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Abstract

Neurocomputational theories have hypothesized that Bayesian inference underlies interoception, 

which has become a topic of recent experimental work in heartbeat perception. To extend this 

approach beyond cardiac interoception, we describe the application of a Bayesian computational 

model to a recently developed gastrointestinal interoception task completed by 40 healthy 

individuals undergoing simultaneous electroencephalogram (EEG) and peripheral physiological 

recording. We first present results that support the validity of this modelling approach. Second, we 

provide a test of, and confirmatory evidence supporting, the neural process theory associated with 

a particular Bayesian framework (active inference) that predicts specific relationships between 

computational parameters and event-related potentials in EEG. We also offer some exploratory 

evidence suggesting that computational parameters may influence the regulation of peripheral 

physiological states. We conclude that this computational approach offers promise as a tool for 

studying individual differences in gastrointestinal interoception.
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1. Introduction

There is growing interest in understanding the neural basis of interoception, with an 

emerging literature on both theoretical models and empirical studies (Berntson & Khalsa, 
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2021; Bonaz et al., 2021; Chen et al., 2021; Petzschner, Garfinkel, Paulus, Koch, & 

Khalsa, 2021; Quigley, Kanoski, Grill, Barrett, & Tsakiris, 2021; Weng et al., 2021). 

Aside from basic science interests, interoception has also become an important topic of 

mental health research, with evidence for abnormalities in depression, anxiety, eating, and 

substance use disorders, among others (reviewed in (Khalsa et al., 2018)). Theoretical work 

within neuroscience and psychiatry has articulated plausible neurocomputational accounts 

of interoceptive processing (Allen, Levy, Parr, & Friston, 2019; Barrett & Simmons, 2015; 

Owens, Allen, Ondobaka, & Friston, 2018; Owens, Friston, Low, Mathias, & Critchley, 

2018; Paulus, Feinstein, & Khalsa, 2019; Petzschner, Weber, Gard, & Stephan, 2017; 

Seth, 2013; Seth & Critchley, 2013; Smith, Thayer, Khalsa, & Lane, 2017; Stephan et 

al., 2016), largely extending from leading Bayesian models of exteroceptive (Bastos et 

al., 2012; Friston, 2005), cognitive (Chen, Takahashi, Nakagawa, Inoue, & Kusumi, 2015; 

Clark, Watson, & Friston, 2018; Friston, Stephan, Montague, & Dolan, 2014; Huys, Maia, 

& Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012; Moutoussis, Shahar, Hauser, 

& Dolan, 2017; Parr & Friston, 2018; Schwartenbeck & Friston, 2016; Sharp & Eldar, 

2019), emotional (Hesp, Smith, Allen, Friston, & Ramstead, 2020; Smith, Lane, Parr, & 

Friston, 2019; Smith, Parr, & Friston, 2019), and motor control domains (Adams, Perrinet, 

& Friston, 2012; Adams, Shipp, & Friston, 2013; Edwards, Adams, Brown, Pareés, & 

Friston, 2012). A few studies have also tested predictions of Bayesian computational models 

and fit such models to behavioral data on interoception tasks in both healthy and psychiatric 

samples (Petzschner et al., 2019; Smith, Kuplicki, Feinstein et al., 2020; Smith, Kuplicki, 

Teed, Upshaw, & Khalsa, 2020; Harrison et al., 2021).

The most common paradigms for studying interoception within psychological research 

settings have traditionally focused on heartbeat perception (for a review see (Khalsa & 

Lapidus, 2016)). However, cardiac perception is generally quite poor, with only roughly 

35% of individuals accurately perceiving their own heartbeats at rest (Khalsa & Lapidus, 

2016). Using heartbeats as task stimuli also presents unique challenges, as their intensity 

and timing cannot be tightly controlled in the absence of a pharmacological perturbation 

(Cameron & Minoshima, 2002; Khalsa, Rudrauf, Sandesara, Olshansky, & Tranel, 2009). 

The predominant focus on cardiac interoception is understandable given the ease with 

which this signal can be measured, but the limitations of certain heartbeat perception tasks 

have been raised repeatedly in recent years (Corneille, Desmedt, Zamariola, Luminet, & 

Maurage, 2020; Desmedt, Luminet, & Corneille, 2018; Murphy et al., 2018; Phillips, 

Jones, Rieger, & Snell, 1999; Ring & Brener, 2018; Ring, Brener, Knapp, & Mailloux, 

2015; Windmann, Schonecke, Frohlig, & Maldener, 1999; Zamariola, Maurage, Luminet, & 

Corneille, 2018); but see (Ainley, Tsakiris, Pollatos, Schulz, & Herbert, 2020)). Other major 

reasons for the heavy utilization of cardiac interoception measures in psychological research 

include the inaccessibility of the body’s interior and the lack of (and difficulty designing) 

minimally invasive tasks to assess other modalities.

In a recent study we described a new method for studying gastrointestinal (GI) interoception 

that made use of mechanosensory stimulation via an ingestible vibrating capsule (Mayeli 

et al., 2021). Using an instruction set similar to heartbeat tapping paradigms, participants 

were asked to press a button whenever they felt a vibration sensation in their stomach. 

However, unlike heartbeats, the vibration timing and intensity could be precisely controlled. 

Smith et al. Page 2

Biol Psychol. Author manuscript; available in PMC 2021 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As an initial validation, we showed that standard signal detection measures could capture 

interesting behavioral and perceptual patterns in the data and that the vibrations reliably 

elicited electroencephalogram (EEG) event-related potential (ERPs) in a manner that was 

sensitive to vibration intensity. In the present study, we extend this work by applying a 

Bayesian computational modelling approach to this data, which we previously developed for 

a heartbeat tapping paradigm (Smith, Kuplicki, Feinstein et al., 2020; Smith, Kuplicki, Teed 

et al., 2020). This approach has the advantage of being able to capture learning dynamics 

that cannot be measured by signal detection approaches, as well as interactions between 

Bayesian beliefs about the precision of afferent GI signals (interoceptive precision; IP) and 

prior expectations. Successfully estimating these parameters could provide information of 

potential clinical relevance to conditions in which GI symptoms play a primary role.

In this paper we also provide a direct test of recently proposed neural process theories 

within the Bayesian framework known as active inference (Friston, FitzGerald, Rigoli, 

Schwartenbeck, & Pezzulo, 2017; Friston, Parr, & de Vries, 2017; Parr & Friston, 2018; 

Smith, Friston, & Whyte, 2021). Active inference postulates that ERP amplitudes are 

positively associated with the rate of change in beliefs in response to sensory stimuli. 

Therefore, if a sensory signal is expected to be reliable (high precision), it should be 

associated with larger ERPs (i.e., due to a faster evidence accumulation rate). Active 

inference also postulates a hierarchical structure in which higher-level (e.g., frontal) brain 

regions convey signals downward to sensory cortices – providing sensory processing with 

prior beliefs about what will be perceived. Here, if prior beliefs predict a sensation, then the 

presentation of a congruent stimulus should generate smaller ERPs, because beliefs do not 

need to change as much to account for the new observation. A primary means of learning 

in Bayesian models occurs through updating prior beliefs over slower timescales – where 

these slower-timescale processes are predicted to occur in higher brain regions (Kiebel, 

Daunizeau, & Friston, 2008; Murray et al., 2014; Smith, Steklis, Steklis, Weihs, & Lane, 

2020). A large literature in computational neuroscience and psychiatry has also shown that 

individuals differ in the magnitude with which their prior beliefs are updated after each 

new observation (i.e., differences in learning rate; e.g., see (Browning, Behrens, Jocham, 

O’Reilly, & Bishop, 2015; Chen et al., 2015; Huang, Thompson, & Paulus, 2017; Smith, 

Schwartenbeck et al., 2020)). Thus, in addition to basic validation analyses, we tested the 

specific hypotheses that: 1) higher interoceptive precision (IP) values would be associated 

with stronger ERPs in sensory processing regions (i.e., parieto-occipital leads sensitive 

to capsule vibrations in our previous study), and 2) learning rates – which constrain the 

magnitude of change in prior beliefs after each observation – would modulate the amplitude 

of ERPs in the hierarchically higher frontal regions associated with these slower-timescale 

processes. We also expected that 3) more precise prior expectations to feel a vibration would 

be associated with attenuated ERPs when a vibration occurs.

