndromic DFNB9, are the most common genetic cause of pediatric
ANSD [24]. Otoferlin, encoded by OTOF, is involved in the membrane fusion of synaptic
vesicles in the inner hair cells [24,25]. OTOF-related ANSD belongs to “presynaptic” ANSD,
and the CI outcome is expectedly good in these patients [26–28]. In our previous studies,
we demonstrated that patients with pathogenic OTOF variants always revealed robust
ECAPs during cochlear implantation. Postoperatively, these patients usually showed good
and rapid improvement in CAP and SIR scores, comparable to those with cochlear SNHL
of other genetic causes (such as GJB2 and SLC26A4 variants) [29,30]. Before the operation,
these patients did not experience spontaneous recovery in hearing thresholds or ABR
with age [26]. Given the stable auditory features and favorable CI outcomes, cochlear
implantation should be performed in patients with OTOF variants whenever indicated
without unnecessary delay.

Pathogenic variants of the WFS1 gene (OMIM:606210) may cause Wolfram syndrome,
Wolfram-like syndrome, or autosomal dominant non-syndromic DFNA6/14/38 [31–35].
Wolframin (WFS1), encoded by WFS1, is an endoglycosidase H-sensitive membrane gly-
coprotein localized in the endoplasmic reticulum that is involved in the regulation of
intracellular calcium homeostasis [36]. WFS1 is predominantly expressed in the spiral gan-
glion neuron [37,38], and impaired WFS1 function is related to the “postsynaptic” ANSD.
Patients with WFS1 variants have been reported to have favorable outcomes after cochlear
implantation [39,40]. Our patient with the WFS1 c.2051C>T (p.A684V) variant also exhib-
ited good auditory and speech performances with CI. Notably, Rendtorff et al. reported a
family with the c.2051C>T (p.A684V) variant, and CI outcomes were variable [32]. How-
ever, the unfavorable CI outcomes observed in this study were ascribed to old implantation
age and insufficient postoperative rehabilitation, rather than a genetic factor per se [32].
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Pathogenic variants of the OPA1 gene (OMIM:605290) are the most common cause
of autosomal dominant optic atrophy, and patients may present with or without hear-
ing loss [41]. OPA1, encoded by OPA1, is a dynamin-related GTPase localized in the
mitochondria and is essential for the fusion–fission balance of mitochondria [42]. OPA1
is expressed in multiple sites of cochlea but is predominantly present in the spiral gan-
glion neurons [43]; thus, ANSD related to defected OPA1 is of “postsynaptic” pathology.
Maeda-Katahira et al. reported significant improvements in both auditory and speech
performance after cochlear implantation in two patients with OPA1 variants (c.892A>C and
c.1334G>A, respectively) [44]. Santarelli et al. reported CI outcomes in eight patients with
different OPA1 variants (c.344C>T, c.869G>A, c.893G>A, and c.1334G>A), of whom seven
showed improved speech perception [45]. Different OPA1 variants have been associated
with varying severities of clinical phenotypes [46]. However, there seems to be no appar-
ent genotype–phenotype correlation in terms of CI outcome, as most patients revealed
favorable CI outcomes regardless of the variant.

CND has been regarded as a poor prognostic factor for CI outcomes in both pediatric
SNHL and ANSD patients [47,48]. The outcomes vary across different studies; the presence
of the cochlear nerve on MRI and the diameter of the cochlear nerve is critical for prog-
nosis [49–51]. In our cohort, the CI outcomes were similar to those of a previous study in
which those with hypoplastic cochlear nerves showed better outcomes than those with
aplastic cochlear nerves. Notably, one patient with an aplastic cochlear nerve presented
fair speech recognition despite poor language development. Therefore, the diameter of
the cochlear nerve is not the only determinant of CI outcomes in patients with CND. Com-
prehensive counseling is essential before the operation to establish appropriate parental
expectations regarding the prognosis.

The strength of this study lies in the documentation and analyses of CI outcomes in a
relatively large cohort of pediatric ANSD patients, for whom a comprehensive etiological
work-up was performed and serial behavioral and speech audiometry for at least 1 year
were recorded. However, this study has some limitations that deserve further discussion.
First, the patients were treated in three CI centers, and there were no unified objective
assessment tools for auditory and speech performance among the centers, except for the
CAP and SIR scores. Nonetheless, this did not compromise the findings of this study, as
both CAP and SIR scores have been confirmed as reliable instruments for measuring CI
outcomes [52,53], and we did not observe discrepancies in the CI outcomes in patients with
the same etiology between different centers. Second, only three patients with CND and
one with indefinite etiology received implantation at less than 2 years of age in this cohort.
This may also be a contributing factor to poor outcomes.

Early implantation, especially before 2 years of age, is considered critical for better
CI outcomes in pediatric SNHL [54,55]. Based on the findings of this study, we suggest
early implantation in pediatric ANSD patients whose etiologies are associated with good
CI outcomes whenever the criteria for implantation are fulfilled. Moreover, cochlear
implantation is not necessarily contraindicated in patients with postsynaptic pathology, as
patients with WFS1 and OPA1 variants may also benefit from CI.

5. Conclusions

CI-aided hearing thresholds improved in most pediatric ANSD patients, but speech
performance varied. Favorable CI outcomes can be anticipated in patients with certain
etiologies of ANSD, particularly in those with OTOF, WFS1, and OPA1 variants. By contrast,
patients with CND have suboptimal outcomes. Identifying the etiologies in ANSD patients
is crucial before surgery and can aid in prognosis prediction and counseling for families.
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