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Abstract

Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threat-

ening infection called leptospirosis. This infection is reported worldwide with higher risk in

tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as

liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease.

Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium

damages host endothelial cells, increasing vascular permeability. Despite the burden in

humans and animals, the pathogenic mechanisms of Leptospira infection remain to be eluci-

dated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial

barriers in vivo and in vitro. In this study, human endothelial cells were infected with the path-

ogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to

investigate morphological changes and other distinctive phenotypes of host cell proteins by

fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes

demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection

with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellu-

lar adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junc-

tion proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most

profoundly disturbed the biological structures of adherens junctions (VE-cadherin and cate-

nins) and actin filaments. Our data illuminate morphological disruptions and reduced signals

of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells.

In addition, Leptospira infection, regardless of pathogenic status, influenced other host pro-

teins belonging to multiple biological classes. Our data suggest that this zoonotic agent may

damage endothelial cells via multiple cascades or pathways including endothelial barrier

damage and inflammation, potentially leading to vascular hyperpermeability and severe ill-

ness in vivo. This work provides new insights into the pathophysiological mechanisms of

Leptospira infection.
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Author summary

Pathogenic Leptospira causes the life-threatening infection called leptospirosis worldwide.

Symptoms of leptospirosis range from mild illness to severe illness such as organ damage,

meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira spread to multi-

ple tissues, and damage the linings of blood vessels. Despite the burden in humans and

animals, how Leptospira bacteria cause damage remains to be determined. In this study,

human endothelial cells were infected with L. interrogans (pathogen) or L. biflexa (non-

pathogen) to investigate changes to host cell proteins. Among those analyzed, 17 proteins

from five biological classes demonstrated distinctive changes upon infection with Leptos-
pira. Infection with the pathogenic strain most profoundly disturbed the adherens junc-

tion group of proteins that hold neighboring cells together. In addition to the changes in

cell-cell junctions, Leptospira infection, regardless of pathogenic status, influenced other

host proteins belonging to multiple biological classes. Our data suggest that L. interrogans
may damage endothelial cells via multiple cascades or pathways. The damage may include

endothelial barrier disruption and inflammation, potentially leading to leaky blood vessels

in patients. This work contributes to our understanding of how of Leptospira causes wide-

spread, disseminated infection and disease in humans and animals.

Introduction

The causative agents of leptospirosis, Leptospira species, are Gram-negative spirochetes of the

class Spirochaetales, along with Borrelia and Treponema [1]. The genus Leptospira has at least

22 species with 300 serovars and are classified as pathogenic, saprophytic, and intermediate

types [2–4]. Pathogenic Leptospira transmission to humans and susceptible animals causes the

zoonotic infection leptospirosis. This life-threatening infection is reported in temperate and

especially tropical regions worldwide [5, 6]. The reservoirs of these bacteria are rodents and

other domestic and wild animals, which release bacteria-containing urine into water, mud,

and soil. Humans exposed to these contaminated sources can be infected through damaged

skin or through mucous membranes, including the conjunctiva [1, 2, 6].

The global burden of leptospirosis is estimated to be more than 1 million cases and nearly

60,000 deaths annually [5]. Symptoms are often non-specific but may include high fever,

severe headache, chills, myalgia, rash, vomiting, jaundice, red eyes, abdominal pain, and diar-

rhea [1, 6–8]. Invasive species of Leptospira rapidly disseminate to multiple tissues where they

damage host endothelial cells and increase vascular permeability, causing more severe illness

such as acute renal injury, aseptic meningitis, liver failure, and respiratory distress from acute

lung injury [8–12]. Due to the variety of symptoms, patients can be misdiagnosed as having

other common viral or bacterial infectious diseases [5, 6, 8]. Leptospirosis can lead to multiple

organ failure or fatal hemorrhagic diseases [1, 8–10].

Leptospires are known to adhere to fibroblasts, renal epithelial cells, macrophages, and

endothelial cells in vitro [13–17]. Multiple Leptospira adhesins have been reported to bind cells

via VE-cadherin or the extracellular matrix (ECM) molecules fibronectin, collagen, laminin,

elastin, and plasminogen [18–22]. Binding to glycosaminoglycans (GAGs) may promote

attachment to cells and to ECM [18, 19, 22]. The adhesion of pathogenic leptospires is likely an

important early stage of the infectious process.

Pathological characteristics of leptospirosis are vasculitis and endothelial cell damage, lead-

ing to inflammatory infiltrates, localized ischemia and hemorrhage in organs [1, 2, 11, 12].

Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira
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infection at the cellular and molecular levels are poorly understood. It has been demonstrated

that the pathogenic L. interrogans or its proteins adhere to endothelial cells and permeabilize

endothelial cell monolayers in vitro [23, 24].