2. Materials and methods

2.1. Participants

40 healthy volunteers between the ages of 18 and 40 years (mean =22.9, standard deviation 

(SD) = 4.56; 21 male and 19 female, mean body mass index (BMI) = 24.18, SD = 
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3.03) were recruited from the general community within and surrounding Tulsa, Oklahoma 

through electronic and print advertisements. Participants completed structured medical and 

psychiatric screening evaluations including the MINI (Mini-International Neuropsychiatric 

Interview) (Sheehan et al., 1998). Exclusion criteria included current pregnancy, testing 

positive for drugs of abuse (as defined by a urine screen during screening and during the 

study visit), a current diagnosis of a psychiatric disorder based on the MINI (Sheehan et 

al., 1998), past or present diagnosis of a significant gastrointestinal disorder, gastrointestinal 

surgery, a respiratory, cardiovascular, renal, hepatic, biliary or endocrine disease, as well 

as chronic use of psychotropic medications or non-steroidal anti-inflammatory drugs. The 

study was conducted at the Laureate Institute for Brain Research and the study protocol was 

approved by the Western Institutional Review Board (IRB). All participants provided written 

informed consent and they received financial compensation for participation.

2.2. Vibrating capsule

The study protocol asked individuals to swallow a capsule that would generate potentially 

perceivable vibration sensations while in the stomach before passing through the digestive 

tract. The vibrating capsule was developed by Vibrant Ltd (Israel) and is under investigation 

as a non-pharmacologic therapeutic option for chronic constipation using delivery of 

stimulation in the colon. It consists of an orally administered non-biodegradable capsule 

that is wirelessly activated using an activation base unit (Fig. 1). The safety of this approach 

has been established in both healthy human volunteers (Ron et al., 2015) and in patients 

with chronic constipation (Nelson et al., 2017; Rao, Lembo, Chey, Friedenberg, & Quigley, 

2020). The Vibrant capsule is a non-significant risk device (NSR).

2.3. Masking procedure

Participants were told that two different modes of the Vibrant capsule were being evaluated, 

and that they would be randomly assigned to one of three arms of the study (capsule mode 

A, capsule mode B, or a placebo capsule that did not vibrate). This was done to minimize 

demand characteristics (i.e., expectations that they should perceive vibrations during the 

experiment). Participants were further informed that neither they nor the experimenter would 

know the assigned condition. However, each participant in fact received a capsule that 

delivered vibratory stimulations, making this a single-blinded protocol. Participants were 

instructed to begin fasting (defined as no food or drink) for 3 h prior to the study visit to 

ensure that the contents of the stomach were empty at the time of capsule ingestion.

2.4. Mechanosensory stimulation

Capsules were activated by placing them in the base unit. Immediately after activation, 

participants swallowed the capsule with approximately 240 mL of water, while seated in a 

chair. After ingestion, participants were asked to pay attention to their stomach sensations 

while resting their eyes on a fixation cross displayed on a monitor approximately 60 cm 

away. Participants were instructed to use their dominant hand to press and hold a button 

each time they felt a sensation that they ascribed to the capsule, and to release the button 

once the vibration sensation ceased (Fig. 1). Vibrations began approximately 3 min after 

capsule activation in the base unit. Participants remained seated throughout the experiment 

to minimize movement artifact in the EEG and electrogastrogram (EGG) signals. They 
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were told to rest their non-dominant hand in their lap and avoid palpating their abdomen. 

Throughout the experiment they were visually observed by a research assistant seated 

behind them to verify alertness and compliance with instructions.

In the experiment, each participant received two blocks of vibratory stimulation (normal 

and enhanced stimulation level) in counterbalanced order (19 received the normal block 

first, 21 received the enhanced block first). The normal condition entailed the delivery of 

a standard level of mechanosensory stimulation (as developed by Vibrant) consistent with 

the level of stimulation delivered during chronic constipation trials targeting the colon. The 

enhanced condition entailed delivery of an increased level of mechanosensory stimulation 

that was expected to facilitate gastrointestinal perception. Each block included a total of 

60 stimulations (with each stimulation being 3 s in duration), which were delivered in a 

pseudorandom order (i.e., pseudorandom inter-vibration intervals ranging between 6 and 23 

s) across a 13-minute period. After a 4-minute pause, a second round of 60 stimulations 

were delivered in pseudorandom order during a second 13-minute period (resulting in a 

33-minute period of participation following capsule ingestion). This timing ensured that the 

capsule remained in the stomach during stimulations, since the normal gastric emptying time 

is estimated to be approximately 30 min (Benini et al., 2004; Bluemel et al., 2017; Diamanti 

et al., 2003). Due to a technical error, 3 vibrations failed to occur in the enhanced vibration 

block (irrespective of counterbalancing).

2.5. Vibration detection

A digital stethoscope (Thinklabs One, Thinklabs Inc., USA) was gently secured against the 

surface of the lower right quadrant of the abdomen using a Tegaderm patch (15 × 20 cm, 3M 

Inc., USA) to precisely verify the vibration timing. The associated signal was continuously 

recorded during the entire experiment at a sampling rate of 1000 Hz and fed into the 

physiological recording software. We developed custom analysis scripts in Matlab (version 

2019b, Mathworks, Inc.) to confirm the timing of each vibration, including a two-step 

procedure to detect their onset and offset. In the first step, the script identified the vibration 

timings automatically using the “findchangepts” function in Matlab. In the second step, the 

timing for each vibration was double-checked manually and adjusted if needed (see our prior 

report for more details; (Mayeli et al., 2021)).

2.6. Physiological recordings

Electroencephalogram (EEG) signals were recorded continuously using a 32-channel EEG 

system from Brain Products GmbH (Munich, Germany). The EEG cap consisted of 32 

channels, including references, arranged according to the international 10–20 system. One 

of these channels recorded the electrocardiogram (ECG) signal via an electrode placed on 

the participant’s back, leaving 31 EEG signals available for analysis. The online reference 

for EEG recording was electrode FCz. The EEG signal was acquired with a 0.2 millisecond 

(ms) temporal resolution (i.e., 16-bit 5,000 Hz sampling), and a measurement resolution of 

0.1 microvolts (μV).

Electrogastrogram (EGG) signals were recorded continuously using a Biopac MP150 

Acquisition Unit (Biopac Inc., USA) and running Acknowledge software version 4.4.2 at 
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a sampling rate of 1000 Hz. Two active abdominal electrodes positioned below the left costal 

margin and between the xyphoid process and umbilicus were utilized to capture cutaneous 

EGG signals. The reference electrode was positioned in the right upper quadrant in line with 

the others (Dirgenali, Kara, & Okkesim, 2006).

The same Biopac MP150 Acquisition Unit was used to record the skin conductance response 

(SCR) and ECG at a sampling rate of 1000 Hz. SCR was recorded via two gel-filled 

electrodes placed on the thenar and hypothenar eminences of the nondominant palm. 

The ECG signal was obtained using two electrodes positioned in a lead-2 placement. All 

physiological recordings were screened for artifacts (e.g., motion) and analyzed offline using 

AcqKnowledge version 4.4.2 and Matlab version 2019b. A 30-minute eyes open period 

of recording preceded the capsule ingestion for baseline estimation of resting peripheral 

physiological (EGG, ECG, and SCR) parameters.

2.7. EEG data processing

All pre- and post-processing of EEG data was completed using BrainVision Analyzer 2 

software (Brain Products GmbH, Munich, Germany). Data was downsampled to 250 Hz. 

Next, a fourth order Butterworth (i.e., 24 dB/octave roll off) band-rejection filter (1 Hz 

bandwidth) was applied to remove alternating current (AC) power line noise (60 Hz). Then, 

a bandpass filter between 0.1 and 80 Hz (eighth order Butterworth Filter, 48 dB/octave 

roll off) was utilized to filter out signals unrelated to brain activity. Infomax independent 

component analysis (ICA) was then applied for independent component decomposition (Bell 

& Sejnowski, 1995) over the entire data length, after excluding intervals with excessive 

motion-artifact. ICA was run on the data from 31 EEG channels yielding 31 independent 

components (ICs). The timecourse signal, power spectrum density, topographic map, and 

energy of these ICs were utilized to detect and remove artifactual ICs (i.e., muscle, ocular, 

and single channel artifacts) (Mayeli, Zotev, Refai, & Bodurka, 2016). Additional steps 

were also applied to identify the ERP signals (see Mayeli et al., 2019). The data was first 

segmented from the 200 ms prior to each vibration to the 3000 ms post onset of each 

vibration, allowing baseline correction to the average of the 200 ms interval preceding the 

vibration onset. Next, EEG data was re-referenced to the average of the mastoid channels 

(TP9 and TP10). Automated procedures were then applied to detect bad intervals and 

flatlining in the data. Bad intervals were defined as those with any change in amplitude 

between data points that exceeded 50 μv or absolute fluctuations exceeding 200 μV in any 

200 ms interval of the segments (i.e., −200 to 3000 ms); flatlining was defined as any 

change of less than 0.5 μV in a 200 ms period. Trials that included any of these artifacts 

were excluded. Based on initial inspection of the ERP waveform, there was a prominent 

late positive deflection in the ERP signal peaking around 600 ms and lasting up to 3000 

ms (see Fig. 6 in results section below). To capture the peak of this response, for each 

electrode we measured the response to a vibration as the mean amplitude of activation from 

300 to 600 ms after vibration onset (i.e., starting on the downward slope of this deflection 

and continuing to include its maximum amplitude) relative to a baseline value defined by 

the average of the EEG signal 200 ms prior to onset. Although much less pronounced, 

further inspection suggested there was also a negative deflection within an earlier window 

peaking around 150 ms in certain electrodes. To capture this response, for each electrode we 
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measured the response to a vibration as the mean amplitude of activation from 100 to 176 

ms (this choice of time window was also informed by contrasts of the normal vs. enhanced 

stimulation blocks in our previous study; see (Mayeli et al., 2021) for further details). We 

therefore also examined the possibility of a relationship between computational parameters 

and responses within this early time window.

2.8. Peripheral physiological data processing

The single-channel EGG recording from each participant was divided into baseline (pre

stimulus), normal, and enhanced windows based on the counterbalanced protocol. For 

each window, the spectral power was computed to identify the location with the largest 

activity in the normogastria range (2.5–3.5 cycle per minute (cpm)). The spectral power 

analysis retained peaks of frequency in each condition for each participant. Fast Fourier 

Transform (FFT) from the FieldTrip toolbox version 2020-12-02 (Oostenveld, Fries, Maris, 

& Schoffelen, 2011) was utilized to estimate the spectral power with a Hanning taper to 

reduce spectral leakage and control frequency smoothing. To further characterize the gastric 

rhythm, we adopted a finite impulse response (FIR) filter to filter the EGG signal into 

low frequency ranges. FIR copes very well with very low frequency filtering (as shown 

in (Wolpert, Rebollo, & Tallon-Baudry, 2020)). Then, a Hilbert transform was applied to 

compute the instantaneous phase and amplitude envelope of the gastric rhythm. To further 

account for bad segments in the data, we used the artifact detection method described in 

(Wolpert et al., 2020). This method relies on the regularity of the computed cycle durations 

(the SD of cycle duration from the condition). More specifically, a segment was considered 

an artifact if either 1) the cycle length was greater than the mean ± SD of the cycle 

length distribution, or 2) the cycle showed a non-monotonic change in phase. Following 

the decision tree approach, any cycles with either of these conditions was considered as an 

artifact and excluded. The power spectral analysis was calculated again after excluding bad 

segments from the EGG signal, including subsequent filtering. Here we report the absolute 

power for each of four gastric ranges: normogastria (2.5–3.5 cpm), tachygastria (3.75–9.75 

cpm), bradygastria (0.5–2.5 cpm), and total power (0.5–11 cpm) (in line with (Vianna & 

Tranel, 2006)).

Data from ECG recordings were used to compute the average phasic heart rate change 

in beats per minute (BPM) in response to each vibration. This was done by computing 

the BPM for the 3 s after each vibration onset relative to the 3 s prior to each vibration. 

Specifically, the peaks of the R-waves were used to estimate heart rate from ECG recordings 

for pre-stimulus and stimulus segments (a custom peak detection algorithm in Matlab was 

used for peak detection), and the difference in heart rate between the 3-second stimulus 

segment and 3-second pre-stimulus segment was used to derive the vibration-induced heart 

rate response. As a control condition, for ECG recordings during the pre-task resting 

baseline period we generated a series of 60 pseudo-events with 30-second intervals within 

the 30-minute baseline period (after ignoring the first 2 min to allow for reaching a 

physiological steady state) and calculated the same response metric. To assess tonic heart 

rate levels, we additionally estimated the overall heart rate for each block.
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SCR was estimated using Continuous Deconvolution Analysis (CDA) implemented in the 

Ledalab Toolbox version 3.4.9 (Bach, 2014). We assessed phasic changes from pre-stimulus 

to stimulus segments (3 s after each vibration onset relative to the 3 s prior) using the 

maximum value of the phasic activity (i.e., peak response amplitude) metric. For each block, 

we downsampled the signal to 20 Hz and applied a smoothing window of 200 ms after 

setting the threshold of significant events to 0.01 microSiemens (μS). As a control condition 

(similar to analyses of heart rate above), for SCR recordings during the pre-task resting 

baseline period we used the same pseudo-events from the baseline period to characterize 

changes in SCR relative to physiological rest.

2.9. Self-report measures

Participants completed several self-report surveys indexing potentially relevant state factors 

(including Visual Analog Scales with ratings from 0–100). Before the task they were asked:

“How hungry do you currently feel?” (0 = Not at all/none, 100 = Extremely, most I have 

ever felt).

“How thirsty do you currently feel?” (0 = Not at all/none, 100 = Extremely, most I have ever 

felt).

After the task they were asked:

“Overall, how pleasant/unpleasant did your body feel during the capsule stimulation?” (0 = 

Extremely unpleasant, 100 = Extremely pleasant)

“How would you describe your state of mind during the capsule stimulation?” (0 = Foggy/

Unable to think clearly, 100 = Focused/Able to think with complete clarity)

“How difficult was it to detect the stomach sensations?” (0 = Very easy, 100 = Very difficult)

“How confident were you in your overall ability to accurately detect the capsule vibrations?” 

(0 = Not at all, 100 = Extremely)

These were adapted from scales we have previously developed and used in studies of cardiac 

interoception (e.g., see (Smith, Kuplicki, Feinstein et al., 2020; Smith, Feinstein et al., 

2021)). Participants also completed other previously validated affective and interoceptive 

measures, including the Multidimensional Assessment of Interoceptive Awareness (MAIA; 

(Mehling et al., 2012)), Anxiety Sensitivity Index (ASI; (Sandin, Chorot, & McNally, 

2001)), and Positive and Negative Affect Schedule (PANAS; (Watson, Clark, & Tellegen, 

1988)). For a detailed description of these measures, see Supplementary Materials.

2.10. Computational modelling

Computational modelling plays a central role in our approach. Instead of just looking 

for differences or correlations between behavioral and physiological responses, we aim 

to explain these responses in terms of Bayesian belief updating induced by interoceptive 

signals. This requires us to model belief updating under ideal Bayesian observer 

assumptions – and then use empirical responses to estimate each individual’s prior beliefs, 

Smith et al. Page 8

Biol Psychol. Author manuscript; available in PMC 2021 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interoceptive precision, and learning rates. The use of ideal Bayesian observer models of this 

sort is sometimes referred to as computational phenotyping – and rests on a formal or first 

principle account of how people assimilate sensory information.

To quantify the belief updating that underlies task performance, we adopted a Bayesian 

computational modelling approach analogous to that used in recent heartbeat tapping 

paradigms (Smith, Kuplicki, Feinstein et al., 2020; Smith, Kuplicki, Teed et al., 2020). 

This model of perception was derived from a Markov decision process (MDP) formulation 

of active inference that has been used in previous work; for more details about the structure 

and mathematics of this class of (discrete state space) models, see (Friston, FitzGerald et 

al., 2017; Friston, Parr et al., 2017; Parr & Friston, 2017; Smith, Friston et al., 2021). For 

a graphical depiction of our model and the associated vectors and matrices, see Fig. 2, and 

further descriptions in Table 1. Matlab code used to build this model and fit parameters to 

behavioral data can also be accessed at https://github.com/rssmith33/Gut-Inference-Model

Scripts.

Observations (o) in the model were categorical and included no-vibration, vibration, and 

a “start” observation. Hidden states (s) in the model, which were inferred based on 

observations, were also categorical and included a no-vibration state, a vibration state, 

and a “start” state (i. e., the vibration observations corresponded to the ground truth, 

whereas vibration states corresponded to a participant’s perception). Each trial in the model 

corresponded to a 3-second time window during the task in which participants were told a 

vibration might be felt. Each trial formally had two timesteps (t = 1 and t = 2). At t = 1, 

the participant always formally began in the “start” state and made the associated “start” 

observation. At t = 2, the participant either made a no-vibration or vibration observation 

and inferred whether they had transitioned from the “start” state into the no-vibration or 

vibration state. In other words, they inferred a posterior distribution over states p(st=2) that 

assigned a probability to the no-vibration state and to the vibration state, where this posterior 

distribution was informed by 1) prior beliefs about the probability of transitioning from the 

“start” state to each of the two states, p(st=2|st=1), and 2) beliefs about the likelihood of 

making a no-vibration or vibration observation given the presence of the no-vibration or 

vibration state, p(ot|st).