At the molecular level, genetic tools for Leptospira work less efficiently than for many other

bacteria [25], making studies of Leptospira biology challenging. Even when Leptospira mutants

are constructed, there are few available efficient methods to elucidate the pathogenic mecha-

nisms [26]. Most often, the mutants have been examined for attenuated phenotypes in the mor-

tality of animals or altered histological perturbations of organs from infected animals, such as

hamsters [26–30], guinea pigs [30, 31], transgenic mice [32, 33], and zebrafish [34, 35]. Because

wild-type mice and rats are carrier animals for leptospires, these animals are used as negative

controls to study pathogenicity, e.g. to examine leptospire colonization without disease [26, 36].

As in vitro assays to screen Leptospira strains, cell attachment and transmigration through

polarized epithelial cells have been used [16, 37]. The epithelial translocation of leptospires

does not alter the transepithelial electrical resistance [37], so the resistance measurement itself

is not informative. Human umbilical vein endothelial cells (HUVEC) are also used to test

recombinant leptospiral proteins for changes in host protein expression or cell-junction per-

meability [24, 38, 39]. To study Leptospira pathogenicity more intensely, other in vitro screen-

ing systems remain to be explored.

In this study, morphological changes and other distinctive phenotypes in Leptospira-

infected human endothelial cells were investigated. Antibodies and reagents recognizing

human proteins were screened by fluorescence microscopy. Most proteins analyzed demon-

strated little change in Leptospira-infected endothelial cells. Yet, 17 host proteins from five bio-

logical classes demonstrated distinctive phenotypes in the morphology and/or signal intensity

upon infection: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface

receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein.

The most prominent phenotype of pathogenic L. interrogans sv. Copenhageni-infected cells

was the loss of the adherens junction proteins VE-cadherin and p120-, alpha-, and beta-cate-

nins from the original site at intercellular junctions. Copenhageni infection also influenced the

actin cytoskeleton as well as a tight junction protein, ZO-1. Infection with both pathogenic

and non-pathogenic Leptospira strains altered other host proteins belong to multiple biological

classes, although the pathogenic strain caused more intense changes. This work provides the

insights in biological and pathological effects of Leptospira infection.

Methods

Leptospira strains and growth conditions

L. interrogans serovar Copenhageni strain Fiocruz L1-130 (pathogen), L. interrogans sv. Canicola

strain Moulton (pathogen), and L. biflexa sv. Patoc strain Patoc 1 (non-pathogen) were purchased

from ATCC. Bacteria were grown at 30˚C in Ellinghausen-McCullough-Johnson-Harris (EMJH)

medium supplemented with 1% rabbit serum [40, 41]. The viability, motility, and general mor-

phology of strains were periodically checked using darkfield microscopy. When bacterial cultures

reached 1 to 2 × 108 cells/ml, bacteria were used for infection or subcultured in fresh medium.

The bacterial cell number was determined using a Petroff-Houser chamber under darkfield

microscopy prior to infection. Bacterial cultures of 8 passages or less were used for all experiments.

All procedures involving Leptospira were performed in a biosafety cabinet.

Borrelia burgdorferi growth conditions

In this study, the wild-type B. burgdorferi B31-A3 strain was used as a control bacterium. B.

burgdorferi was grown in Barbour-Stoenner-Kelly (BSKII) medium [42] at 33˚C to a density of
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1 × 108 cells/ml. Prior to each infection, the presence of genomic plasmids was confirmed in

each culture by PCR [43, 44].

Human endothelial cells and growth conditions

The dermal endothelial cell line human microvascular endothelial cells (HMEC-1), was origi-

nally a gift from Dr. E. Ades and Dr. T. J. Lawley (Emory School of Medicine and the Centers

for Disease Control and Prevention). This cell line is currently available from ATCC. HMEC-1

were cultured in MCDB 131 (Gibco) supplemented with 10 mM L-glutamine, 10 ng/ml epi-

dermal growth factor (Corning), 1 μg/ml hydrocortisone (Sigma), 15% Hyclone Fetal bovine

serum (FBS, Thermo), and 25 mM HEPES (Gibco). Two types of primary cells, human dermal

lymphatic endothelial cells (HDLEC) and human dermal microvascular endothelial cells

(HDMEC), were purchased from ScienCell. These primary cells were cultured in endothelial

cell medium (ECM) with the endothelial cell growth supplement (ECGS) and 5% FBS (all

from ScienCell), according to the vendor’s protocol. All human cells were grown at 36.5˚C

under 5% CO2. For infection, passage of endothelial cells was limited to 20 or less for HMEC-1

and 13 or less for HDLEC and HDMEC. In preliminary experiments, we confirmed the mor-

phological similarity of HDMEC to the cell line HMEC-1. For screening, HMEC-1 was

selected for use as a stable microvascular endothelial cell type, and for some experiments was

compared to HDLEC, which possesses morphologically well-organized intercellular junctions.

Infection of endothelial cells with Leptospira strains

Human endothelial cells were grown on sterile coverslips placed in wells of 12-well plates.

Seeding numbers used are 4.2 x 105/well for HMEC-1 and 2.2 x 105/well for HDLEC for 2-day

growth. Cells were checked under a brightfield microscope for confluence and maturation of

intercellular junctions prior to infection. Cells were washed with phosphate-buffered saline

(PBS) once, placed in cell culture medium (supplemented MCDB 131 or ECM), and infected

with L. interrogans sv. Copenhageni or L. biflexa sv. Patoc in EMJH (similar volumes of EMJH

were added to the uninfected control cells) at a multiplicity of infection (MOI) of 20 for 24 h at

36.5˚C in 5% CO2. Infection with B. burgdorferi B31-A3 was performed under the same condi-

tions as for Leptospira. Infected endothelial cells were fixed with 2% para-formaldehyde for 15

min and then rinsed with PBS three times prior to immunofluorescence procedures. All proce-

dures were performed in a biosafety cabinet.

Immunofluorescence microscopy

The infected and then fixed cells were rinsed with PBS and then either directly used for immu-

nofluorescence procedures without permeabilization or treated with 0.1% Triton X-100 in PBS

for 15 min for permeabilization, depending on the cell localization of a host protein or the

specificity of an antibody (shown in Table 1). The samples were blocked with 3% bovine

serum albumin (BSA) in PBS for 1 h and then incubated in a primary antibody diluted in 3%

BSA/PBS for 1 h. For this study, antibodies and reagents were titrated and optimized for

immunofluorescence microscopy analyses. The primary antibodies for which data are shown

and the dilution factor used are listed in Table 1.

Unbound primary antibody was washed away with 3% BSA/PBS three times prior to incu-

bation with either an anti-mouse-IgG or anti-rabbit-IgG antibody conjugated with Alexa

Fluor 488 (Molecular Probes) for detection. After 1 h incubation, the unbound secondary anti-

body was rinsed away with 3% BSA/PBS twice and then with PBS twice. Filamentous actin was

labeled with Alexa Fluor 488-conjugated phalloidin (Table 1) for 20 min and washed with 3%

BSA/PBS twice and then with PBS twice. Coverslips were mounted on glass slides using
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ProLong Diamond containing DAPI (Molecular Probes). The mountant was cured in the dark

for 12 h or longer before sealing of the coverslips with nail polish.

Fluorescence microscopy images were acquired by a Nikon Eclipse Ti-U inverted micro-

scope equipped with a CoolSNAP ES2 CCD camera (Photometrics) and a multifluorescent

Sedat Quad ET filter set (multichroic splitter, Chroma) using the 20× Plan Apo objective lens

(N.A. 0.75, Nikon). NIS-Elements software (Nikon) was used for image acquisition, process-

ing, and analysis. Scale bars represent 50 μm.

Quantification of fluorescence signal intensity and statistical analysis

In each microscopy experiment, at least 3 to 5 images were acquired, and the experiment was

independently repeated at least 3 times for each host protein tested. For the quantification of

signal intensity, raw images of each host protein in endothelial cells were processed in NIS-Ele-

ments software (Nikon) as follows: adjusting the color values of indexed-color pixels, convert-

ing to RGB format, selecting the whole field of an image as a region of interest (ROI), and

obtaining the number of the mean intensity indicated in the ROI statistics in the software.

Table 1. Reagents for immunofluorescence microscopy.