A vector D encoded prior beliefs over initial states, p(st=1), which specified that the 

participant always started the trial in the “start” state with a probability of 1 (see vector 

in upper left portion of the model depiction in Fig. 2). A matrix B encoded the probability 

that each state would transition into any other state:

B = p st + 1 ∣ st =
0 0 0

1 − pV 1 0
pV 0 1

Here, columns indicate (from left to right) the “start” state, the no-vibration state, and the 

vibration state at time t = 1, and rows (from top to bottom) indicate the “start” state, the 

no-vibration state, and the vibration state at time t = 2. The probability of transitioning from 

the “start” state to a vibration state vs. a no-vibration state was encoded by a parameter 
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pV, where values above 0.5 indicate prior beliefs that transitions from the “start” state to 

the vibration state are more likely (e.g., expecting a faster vibration rate), and values below 

0.5 indicate prior beliefs that transitions from the “start” state to the vibration state are 

less likely (e.g., expecting fewer vibrations across the task). Note that the second and third 

columns simply indicate that, once entering a vibration or no-vibration state, this does not 

subsequently change within the trial (i.e., as subsequent vibration observations are modelled 

as subsequent trials).

A matrix A encoded the probability of observations given states:

A = p ot ∣ st =
1 0 0
0 IP 1 − IP
0 1 − IP IP

Here, columns indicate (from left to right) the “start” state, the no-vibration state, and 

the vibration state, and rows (from top to bottom) indicate the “start” observation, the 

no-vibration observation, and the vibration observation. The probability of observing a 

vibration or no-vibration if a vibration or no-vibration state were present was encoded by an 

“interoceptive precision” parameter (IP). A value of 0.5 for IP indicates minimal precision – 

that is, that the probability of observing a vibration or no-vibration is 0.5 when in either the 

vibration or no-vibration state. In contrast, a value approaching 1 indicates high precision – 

that is, that the probability of observing a vibration is high when in a vibration state and low 

when in a no-vibration state (and vice-versa when observing no-vibration). Thus, precision 

here simply reflects how peaked vs. flat the probabilistic mapping is between states and 

observations.

The probability over states for the first timepoint (st=1) was always equal to 1 over the start 

state. Belief updating in the perception model was based on the following equation at time t 
= 2:

st = 2 = σ lnBst = 1 + lnATot = 2

This equation corresponds to Bayesian inference, in which prior beliefs (lnBs t=1) are 

integrated with the likelihood distribution and the vibration or no-vibration observation at 

the second timepoint (lnATot=2), and then converted into a proper probability distribution via 

a softmax (normalized exponential) function σ(•) – leading to a posterior distribution over 

vibration states (st=2).

Our response model formally included two actions, the choice to press the button or not 

press the button. This model made the assumption that the probability of choosing to press 

vs. not press the button corresponded to the posterior probability assigned to the vibration 

vs. no-vibration state at time t = 2 in each trial:

p(press) = p st = 2 = vibration
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In other words, button-pressing behaviors were sampled from the posterior distribution over 

vibration vs. no-vibration states, such that choices to press the button became more likely as 

the posterior probability of a vibration state approached 1 and choices not to press the button 

became more likely as the posterior probability of a vibration state approached 0. No further 

parameters were included in the response model to account for behavioral stochasticity. 

This is because, in the context of the present task, parameters encoding randomness in 

behavior cannot be distinguished from IP, as both effectively control the precision of the 

posterior distribution from which button-pressing actions are sampled in response to the 

vibration/no-vibration signal. However, because button-pressing could be registered at any 

point within the 3-second vibration window, the explanatory role of motor stochasticity if 

participants intended to press the button appeared minimal.

Aside from IP and pV, a number of additional parameters were considered, such as the 

possibility that IP differed between normal and enhanced blocks, whether participants 

updated the values of IP and pV over time, and whether this type of learning occurred at 

different rates for different individuals. In the present task context, and as described further 

below, learning rate parameters specifically allow for the possibility that a participant might 

update beliefs differently in response to the perceived presence or absence of a vibration. 

For example, the prior belief that a vibration will be felt may increase quickly with each 

perceived vibration, but decay more slowly during the variable-length intervals between 

vibrations.

To assess for the presence of learning and/or block-specific precisions, we used Bayesian 

model comparison to evaluate the relative evidence for several models including different 

combinations of these parameters (see Table 2), including 1) a difference in IP between 

blocks (IPdiff), where IP = IP − IPdiff within the normal block; 2) learning (with different 

possible learning rates) for updating IP; and 3) learning (with different possible learning 

rates) for updating pV. As mentioned above, we also considered models in which learning 

rates differed when observing the presence vs. absence of a vibration. Learning within our 

model involves updating beliefs about pV and/or IP after each trial (3-second window). In 

the case of pV, every time a vibration is felt, prior beliefs favoring feeling a vibration go 

up, and every time no-vibration is felt this (relative) belief goes back down. Formally, this 

corresponds to updating the concentration parameters of Dirichlet (Dir) priors associated 

with the B matrix (b) that specify beliefs about state transitions. At trial = 1:

p(B) = Dir(b)

b = p st + 1 ∣ st =
0 0 0

1 − pV 1 0
pV 0 1

btrial+1 = btrial + ηpV × ∑
t

st + 1 ⊗ st
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Here ⊗ indicates the cross-product, and ηpV is a scalar that controls the magnitude of 

change in concentration parameters after each trial. Learning IP is similar:

p(A) = Dir(a)

a = p ot ∣ st =
1 0 0
0 IP 1 − IP
0 1 − IP IP

atrial+1 = atrial + ηIP × ∑
t

ot ⊗ st

This equation entails that the probability of a vibration observation given a vibration state 

should increase if one observes a vibration observation while believing that one is in a 

vibration state (and so forth for each combination of observations and state beliefs), with a 

learning rate of ηIP.

Thus, the final parameters estimated for each participant (in different combinations in 

different models) included IP, IPdiff, pV, and learning rate (η; where distinct learning 

rates could apply to IP and pV under no-vibration and vibration states/observations). 

Our approach to parameter estimation employed a commonly used Bayesian optimization 

algorithm (called Variational Bayes) to estimate each participant’s parameter values that 

maximized the likelihood of their responses (under the assumption that a higher/lower 

probability assigned to feeling a vibration corresponded to a higher/lower probability 

of choosing to press the button), as described in (Schwartenbeck & Friston, 2016). We 

optimized these parameters for each model using this likelihood and variational Laplace 

(Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007), implemented within the 

spm_nlsi_Newton.m parameter estimation routine available within the freely available 

SPM12 software package (Wellcome Trust Centre for Neuroimaging, London, UK, http://

www.fil.ion.ucl.ac.uk/spm). This estimation approach has the advantage of preventing 

overfitting, due to the greater cost it assigns to moving parameters farther from their 

prior values. Estimating parameters required setting prior means and prior variances for 

each parameter. The prior variance was set to a high precision value of 1/4 for each 

parameter (i.e., deterring overfitting), and the prior means were set as follows: IP = .95, 

IPdiff = .2, pV = .5, and η = .5. Our decision for selecting these priors was motivated 

in part by initial simulations confirming that parameter values were recoverable under 

these prior values (reported in Results section). The pV and η prior values were further 

chosen to minimize estimate bias, as pV = .5 assumes flat prior beliefs, and η = .5 

does not bias estimates in favor of values closer to its extremes of 0 or 1. IP and 

IPdiff priors were based on preliminary inspection of behavior using model-free accuracy 

measures. After fitting parameters for each model (Table 2 lists the models we included), 

we then performed Bayesian model comparison (based on (Rigoux, Stephan, Friston, & 

Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran, & Friston, 2009)) to determine the 

best model. Once the winning model was established, we ran analyses to confirm that 
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parameters in this model were recoverable. Namely, we simulated behavior under the range 

of parameter value combinations characterizing each participant, estimated parameters from 

this simulated data, and then ran correlations confirming that the generative parameters and 

estimated parameters were highly correlated. Parameter estimates in the winning model were 

subsequently used for between-subjects analyses.

2.11. Statistical analysis

As our focus here was on methodological validation, between-subjects analyses focused 

on expected and potentially moderating relationships between model parameters and 

self-report/demographic, EEG, and peripheral physiological (EGG, heart rate, and 

skin conductance responses) measures. For self-report/demographic measures, we ran 

exploratory Pearson correlations with model parameters. These were not meant to 

test specific hypotheses, but simply to characterize potential moderating influences 

or relationships that would support parameter construct validity. We treat these 

correlations primarily as hypothesis-generating. However, we also report results of 

a supplementary canonical correlation analysis (using the CCP and CCA packages 

in R: https://cran.r-project.org/web/packages/CCA/CCA.pdf; https://cran.r-project.org/web/

packages/CCP/CCP.pdf) as a multivariate test to further examine the predictive validity 

of these exploratory correlations. For the interested reader, we note which correlations 

are significant at uncorrected levels. To provide further information about the strength 

of evidence for identified relationships, we also list Bayes factors for these correlations 

comparing the evidence for the presence vs. absence of associations between variables 

(using the correlationBF function within the BayesFactor package using default prior scales 

in R (Morey & Rouder, 2015; Rouder, Morey, Speckman, & Province, 2012)). The Bayes 

factor (BF) represents the ratio of the probability of observed data under one model vs. 

another (i.e., where a higher probability of data under a model provides more evidence for 

that model). For example, BF = 1 indicates equal evidence for two models, while BF = 3 

indicates three times as much evidence for one model relative to another. When interpreting 

the strength of evidence of each finding below, we adopt the guidelines described in Lee 

and Wagenmakers (Lee & Wagenmakers, 2014): BF = 1–3, poor/anecdotal evidence; 3–10, 

moderate evidence; 10–30, strong evidence, 30–100, very strong evidence, >100, extremely 

strong evidence.