company product No. reactivity dilution

Mouse antibody

ICAM-1/CD54 (15.2) Santa Cruz sc-15.2 Hu, Ms, Rt 1:300

ICAM-1 (P2A4) Millipore MAB2146Z Hu 1:300

fibronectin (FN-15) Sigma F7387 Hu, Ms, Ck 1:2,000

cadherin 5 (VE, CD144, clone 75) BD Biosciences 610252 Hu 1:300

p120 catenin (15D2) Millipore 05–1567 Hu, Ms, Rt 1:200, Triton

alpha-catenin (1G5) Thermo MA1-2000 Hu, Ms 1:100, Triton

beta-catenin (15B8) Thermo MA1-301 Hu, Ms, Rt, Nhp 1:200, Triton

alpha-tubulin (DM1A) Millipore 05–829 Hu, Ms, Rt 1:200, Triton

Rabbit antibody

collagen type IV (Col4) anitibodies-online ABIN707396 Hu, Ms, Rt 1:100

type VI collagen Telios A112 Hu 1:1,000

laminin Sigma L9393 Hu, Rt 1:1,000

decorin ThermoFisher PA5-27370 Hu 1:200

ICAM-2 (H-159) Santa Cruz sc-7933 Hu, Ms, Rt 1:500

CD36 (H-300) Santa Cruz sc-9154 Hu, Ms, Rt 1:100, Triton

VEGF receptor 2 abcam ab11939-100 Hu, Ms, Rt 1:100, Triton

VEGF abcam ab9570-100 Hu, Ms, Rt, Hm 1:100, Triton

Rho A (119) Santa Cruz sc-179 Hu, Ms, Rt 1:600, Triton

ILK (integrin-linked kinase) Upstate 16–261 Hu 1:10, Trion

nectin 2 (EPR6717) abcam ab135246 Hu, Ms, Rt 1:100

claudin-5 abcam ab15106 Hu, Ms 1:100, Triton

occludin Invitrogen/Thermo 71–1500 Hu, Ms, Rt, Dg 1:100

ZO-1 (zonula occludens) ZYMED Lab 61–7300 1:400, Triton

connexin 43 mAb Cell Signaling 3512S Hu, Ms, Rt, Nhp 1:50, Triton

Alexa fluor 488-conjugated reagent

phalloidin Invitrogen A12379 — 1:400, Triton

anti-mouse IgG cross-adsorbed Invitrogen A11029 — 1:1,000

anti-rabbit IgG cross-adsorbed Invitrogen A11008 — 1:1,000

*Hu: human, Ms: Mouse, Rt: Rat, Nhp: Non-human primate, Ck: Chicken, Dg: Dog, Hm: Hamster

*”Triton” indicates that fixed cells were permeabilized with 0.1% Triton X-100.

https://doi.org/10.1371/journal.pntd.0005830.t001
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Graphs of the quantified signal intensity were created in Microsoft Excel 2016. Error bars

indicate standard deviations (SD) from the means. Statistical analysis was performed using

two-tailed unpaired t-test in GraphPad Prism version 7.00. The p-values are indicated inside

or below the graph.

Results

Leptospira-mediated changes in endothelial cells

Infection with pathogenic Leptospira strains and serovars causes vascular leakage in the tissues

and organs of the host organism by increasing the permeability of endothelial layers [8–12].

The mechanisms of this disruption of the endothelial barrier at pathological and molecular lev-

els are unclear. In this study, we used two types of cultured human endothelial cells to investi-

gate which host proteins are affected during infection with pathogenic L. interrogans strains,

compared to the non-pathogenic, saprophytic strain, L. biflexa sv. Patoc.

For primary screening, the endothelial line HMEC-1 was used due to the faster growth rate

and stability of this cell line. The phenotypes of interest detected in HMEC-1 were confirmed

and further characterized by infection of primary endothelial cells, human dermal lymphatic

endothelial cells (HDLEC). Advantages to the use of HDLEC are: 1) cell size is large, 2) cell

structure is generally flat without overlapped cell edges, and 3) the well-defined structure of

cell-cell junctions. Endothelial cells were infected with leptospires at a multiplicity of infection

(MOI) of 20 for 24 h throughout the screening process of candidate proteins (Methods). Lep-

tospires remained motile throughout the 24 h co-incubation. During incubation, we did not

observe a hallmark of apoptosis, nuclear condensation or fragmentation in infected endothelial

cells (S5 Fig, DAPI). To investigate the effect of Leptospira infection on endothelial cells, we

screened antibodies and reagents to detect any changes in biological structures of human pro-

teins by immunofluorescence microscopy.

After repeated screening, we found that the signal intensity or overall morphology of most

of the host proteins tested were not significantly influenced by infection with either pathogenic

or non-pathogenic leptospires. The lack of change could be a result of the irrelevance of the

host protein to Leptospira infection or could be due to technical issues, such as the epitope

position(s) in the tested protein or the antibody specificity for immunofluorescence micros-

copy. Among the analyzed reagents, we identified that the signal intensity and/or cellular mor-

phology of 17 host proteins were affected by Leptospira infection (Table 2). These 17 human

proteins, belonging to 5 biological groups, are the focus of this study.

Extracellular matrix (ECM) proteins–Collagen type IV, decorin, and

laminin

We first analyzed several extracellular matrix (ECM) proteins that are known to be the targets

of many of the Leptospira adhesins [18–21]. In this study, L. interrogans sv. Copenhageni infec-

tion was found to influence three ECM proteins. One is collagen type IV, which is one of the

most abundant ECM proteins and is located exclusively in the basement membrane [45]. Col-

lagen type IV provides a scaffold for cell structural stability and also plays a role in interaction

of cells with underlying basement membranes, critical for cell adhesion [45]. Compared to

uninfected endothelial cells, Copenhageni infection increased the signal intensity by 1.5- to

2-fold with concomitant morphological changes leading to formation of puncta (Fig 1A,

Table 2). The signal increase was minor in L. biflexa sv. Patoc-infected cells, ~1.3-fold (Fig 1A).