For the EEG analyses, we expected that sensory precision parameters (IP and IPdiff) would 

have (excitatory and inhibitory, respectively) influences on signals from posterior brain 

regions associated with sensory processing (i.e., in the parieto-occipital leads examined 

in our previous study), and that pV values should have inhibitory influences on those 

signals. We also expected that pV and learning rates (reflecting hierarchically higher 

and/or more slowly evolving influences) would be uniquely associated with frontal 

leads. To test these hypotheses, we first performed a clustering analysis to establish 

that recordings from parieto-occipital and frontal leads formed distinct response clusters 

(using the agglomerative complete linkage method within the ‘hclust’ function in R; https://

cran.r-project.org/web/packages/fastcluster/fastcluster.pdf). The optimal cluster number was 

determined by calculating average silhouette widths (using the ‘pam’ function within the 

‘cluster’ package in R; https://cran.r-project.org/web/packages/cluster/cluster.pdf), which 
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score the degree to which each observation is similar to its own cluster relative to other 

clusters. We then performed an exploratory maximum likelihood factor analyses (using the 

‘factanal’ function in R with varimax rotation; https://www.rdocumentation.org/packages/

stats/versions/3.6.2/topics/factanal) for each cluster to identify the latent factors accounting 

for the strong covariance across the parieto-occipital and frontal leads, respectively. We 

then calculated latent factor scores for each participant using a standard least squares 

regression method (i.e., Thomson’s method (Thomson, 1935)). Using these factor scores, 

we ran parametric empirical Bayes (PEB) analyses (Friston, Litvak et al., 2016; Zeidman 

et al., 2019) using standard Matlab routines (spm_dcm_peb.m, spm_dcm_peb_bmc.m) 

to assess the relationship between model parameters and parieto-occipital and frontal 

responses, respectively. PEB computes group posterior estimates in a general linear model 

that incorporates posterior variances of individual-level parameter estimates when assessing 

evidence for group-level models with and without the presence of effects of interest. Here 

we ran models including age, sex, block order, BMI, and the identified latent factors 

underlying frontal and parieto-occipital responses (respectively) as predictor variables. This 

allowed us to evaluate the strength of evidence for relationships between model parameters 

and both frontal and parieto-occipital responses. We then ran post-hoc correlations for 

the latent factor scores and for each lead separately to further interpret the identified 

relationships.

For peripheral physiological measures (EGG, heart rate, SCR) we had no a priori 
hypotheses. We therefore ran simple exploratory Pearson correlations between model 

parameters and these measures (and calculated associated BFs) for the baseline resting 

period and for each block.

3. Results

3.1. Model comparison and parameter recoverability

Table 2 shows the results of model comparison. The winning model (with protected 

exceedance probability of 0.88) included IP, IPdiff, pV, and separate learning rates for priors 

(ηpV) when observing vs. not observing a vibration (henceforth, ηv vs. ηnv). Recoverability 

analyses confirmed that these parameters were recoverable within the range of values 

represented by participant estimates. Specifically, when generating simulated behavior under 

the combinations of parameter values observed in participant estimates (and estimating 

parameter values for the simulated behavior), the correlation between true and estimated 

parameters were as follows: IP (r(33) = .91, p < .001), IPdiff (r(33) = .97, p < .001), pV 
(r(33) = .64, p < .001), ηv (r(33) = .77, p < .001), ηnv (r(33) = .92, p < .001).

3.2. Model parameters and task behavior

Means and SDs for each parameter were as follows: IP (M = .98, SD = .02), IPdiff (M = .1, 

SD = .07), pV (M = .54, SD = .05), ηv (M = .54, SD = .08), ηnv (M = .38, SD = .11).

Because parameters were not normally distributed, they were log-transformed for all 

subsequent analyses using the R package ‘optLog’ (https://github.com/kforthman/optLog) to 

find the optimal log-transform that minimizes skew. Model parameters showed small to large 
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correlations (see Supplementary Figure S1). Notably, IP and IPdiff were negatively correlated 

(r(40) = −.52), indicating that those who had lower interoceptive precision in general also 

showed a greater decrease in precision in the normal block relative to the enhanced block. 

Learning rates for vibration vs. no-vibration showed a strong inverse correlation (r (40) 

= −.87), indicating that priors that increased more quickly when a vibration was felt also 

decayed more slowly when vibrations continued to be absent. IPdiff was also correlated with 

learning rates, indicating that individuals with a greater reduction in IP from the enhanced 

to normal block also increased their expectations to feel a vibration more slowly (r (40) = 

−.57) and decreased these expectations more quickly (r(40) = .72; as would be expected if 

vibrations in the normal block were less precisely perceived).

Model parameters showed expected relationships with other behavioral measures. Namely, 

reaction times – which are independent of model fitting – were faster in those with higher 

IP (r(40) = −.74) and slower in those with greater IPdiff (r(40) = .46). They were also faster 

in those who increased prior expectations to feel a vibration more quickly (r(40) = −.50), 

and slower in those for which these expectations decayed more quickly during the absence 

of vibrations (r(40) = .36). Variability in reactions times showed a highly similar pattern (see 

Fig. 3). Examination of behavior in terms of true/false negatives/positives – which is not 
independent of model fitting – confirmed that higher IP (and lower IPdiff) tracked greater 

accuracy generally and that higher priors tracked greater numbers of both false and true 

positives (see Fig. 3). Learning rates primarily tracked true positives (facilitated by learning 

faster from vibrations) and false negatives (greater in those learning faster from the absence 

of vibrations). However, no parameter showed 1-to-1 correspondence with these model-free 

behavioral measures, but instead interacted within the model to generate distinct patterns in 

these behaviors over time in the task.

Model parameters did not differ by sex. Those who experienced the enhanced block first 

showed greater IPdiff (t(35) = 3.10, p = .004), learned more slowly from vibrations (t(36) = 

2.16, p = .04), and learned more quickly from the absence of vibrations (t(38) = 3.09, p = 

.004; see Fig. 4).

3.3. Relationship to self-report and demographic measures

See Supplementary Table S1 for descriptive statistics for self-report and demographic 

information, much of which is reproduced from our initial report (Mayeli et al., 2021). 

Exploratory correlation analyses revealed relationships (p < .05, uncorrected) between 

model parameters and a number of variables supporting construct validity. For example, 

both IP and IPdiff were correlated with self-reported detection difficulty and confidence in 

performance (i.e., as expected, higher IP and a smaller drop in IP between blocks (lower 

IPdiff) were associated with less perceived difficulty and greater confidence; see Fig. 5 

for exact correlation values and associated BFs). Interestingly, greater hunger and thirst 

at baseline, as well as a more pleasant experience during task performance, were also 

associated with smaller IPdiff. Priors showed a negative association with BMI and general 

positive affect ratings on the PANAS. Greater learning rates from vibrations were positively 

associated with baseline hunger and retrospective confidence in performance, and greater 

learning rates from the absence of a vibration were associated with a less pleasant task 
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experience. No parameters showed relationships with age or perceived level of focus during 

the task.

Tests of dimensionality in the supplementary canonical correlation analysis associated with 

exploratory correlations shown in Fig. 5 indicated that the first of five canonical dimensions 

was statistically significant (canonical correlation = .75, Wilks’ Lambda = .11, p = .045; 

Roy’s Largest Root = .57, p = .002). The canonical correlations for the second through fifth 

dimensions were = [0.68, 0.64, 0.43, 0.23]. This supports the predictive validity of these 

correlational results.

Supplementary Figure S2 shows additional exploratory correlations between parameters 

and both the ASI and MAIA scales. Overall, there was limited evidence of potential 

relationships, with the exception of possibly the MAIA ‘body listening’ subscale and 

learning rates.

3.4. ERP clustering analyses

Fig. 6 illustrates example ERP waveforms evoked by vibrations in both parieto-occipital and 

frontal electrodes.

For both the early (100–176 ms) and late (300–600 ms) time windows, our clustering 

analyses yielded the expected optimal 2-cluster solution (silhouette width = .77 and .81, 

respectively; see Supplementary Figure S3), where one cluster encompassed all parieto

occipital leads and the other encompassed all frontal leads (see Fig. 7). Factor analyses 

revealed that a single latent factor was sufficient to account for responses across each cluster 

(χ2 values between 213 and 296, all ps < .001). Subsequent PEB analyses therefore focused 

on these single latent factor scores.

3.5. Parieto-occipital ERPs

The winning (reduced) model within PEB analyses testing for relationships between model 

parameters and the latent parieto-occipital response factor in the early (100–176 ms) 

time window provided very strong evidence for a positive association with IP (posterior 

probability [pp] = 1; see Fig. 8) and some evidence for associations with pV (positive 

relationship; pp = .78) and IPdiff (negative relationship; pp = .70). Fig. 8 also shows 

subsequent post-hoc correlations illustrating that IP and IPdiff showed consistently positive 

and negative relationships (respectively) across several parieto-occipital leads. Consistent 

(but weaker) positive associations were also present with pV across leads. Note here that 

the differences between PEB results and these zero-order correlations are accounted for by 

included covariates as well as the way in which PEB considers posterior distributions over 

parameters (i.e., means and variances) as opposed to simply using the posterior means as 

point estimates.

The winning model within PEB analyses testing for relationships between model parameters 

and the latent parieto-occipital response factor in the later (300–600 ms) time window 

provided very strong evidence for positive associations with IP (see Fig. 8; pp = 1) and 

negative associations with IPdiff (pp = .99), consistent with the strong positive and negative 

relationships (respectively) across the several parieto-occipital leads also shown in Fig. 8.
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3.6. Frontal ERPs

The winning model within PEB analyses testing for relationships between model parameters 

and the latent frontal response factor in the early (100–176 ms) time window provided 

strong evidence for a positive association with IP (see Fig. 9; pp = .96). As also depicted in 

Fig. 9, IP showed a consistently positive (but weak) association across several frontal leads. 

The winning model within PEB analyses testing for relationships between model parameters 

and the latent frontal response factor in the latter (300–600 ms) time window provided 

positive evidence for a negative association with pV (see Fig. 9; pp = .89) and strong 

evidence for a positive association with ηnv (pp = .98). There was also some evidence for a 

positive association with IPdiff (pp = .78). As shown in Fig. 9, this pattern of relationships 

was present across several frontal leads.

3.7. Exploratory analyses of peripheral physiology

As we had no specific hypotheses regarding the EGG signal, we ran exploratory correlation 

analyses between EGG power and model parameters. While no associations were found 

between EGG and model parameters at baseline or during the enhanced block, there were 

significant correlations with EGG total power in the normal block for both IP (r(40) = −0.43, 

p = .006, BF = 9.8) and pV (r(40) = .41, p = .009, BF = 6.8). Subsequent analyses suggested 

that the relationship with IP was driven by all frequency bands (rs(40) = −0.3 to −.44, ps 

= .005–.06, BFs = 1.7–12.3), while the relationship with pV was driven primarily by the 

normogastria frequency band (r(40) = .42, p = .007, BF = 8.8; see Supplementary Figure 

S4). Skin conductance responses (maximum phasic response values) to vibrations across the 

task showed a positive association with IP (r(40) = .40, p = .01, BF = 6.7), and heart rate 

responses to vibrations across the task showed a positive association with ηv (r(40) = .34, 

p = .01, BF = 2.7). No associations were found with average heart rate. These relationships 

showed a similar pattern when analyzing the normal and enhanced blocks separately (see 

Supplementary Figure S4).

3.8. Block order effects

Because our results suggested that block order had an influence on parameter values, 

we ran supplementary analyses to examine whether the relationships between parameters 

and ERP results might also show different patterns. Supplementary Figures S5–S6 show 

correlation matrices examining these relationships for each block order separately. While 

many relationships were qualitatively similar, some suggestive differences were present 

(while noting the reduced sample size in each sub-group and resulting reduction in the 

stability/reliability of these correlations). For example, it was notable in both time windows 

that pV showed a pattern of positive relationships with parieto-occipital ERPs when the 

normal block was presented first, while there was a pattern of negative relationships when 

the enhanced block was presented first (which may have led these effects to cancel out 

somewhat across all participants). The relationship between frontal ERPs and IP in the early 

time window also appeared to be driven by individuals who received the normal-strength 

stimulation block first.
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4. Discussion

In this study we demonstrate a novel method for assessing individual differences in 

gastrointestinal interoception. This method combines 1) a noninvasive mechanosensory 

paradigm for measuring gut sensations (Mayeli et al., 2021) with 2) a Bayesian 

computational modelling approach for analyzing task behavior previously developed for 

studying cardiac interoception (Smith, Kuplicki, Feinstein et al., 2020; Smith, Kuplicki, 

Teed et al., 2020). However, unlike most cardiac interoception tasks, because the capsule 

vibration signal strength and timing could be precisely controlled, Bayesian modelling was 

able to estimate additional parameters when characterizing the belief updating underlying 

behavior. This included not only sensory precision and prior expectations, but also learning 

rates and changes in precision with different signal strengths. In other words, our modelling 

approach could identify individual differences in how prior beliefs evolve over time during 

the task and how these interact with internal estimates of the reliability of afferent GI 

signals.

Correlations with model-free measures of task behavior confirmed that model parameters 

tracked consistent patterns in behavior (e.g., higher precision with higher accuracy, stronger 

priors with higher numbers of false positives), but that each parameter accounted for 

different behavioral patterns to different degrees. Several model parameters were also 

strongly correlated with reaction times in anticipated directions (e.g., higher precision was 

associated with faster reaction times, suggesting a faster perceptual evidence accumulation 

rate). Because the model was not fit to reaction times, this provides stronger support for 

parameter construct validity than the relationships with accuracy. The model was also 

validated by self-report measures, where higher precision and faster learning rate (from 

felt vibrations) both correlated with greater self-perceived task performance (i.e., lower 

perceived difficulty and higher confidence).

Interestingly, those who received the enhanced block first showed a greater decrease in 

interoceptive precision in the normal block, which could indicate that they came to expect a 

more precise signal in the enhanced block – thereby reducing confidence when subsequently 

feeling the weaker signal in the normal block. This dynamic was not facilitated by the 

reverse ordering, suggesting that providing the enhanced block first may be a more sensitive 

approach to detecting certain individual differences. Future studies could capitalize on this 

effect by choosing an ordering most sensitive to individual differences in parameters of 

greatest interest, similar to the way auditory stimulus ordering has been used to build up 

prior expectations that promote perceptual illusions or ‘hallucinated stimuli’ in psychosis 

research (Powers, Mathys, & Corlett, 2017). In our supplementary analyses, for example, 

there were hints that presenting the enhanced vs. normal block first elicited distinct patterns 

of relationships between prior expectations and a number of EEG responses (e.g., positive 

relationships between pV and several parieto-occipital electrodes with normal-first, but 

negative relationships with enhanced-first).

As an additional validation, we then examined predicted relationships with event-related 

potentials (ERPs). The neural process theory associated with active inference models (from 

which our Bayesian model was derived; (Friston, FitzGerald et al., 2016, 2017; Parr & 

Smith et al. Page 18

Biol Psychol. Author manuscript; available in PMC 2021 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Friston, 2018; Smith, Friston et al., 2021)) postulates that firing rates in specific neuronal 

populations encode the strength of belief in one perceptual interpretation vs. another (here, 

the interpretation that a vibration state was or was not present). The rate of change in 

firing rates (corresponding to rate of change in beliefs or speed of evidence accumulation) 

should consequently generate stronger ERPs. The neural process theory also postulates that 

deeper levels in a neural hierarchy provide perceptual processing with prior expectations, 

and that changes in these expectations (and associated learning rates) operate over slower 

timescales. This motivated our hypotheses that higher interoceptive precision should 

correspond to stronger ERPs in perceptual (i.e., parieto-occipital) regions and that stronger 

prior expectations to feel a vibration (and a slower decay in these expectations; i.e., both 

promoting less surprise) should dampen ERPs in higher frontal regions. These associations 

would also be expected within the closely related theory of predictive coding (Bogacz, 

2017), which describes perceptual inference as a process of updating beliefs to minimize 

precision-weighted prediction errors – where higher sensory precision amplifies prediction 

errors (and therefore ERPs), while stronger (more precise) prior beliefs downweight 

prediction errors (dampening ERPs). Consistent with our predictions and the hypothesized 

link between precision, belief updating, and ERPs, the Bayesian analyses and post-hoc 

correlations confirmed that several parieto-occipital electrodes showed stronger responses to 

capsule vibrations with higher sensory precision. Further, several frontal electrodes showed 

dampened responses with more precise prior expectations and in individuals who showed a 

slower rate of decay in those prior expectations (i.e., slower learning rate from the absence 

of a vibration). Interestingly, the association between frontal regions and prior expectations 

and learning rates was only present at the later (300–600 ms) time window – consistent 

with the idea that learning occurs over slower time scales than perception (Bogacz, 2017; 

Friston, FitzGerald et al., 2016; Kiebel et al., 2008; Murray et al., 2014). These results each 

provide additional support for the hypothesis that prior expectations, and their evolution over 

time, are associated with deeper (frontal) levels in a processing hierarchy. It also provides 

empirical support for the postulated relationship between belief updating and ERPs in active 

inference (Friston, Parr et al., 2017; Parr, Markovic, Kiebel, & Friston, 2019; Smith, Friston 

et al., 2021).