The signal increase and punctate morphology were also observed with another type of colla-

gen, type VI (S1A Fig).
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Decorin is another ECM protein affected by infection. Decorin is a small leucine-rich pro-

teoglycan that associates with fibrillar collagen type I [46, 47]. After Leptospira infection, the

signal intensity of decorin slightly increased by 1.2- to 1.4-fold, in combination with increases

in puncta in both Patoc- and Copenhageni-infected endothelial cells (Fig 1B, Table 2). These

data indicate that the changes of decorin signal and morphology are caused by Leptospira
infection in general, and are not specific to the pathogenic strain.

Laminin is a glycoprotein, a major component of basal lamina located in the basement

membrane [48]. In micrographs of uninfected endothelial cells, laminin displayed an intricate

net-shaped structure (Fig 1C, uninfected). When cells were infected with Copenhageni, the

laminin network appeared to form bundles of small, rolled up, rope-like nets (Fig 1C). There

was a minor reduction of the signal intensity in Copenhageni-infected HDLEC but not in

HMEC-1 (Fig 1C). In Patoc-infected cells, there were only subtle structural rearrangements or

changes in the signal intensity of laminin (Fig 1C). These data suggest that the rearrangement

of the laminin structure is a pathogenic Copenhageni-specific phenotype.

Fibronectin is one of most abundant ECM proteins in tissues, along with collagen and lami-

nin. There was no detectable change in fibronectin morphology upon infection with either

Copenhageni or Patoc, although the signal intensity of fibronectin was slightly increased (S1B

Fig).

Table 2. Overall effect of Leptospira infection on host proteins.

signal intensity morphology specificity

Extracellular matrix

collagen type IV (Col4) slight increase puncta Copenhageni > Patoc

decorin slight increase puncta Copenhageni = Patoc

laminin slight decrease (HDLEC) rearrangement Copenhageni > Patoc

ICAM/cell surface receptor

ICAM-1 (CD54) increase not observed Copenhageni >> Patoc

ICAM-2 increase puncta Copenhageni > Patoc

CD36 slight increase puncta Copenhageni > Patoc

VEGF receptor 2 slight increase puncta Copenhageni = Patoc

Intracellular protein

VEGF slight increase puncta Copenhageni > Patoc

Rho A slight increase puncta Copenhageni > Patoc

ILK (integrin-linked kinase) slight increase puncta Copenhageni = Patoc

Adherens junction

VE-cadherin (cadherin 5, CD144) decrease not applicable Copenhageni

p120 catenin decrease not applicable Copenhageni

alpha-catenin decrease not applicable Copenhageni

beta-catenin decrease not applicable Copenhageni

Tight junction

ZO-1 (zonula occludens) slight decrease mislocalization Copenhageni (HDLEC)

Gap junction

connexin 43 decrease not applicable Copenhageni (HDLEC)

connexin 43 not observed mislocalization Patoc (HDLEC)

Actin cytoskeleton

filamentous actin decrease not applicable Copenhageni (HMEC-1)

filamentous actin not observed mislocalization Copenhageni (HDLEC)

https://doi.org/10.1371/journal.pntd.0005830.t002
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Fig 1. Effect of Leptospira infection on extracellular matrix proteins in endothelial cells detected by immunofluorescence microscopy. (A)

collagen type IV, (B) decorin, and (C) laminin in HMEC-1 and HDLEC are shown in green. The nuclei are stained in blue for all panels. Scale bars

represent 50 μm. Quantified signal intensity of the host protein is indicated in the right-hand graphs (mean +/- SD, p-value is indicated below each graph,

the independent p-values shown as an asterisk are compared to uninfected cells).

https://doi.org/10.1371/journal.pntd.0005830.g001
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Intercellular adhesion molecules and cell surface receptors–ICAM-1,

ICAM-2, CD-36, and VEGF-receptor 2

In addition to ECM proteins, other host cell surface proteins may be involved in Leptospira
infection or pathogenicity. To test this hypothesis, we examined intercellular adhesion mole-

cules (ICAMs) and other cell surface receptors. ICAMs belong to the immunoglobulin super-

family, and participate in inflammatory responses [49]. Compared to uninfected endothelial

cells, the signal intensities of ICAM-1 and ICAM-2 were elevated by infection with either L.

interrogans sv. Copenhageni or L. biflexa sv. Patoc (Fig 2A and 2B, S2A Fig). The signal

increase was more apparent with Copenhageni infection, especially for ICAM-1 in both cell

types: a 4.5-fold increase in HMEC-1 and a 12-fold in HDLEC (Fig 2A, Table 2). For the

ICAM-2 signal, Copenhageni infection caused an increase of 1.6- to 2.2-fold in endothelial

cells (Fig 2B, S2A Fig). Patoc infection demonstrated an intermediate increase in both ICAM-

1 and ICAM-2 (Fig 2A and 2B, S2A Fig).

CD36 is a fatty acid/scavenger receptor, and is involved in microvascular endothelial cell

migration and metastasis [50, 51]. Leptospira infection increased the signal intensity of CD36

by 1.3- to 1.8-fold, and was slightly higher in Copenhageni-infected than Patoc-infected

HMEC-1 (Fig 2C). Infection also elevated the CD36 signal in HDLEC, although the difference

between Copenhageni- and Patoc was miniscule, and mainly caused by the increase in punc-

tate morphology (Fig 2C, S2B Fig). These data suggest that this CD36 phenotype is induced by

Leptospira infection with both pathogenic and non-pathogenic strains.

Vascular endothelial growth factor-receptor 2 (VEGF-R2) is another Leptospira-influenced

cell surface protein. This VEGF-specific receptor is involved in the proliferation of vascular

endothelial cells and the regulation of the endothelial barrier function [52]. Leptospira infec-

tion with both Copenhageni and Patoc elevated the VEGF-R2 signal, more so in HMEC-1

(1.5- to 2-fold) than the slight increase (1.1- to 1.4-fold) in HDLEC (Fig 2D, S2C Fig). Again,

these signal elevations in VEGF-R2 were induced by both pathogenic and non-pathogenic Lep-
tospira species.

Intracellular proteins–VEGF, RhoA, and ILK (integrin-linked kinase)

Although the screening of cell surface proteins was originally our focus, we also examined sev-

eral intracellular proteins. We found three intracellular host proteins that were affected by Lep-
tospira infection (Table 2). One protein was vascular endothelial growth factor (VEGF), which

plays roles in the control of vascular endothelial cell proliferation and vascular permeability

[53]. Infection with either L. interrogans sv. Copenhageni or L. biflexa sv. Patoc slightly ele-

vated the fluorescence signal of VEGF by 1.1- to 1.9-fold with puncta formation (Fig 3A). The

signal increase caused by the pathogenic Copenhageni was higher than by the nonpathogenic

Patoc in HMEC-1 but there was no difference between the changes caused by the two Leptos-
pira strains in HDLEC (Fig 3A).

A second Leptospira-affected protein, the small GTPase RhoA, is an important molecule

that regulates the assembly of the actin cytoskeleton and the remodeling of cell junction pro-

teins. RhoA activity accompanied by actin remodeling can lead to a loss of endothelial barrier

integrity [52, 54–56]. In both endothelial cell types we tested, the fluorescence intensity of

small GTPase RhoA was slightly elevated by Copenhageni (1.3- to 1.4-fold) and Patoc (1.1- to

1.2-fold) infection (Fig 3B). The signal increase was slightly higher when cells were infected

with Copenhageni than with Patoc (Fig 3B). An increase in punctate morphology of the RhoA

signal was also observed in infected cells, but not specific to the Leptospira species (Fig 3B).

Another intracellular protein affected by Leptospira infection is integrin-linked kinase

(ILK). ILK associates with integrins as a regulator of integrin-mediated signaling, correlating
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Fig 2. Effect of Leptospira infection on ICAMs and cell surface receptors in endothelial cells. (A) ICAM-1 (4-fold longer exposure time was

used for uninfected HDLEC), (B) ICAM-2, (C) CD-36, and (D) vascular endothelial growth factor-receptor 2 (VEGF-R2) in HMEC-1 and HDLEC
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with multiple cellular functions such as cell proliferation, migration, adhesion, and vascular

integrity [57–59]. The intensity of ILK signal was slightly higher (1.1- to 1.5-fold) with puncta

formation when HMEC-1 were infected with leptospires regardless of pathogenic status (Fig

3C).

Overall, Leptospira-mediated changes were found in intracellular host proteins that have

roles in the regulation of cell proliferation, endothelial barrier integrity, and actin remodeling,

but differences between the pathogenic and non-pathogenic strains were not always apparent.

Cell-cell junction proteins

In endothelial cells, intercellular connections are formed through multiple adhesive structures,

regulating the passage of blood constituents and circulating cells to the underlying tissues [60,

61]. Pathological conditions of endothelial paracellular permeability lead to severe or fatal

organ dysfunction [60, 61], similar to the symptoms in severe leptospirosis patients. To deter-

mine the effect of Leptospira infection on cell-cell junctions, we examined the transmembrane

proteins and cytosolic adaptor proteins of three major intercellular junction types: 1) adherens

junction, 2) tight junction, and 3) gap junction.

Adherens junction–VE-cadherin, p120 catenin, alpha-catenin, and beta-catenin.

Adherens junctions (or zonula adherens, intermediate junctions) are composed of adhesion

protein complexes located at the basal side of cell–cell junctions, playing a significant role in

endothelial barrier function [60–63]. VE-cadherin (vascular endothelial cadherin, also known

as cadherin 5 or CD144) is exclusively expressed in endothelial cells, and is essential for the

formation of adherens junctions and the endothelial barrier [60, 63]. This transmembrane pro-

tein forms homodimers on the cell surface, interconnecting neighboring endothelial cells [62,

64, 65]. The cytoplasmic face of VE-cadherin associates directly with p120 catenin and beta-

catenin, and indirectly with alpha-catenin and the actin cytoskeleton, forming the adherens

junction as a stable intercellular- and intracellular-structure [62, 66].