We also explored whether computational model parameters might show relationships with 

peripheral electrophysiological patterns associated with skin conductance, heart rate, and 

stomach activity (EGG signal). We found that phasic skin conductance changes (indexing 

evoked autonomic activity) were positively associated with interoceptive precision, 

consistent with the notion that signals are more surprising (i.e., they lead to greater belief 

updating) when they are believed to be precise. We further found that those who learned 

faster in response to vibrations showed greater heart rate changes in response to each 

vibration. This latter finding appears consistent with theories of arousal-facilitated learning 

(e.g., see (Mather, Clewett, Sakaki, & Harley, 2015)), but we stress that these results are 

preliminary and strong interpretation will not be warranted until they are replicated in future 

work.

Finally, we found that both prior beliefs and interoceptive precision were associated with 

EGG signals during periods of normal (but not enhanced) vibration strength. Because the 

baseline (pre-task) EGG signal was not associated with these parameters, it could be argued 

Smith et al. Page 19

Biol Psychol. Author manuscript; available in PMC 2021 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that capsule vibration may have influenced stomach activity in a manner that depended 

on differences in prior beliefs and beliefs about the precision of the afferent signal (i.e., 

suggesting an effect that could also be perceptually mediated). However, our prior report 

(Mayeli et al., 2021) found no change in EGG from baseline to normal vibration periods at 

the group level. With this in mind, our results could suggest that the presence of the afferent 

signal may have led to increases in EGG power from baseline in those whose vibration 

percepts were more strongly driven by prior beliefs (i.e., under-constrained by the afferent 

signal), while greater sensitivity to the afferent signal instead promoted reductions in EGG 

power from baseline. One possible reason why this relationship may have been absent in the 

enhanced vibration block is a ceiling effect. Specifically, performance was quite high (and 

less variable) on average in this block, suggesting that the signal may have been too precise 

– potentially leading to a reduced sensitivity to detect individual differences that manifest 

primarily at weaker signal strengths. The precise functional significance and correct causal 

interpretation of the relationship between EGG and priors/precision is unclear, and we do 

not interpret it further. However, future studies might examine the degree to which this 

individual difference indicator could illuminate perceptual processing in specific groups of 

individuals, such as in clinical populations characterized by faulty inferences about body 

states and symptoms (Van den Bergh, Witthoft, Petersen, & Brown, 2017). For example, 

abnormal predictions about body sensations (including bloating, cramping, fullness, or 

hunger) are considered to play a role in conditions such as eating disorders (Bernardoni 

et al., 2018; Frank, Collier, Shott, & O’Reilly, 2016; Kaye, Fudge, & Paulus, 2009; Khalsa 

et al., 2015), somatic symptom disorders (Barsky, Peekna, & Borus, 2001; Flasinski et al., 

2020), functional neurological disorders (Drane et al., 2020; Edwards et al., 2012; Espay et 

al., 2018), and functional bowel disorders (Kwan et al., 2005; Simren et al., 2018; Smith, 

Gudleski, Lane, & Lackner, 2019; Tillisch & Mayer, 2005).

Here it is also worth considering how our results might build on previous interoception 

research involving other GI stimulation methods, many of which have focused on the 

esophagus and colon. For example, one common method for assessing GI interoception is 

electrical stimulation of the esophagus (Frieling, Enck, & Wienbeck, 1989). Consistent with 

our computational framework, studies using this approach have found that the amplitude of 

cortical evoked potentials decreases with an increasing number of stimulations – as would 

be expected if the brain builds up prior expectations for the presentation of a stimulus over 

time (Frieling et al., 1989; Frobert et al., 1994; Frobert, Arendt-Nielsen, Bak, Funch-Jensen, 

& Bagger, 1995; Sollenbohmer, Enck, Haussinger, & Frieling, 1996; Tougas, Hudoba, 

Fitzpatrick, Hunt, & Upton, 1993). This same dynamic would also be predicted by our 

model if ERPs were assessed on a vibration-by-vibration basis, which will be an important 

future direction (for related EEG studies of esophageal stimulation using balloon distention, 

see (Castell, Wood, Frieling, Wright, & Vieth, 1990; Smout, DeVore, Dalton, & Castell, 

1992; Weusten, Franssen, Wieneke, & Smout, 1994)). Another widely used approach has 

been stimulation of the sigmoid colon, using either electrical- or balloon distension-based 

stimuli. This approach has previously been used to show how detection of colon stimulation 

can be dissociated from reportable sensations in common psychophysics and forced-choice 

paradigms (Holzl, Erasmus, & Moltner, 1996). While not done here, our paradigm could 

allow the possibility of assessing similar phenomena for stomach sensations (and their 
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neurocomputational basis) by considering vibration periods where individuals do vs. do 

not report a sensation. These esophageal and colon stimulation studies have implicated 

somatosensory, insula, and cingulate brain regions consistent with the correlates of our prior 

expectation and learning rate parameters (for a review, see (Aziz & Thompson, 1998)), 

while more recent work has also characterized a “gastric network” including posterior 

parietal regions consistent with correlates of our interoceptive sensory precision parameters 

(Rebollo, Devauchelle, Beranger, & Tallon-Baudry, 2018). It will be important for future 

research to further disentangle how computational mechanisms relate to this prior body of 

work.

Our computational modelling approach to this task is not without limitations. While model 

parameters were recoverable, and model comparison supported our model as having the 

most evidence, other generative models might have been considered (e.g., the Hierarchical 

Gaussian Filter; (Mathys et al., 2014)). Our approach also requires a choice of how to 

discretize time (e.g., where we here considered each 3-second period as a “trial”). Our 

choice was based on the length of vibration intervals, but other discretization schemes might 

have been used. The task is also novel, with a number of limitations in interpretability 

described in more detail in our prior report (e.g., the specific molecular signal transduction 

mechanisms and afferent neuronal pathways by which the vibration signal reaches the brain 

are unclear; (Mayeli et al., 2021)). Our sample size was also relatively small by modern 

standards and provided limited power to detect significant relationships in our exploratory 

correlation analyses (e.g., in Fig. 5). The exploratory nature of several of our correlational 

analyses also entails that – beyond their use as validating the novel method we have 

described – they should be considered primarily as hypothesis generating. Future studies 

with larger samples and strong a priori hypotheses will therefore be necessary to confirm 

the patterns of relationships we observed. Finally, our selection of ERP time windows was 

based mainly on initial visible inspection of the ERP waveform (and based on differences 

between ERPs evoked by the normal vs. enhanced conditions described in our prior report; 

see (Mayeli et al., 2021)). Future studies might examine other time windows and could 

benefit from more sophisticated means of time window selection.

With these limitations in mind, our paradigm also has important strengths that merit 

its use in further work. Namely, unlike traditional cardiac perception tasks, the timing 

and strength of the interoceptive signal can be precisely controlled, without resorting to 

invasive means. The mechanosensory means of stimulation taps into a clinically significant 

interoceptive modality (‘gut feelings’ within the GI system) that has been understudied in 

the psychological literature due to the inaccessibility of the body’s interior. This method 

allows for fast, repeatable GI stimulations (unlike other measures of GI interoception; e.g., 

water loading (van Dyck et al., 2016)) and consequently affords more sophisticated analyses. 

Namely, it lends itself to computational modelling approaches such as those used here that 

treat perception as Bayesian inference and that afford estimation of individual differences 

in a number of information processing mechanisms (i.e., here, five distinct computational 

parameters). However, it should be acknowledged that, while offering these methodological 

advantages, our mechanosensory paradigm was not designed to simulate naturalistic states 

of the GI system. It remains an open question whether individual differences in the ability 
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to detect vibratory stimulation will generalize to differences in the perception of naturally 

occurring GI states.