In our experiments, VE-cadherin was clearly localized at intercellular junctions of unin-

fected cells, especially in HDLEC (Fig 4A, uninfected). When endothelial cells were infected

with L. interrogans sv. Copenhageni, the fluorescence intensity of VE-cadherin was dramati-

cally reduced by 40 to 60% as compared to that of uninfected cells, and was largely lost at the

original localization at cell-cell junctions (Fig 4A, Table 2). In comparison, infection with L.

biflexa sv. Patoc or pathogenic B. burgdorferi B31-A3 did not demonstrate either prominent

signal reduction or mislocalization of VE-cadherin (Fig 4A, S9 Fig).

Infection with pathogenic L. interrogans sv. Copenhageni decreased VE-cadherin signal in

endothelial cells at MOI of 10, 15, or 20 (S3A Fig). With another pathogen, L. interrogans sv.

Canicola, the effect of infection on endothelial cells was weaker, with only MOIs of 15 and 20

demonstrating apparent reduction in VE-cadherin, and the level of reduction was dose-depen-

dent (S3A Fig). There were no detectable changes at early time points, e.g. 7 h post inoculation

(hpi) or earlier, when HMEC-1 were infected with Copenhageni at an MOI of 20 (S3B Fig).

The saprophyte L. biflexa sv. Patoc demonstrated little influence on VE-cadherin signal at

MOIs of 10, 15, and 20 (S3A Fig). Although it is known that VE-cadherin can be internalized

via endocytosis as a part of regulation of endothelial barrier function [52, 53], we did not

observe the internalization of VE-cadherin even when cells were permeabilized to allow exami-

nation of possible intracellular localization of this protein (S3C Fig).

are shown in green. The nuclei are stained in blue for all panels. Scale bars represent 50 μm. Quantified signal intensity of the host protein is

indicated in the right-hand graphs (mean +/- SD, p-value is indicated below each graph, the independent p-values shown as an asterisk or a

double-dagger are compared to uninfected cells).

https://doi.org/10.1371/journal.pntd.0005830.g002
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Intracellular adapter proteins that associate with VE-cadherin at the adherens junction

include p120 catenin, alpha-catenin, and beta-catenin [62, 67]. p120 catenin and beta-catenin

Fig 3. Effect of Leptospira infection on intracellular proteins in endothelial cells detected by immunofluorescence microscopy. (A) vascular

endothelial growth factor (VEGF), (B) small GTPase RhoA, and (C) integrin-linked kinase (ILK) in HMEC-1 and HDLEC are shown in green. The nuclei are

stained in blue for all panels. Scale bars represent 50 μm. Quantified signal intensity of the host protein is indicated in the right-hand graphs (mean +/- SD,

p-value is indicated below each graph, the independent p-values shown as an asterisk, a dagger, or a double-dagger are compared to uninfected cells).

https://doi.org/10.1371/journal.pntd.0005830.g003
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Fig 4. Effect of Leptospira infection on adherens junction proteins in endothelial cells detected by immunofluorescence microscopy. (A)

VE-cadherin, (B) p120 catenin, (C) alpha-catenin, and (D) beta-catenin in HMEC-1 and HDLEC are shown in green. The nuclei are stained in blue for

all panels. Scale bars represent 50 μm. Quantified signal intensity of the host protein is indicated in the right-hand graphs (mean +/- SD, p-value is

indicated below or inside the graph, the independent p-values shown as an asterisk or a double-dagger for Copenhageni are compared to uninfected

and Patoc-infected cells).

https://doi.org/10.1371/journal.pntd.0005830.g004
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directly interact with the cytoplasmic face of VE-cadherin while alpha-catenin indirectly asso-

ciates as a component of the adherens junction complex [62, 66]. p120 catenin possesses a key

role in VE-cadherin expression, internalization, and membrane localization as well as the reg-

ulation of endothelial permeability [63, 68]. Infection with the pathogenic Copenhageni

reduced the fluorescence intensity of p120 catenin by 30 to 40% of the signal detected in unin-

fected endothelial cells (Fig 4B, S4A Fig, Table 2). As observed with VE-cadherin, Copenha-

geni infection disrupted the localization of p120 catenin at intercellular junctions (Fig 4B, S4A

Fig). Infection with the non-pathogenic Patoc did not alter the junctional localization p120

catenin (Fig 4B, S4A Fig).

Alpha-catenin functions as a molecular switch through exclusively associating with either

an cadherin/beta-catenin complex or actin filaments, coordinating actin organization and

remodeling [66, 69]. The signal intensity of alpha-catenin was significantly decreased by

Copenhageni infection even though alpha-catenin associates with VE-cadherin indirectly (Fig

4C, S4B Fig). The fluorescence signal was reduced to approximately 50% of the signal detected

in uninfected endothelial cells, and alpha-catenin was almost invisible at the cell periphery (Fig

4C, S4B Fig). As observed in VE-cadherin and p120 catenin, there was little influence by infec-

tion with the saprophyte Patoc strain (Fig 4C, S4B Fig).