In conclusion, this foundational work establishes the predictive and face validity of 

applying a novel computational modelling approach to a recent interoceptive paradigm 

for understanding gut sensation, which affords a quantitative phenotyping of individual 

participants in terms of their sensitivity to – and subsequent inferences about – interoceptive 

states. By using Bayesian belief updating to explain both behavioral and physiological 

responses, we were able to quantify the way that participants infer and learn about their 

gut feelings. This provides a unique opportunity to evaluate how the human brain infers 

gastrointestinal states, paving the way for future studies assessing the predictive value of the 

individual differences revealed by our approach in clinical populations, especially those in 

which gastrointestinal symptoms are prominent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A) Vibrating capsule and activation base. B) The push button which participants were 

asked to press as soon as they detected a capsule-induced stomach sensation. C) 

Scalp electroencephalogram (EEG) and stomach electrogastrogram (EGG) lead placement. 

Additional collected peripheral physiological measures included electrocardiogram and skin 

conductance. D) Heuristic depiction of computational (Bayesian) model of task behavior.
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Fig. 2. 
Bayesian approach used to model interoceptive awareness on the vibration detection task. 

The generative model is here depicted graphically, such that arrows indicate dependencies 

between variables. Associated vectors/matrices are also shown. At each timepoint (t), 
observations (o) depend on hidden states (s), where this relationship is specified by the 

A matrix, and those states depend on previous states (as specified by the B matrix), or 

on the initial states (with probabilities specified by the D vector). This model represents a 

simplified version of a commonly used active inference formulation of partially observable 

Markov decision processes (for more details regarding the structure and mathematics 

describing these models, see (Da Costa et al., 2020; Friston, Lin et al., 2017; Friston, 

FitzGerald et al., 2017; Smith, Friston et al., 2021)). In this model, the observations were 

no-vibration/vibration, and the hidden states included beliefs about the presence or absence 

of a vibration. Selection of the button press vs. no button press actions were sampled from 

the posterior distribution over states (p(st=2)) – that is, a higher posterior probability of a 

vibration state (p(Vib)) corresponded to a higher probability of choosing to push the button, 

and a higher posterior probability of the no-vibration state (p(nVib)) corresponded to a 

higher probability of choosing not to press the button. The model parameters we estimated 

corresponded to: 1) interoceptive precision (IP) – the precision of the mapping from true 

vibrations to beliefs about vibrations in the A matrix, which can be associated with the 

weight assigned to interoceptive prediction errors; 2) prior beliefs favoring the presence of 

a vibration (pV); and 3) a learning rate (η) that controls how quickly prior beliefs change 

after each observation (where distinct learning rates can be fit for when a vibration is vs. 

isn’t observed). On each trial, beliefs about the probability of a vibration (corresponding to 

the probability of choosing to press the button) relied on Bayesian inference as implemented 

in the “gastrointestinal perception” equation shown on the right of the figure, and changes 

in prior beliefs were controlled by the learning equation below this (explained in the main 

text). Note that the state variable s in these equations corresponds to posterior expectations. 
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Each 3-second time period in which a vibration was or was not present was treated as a 

separate trial, in which the participant started in the “start” state and then updated beliefs 

about hidden states based on observation of a vibration (or no-vibration). For this reason, the 

pV parameter in the transition matrix (B) only specifies the probability of transitioning from 

the “start” state to the vibration vs. no-vibration states, and the vibration and no-vibration 

states simply have identity mappings (i.e., a given trial cannot transition between these two 

states).
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Fig. 3. 
Pearson correlations between (log-transformed) parameter values and task reaction times 

(delay between vibration onset and button press), variability in reactions times, and 

behavioral accuracy measures (i.e., true/false positives/negatives). We do not show 

significance indicators as these were not hypothesis tests, but simply descriptive analyses 

to inform parameter face validity. For reference, a correlation (absolute value) of r > .31 

corresponds to an uncorrected p-value less than .05.
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Fig. 4. 
Illustration of order effects between (log-transformed) parameter values (mean ± SE). Those 

who had the enhanced block first showed a greater decrease in interoceptive precision in 

the normal block (greater IPdiff), and their prior expectations that a vibration would be felt 

decreased more quickly (ηnv) and increased more slowly (ηv).
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Fig. 5. 
Pearson correlations between (log-transformed) parameter values and individual difference 

variables of potential interest. For reference, red asterisks indicate uncorrected p-values (*p 

< .05, ***p < .001). Associated Bayes factors (BF) are listed below each correlation value. 

BMI = body mass index; Negative and Positive Affect scores are taken from the PANAS (see 

section on Self-Report Measures for additional information on the scales included in this 

figure)
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Fig. 6. 
Upper left: Scatterplot depicting the relationship between (log-transformed) interoceptive 

precision (IP) estimates and the average amplitude of the ERP waveform elicited by 

capsule vibration for a representative parieto-occipital electrode (POz; between 300–600 

ms post-vibration). Bottom left: ERP waveform (mean ± SE) elicited by vibration in POz. 

Upper right and lower middle panels depict analogous results for a representative frontal 

electrode (Fz) and (log-transformed) learning rate from the absence of vibrations (ηnv) 

– reflecting how quickly prior expectations decrease in precision during the periods (of 

relative length) between vibrations. Bottom right: Late positive potential topography across 

the scalp between 300 and 600 ms window after the vibration onset relative to the 200 ms 

pre-stimulus baseline across the scalp and across the entire task. Positive deflections were 

elicited in posterior cortices, while deflections approach neutral and negative values when 

moving toward more anterior electrodes. Positive ERP values are inverted (vice versa for 

negative values) per convention.
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Fig. 7. 
Left: Correlation matrices across all parieto-occipital and frontal electrodes for early 

(top) and late (bottom) post-vibration ERPs. These plots illustrate the strong and 

distinct intercorrelations within each respective cluster of electrodes. Middle: Associated 

dendrograms illustrating that a 2-cluster solution (aggregating parieto-occipital and frontal 

electrodes, respectively) was optimal, based on average silhouette width. Right: Loadings of 

each electrode onto the respective latent factors accounting for common activation patterns 

in each cluster.
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Fig. 8. 
Left: Results of Parametric Empirical Bayes (PEB) analyses assessing evidence for a 

relationship between the posterior distribution (mean and variance) for individual-level 

model parameter estimates and the latent factor underlying covariance across the cluster of 

parieto-occipital ERPs. Group-level posterior means and 95% Bayesian confidence intervals 

are displayed for each parameter such that the direction (above or below 0) indicates 

the direction of the relationship (values are in logit space). Right: Subsequent post-hoc 

Pearson correlations with ERPs from each parieto-occipital lead. These are descriptive and 

were carried out to further illustrate relationships detected in the PEB analyses. Note that 

differences between PEB results and these zero-order correlations are accounted for by 

covariates included in the PEB models as well as by the way in which PEB considers 

posterior distributions over parameters (i.e., means and variances) as opposed to simply 

using the posterior means as point estimates. For the interested reader, we note that a 

correlation value of r = .31 or greater corresponds to an uncorrected significance level of p < 

.05.

Smith et al. Page 38

Biol Psychol. Author manuscript; available in PMC 2021 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Left: Results of Parametric Empirical Bayes (PEB) analyses assessing evidence for a 

relationship between the posterior distribution (mean and variance) for individual-level 

model parameter estimates and the latent factor underlying covariance across the cluster 

of frontal ERPs. Group-level posterior means and 95% Bayesian confidence intervals are 

displayed for each parameter such that the direction (above or below 0) indicates the 

direction of the relationship (values are in logit space). Right: Subsequent post-hoc Pearson 

correlations with ERPs from each frontal lead. These are descriptive and were carried out to 

further illustrate relationships detected in the PEB analyses. Note that differences between 

PEB results and these zero-order correlations are accounted for by covariates included in 

the PEB models as well as by the way in which PEB considers posterior distributions over 

parameters (i.e., means and variances) as opposed to simply using the posterior means as 

point estimates. For the interested reader, we note that a correlation value of r = .31 or 

greater corresponds to an uncorrected significance level of p < .05.
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Table 2

Model Comparison Results.

Parameter Value if not 
estimated

IP (always 
estimated)

IPdiff 0 pV (always 
estimated)

ηIP (removed from 
model)

ηpV (removed from 
model)

Model 1 Y N Y N N

Model 2 Y Y Y N N

Model 3 Y N Y N Y

Model 4 Y Y Y N Y

Model 5 Y N Y N Y (Split)

Model 6 * Y Y Y N Y (Split)

Model 7 Y N Y Y N

Model 8 Y N Y Y Y

Model 9 Y N Y Y Y (Split)

Model 10 Y N Y Y (Split) N

Model 11 Y N Y Y (Split) Y

Model 12 Y N Y Y (Split) Y (Split)

Y indicates the parameter was included for that model; N indicates it was not included in the model; Y (Split) indicates that the corresponding 
learning rate was split for that model (separate learning rates for vibration and no-vibration trials). ηIP corresponds to learning rate for IP values (if 

learned), whereas ηpV corresponds to learning rate for pV values (if learned).

*
Winning Model.
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