Beta-catenin is a multifunctional protein that localizes at either the cadherin adhesive com-

plex in cell-cell junctions or at the T-cell factor (TCF)-transcriptional complex in the nucleus

of multiple types of cells, including endothelial cells [65, 70]. VE-cadherin/beta-catenin com-

plexes are involved in the regulation of endothelial cell survival as well as vascular patterning

and permeability [71, 72]. In uninfected cells, beta-catenin was localized at the cell-cell junc-

tion and in the nucleus as expected (Fig 4D, see single-color format in S5 Fig). In cells infected

with Copenhageni, beta-catenin was reduced at the cell-cell junction, although the localization

in the nucleus was unchanged and remained at the levels in uninfected or Patoc-infected cells

(Fig 4D, S4C Fig and S5 Fig). Overall, the fluorescence signal of beta-catenin decreased by 20–

30% as compared to uninfected cells (Fig 4D, S4C Fig). The signal reduction was not as intense

as VE-cadherin, p120 catenin, or alpha-catenin, which is likely the result of the unchanged

fluorescence signal in the nucleus regardless of Leptospira infection.

Nectin is another type of an adherens junction protein that functions independently from

VE-cadherin complexes, and can be located near tight junctions during junctional develop-

ment [64, 65]. While VE-cadherin and its adaptor protein catenins at the adherens junction

were largely decreased by Copenhageni infection (Fig 4, S4 Fig), the overall morphology of

nectin was not affected (S6 Fig). In contrast to other adherens junction proteins, the signal

intensity of nectin subtly increased in cells infected with either Copenhageni or Patoc (S6 Fig).

These data suggest that pathogenic Leptospira specifically targets the adherens junctions con-

taining the VE-cadherin/catenins complex.

Tight junction–zonula occludens-1 (ZO-1). Another group of adhesive junctional struc-

tures is tight junctions (occluding junctions or zonula occludens), which are generally located

at the apical side of cell-cell junctions as compared to adherens junctions [62, 64]. Major types

of tight junction proteins include claudin, occludin, and zonula occludens-1 (ZO-1) [64, 73].

Claudin and occludin are transmembrane proteins, directly involved in junctional adhesion

[62, 64]. We examined the effect of Leptospira infection on claudin 5 and occludin. Claudin 5

is specifically produced in endothelial cells and the expression is partially controlled by VE-

cadherin complexes [65]. During infection with either L. interrogans sv. Copenhageni and L.

biflexa sv. Patoc, there was little or no change in morphology or the signal intensity of claudin

5 or occludin (S7 Fig).

ZO-1 is a peripheral membrane protein located at the cytoplasmic side of the plasma mem-

brane [64, 73]. In uninfected HDLEC, ZO-1 was apparently localized at cell-cell junctions (Fig
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5A, uninfected). In contrast to the results with claudin 5 and occludin (S7 Fig), Copenhageni

infection clearly disrupted the localization of ZO-1 from the cell periphery (Fig 5A, Table 2).

The fluorescence signal of ZO-1 indicated relocalization of this protein from cell-cell junctions

to intracellular locations, as the total signal intensity decreased only slightly (Fig 5A). Patoc

infection did not influence the intercellular junction localization or signal intensity of ZO-1

(Fig 5A). In summary, the intracellular tight junction protein ZO-1 was mislocalized by the

pathogenic Leptospira species but the transmembrane proteins claudin 5 and occludin, which

play an essential role in junctional adhesion, were not affected.

Gap junction–Connexin. A gap junction is formed as junctional channels between neigh-

boring cells by oligomers of specific integral membrane proteins, such as connexins [74, 75].

The gap junctional proteins play roles in subcellular microdomain signaling as well as the reg-

ulation of intercellular communication through passage of ions and small molecules [74, 75].

The gap junction protein we examined is connexin 43, which is the most ubiquitously distrib-

uted of this class of proteins in mammalian cells [74].

To investigate the gap-junction structure in endothelial cells, HDLEC cells, which possess

well-organized cell junctions, were used. In uninfected cells, connexin 43 localized at intercellular

junctions in a punctate signal pattern, suggesting a less well-organized cell junction morphology

(Fig 5B, uninfected), as compared to adherens junctions (Fig 4) and tight junctions (ZO-1, Fig

5A). L. interrogans sv. Copenhageni infection decreased the signal intensity of connexin 43 more

than 20% as compared to uninfected cells, especially at the cell periphery (Fig 5B, Table 2). L.

biflexa sv. Patoc infection demonstrated translocation of connexin 43 from the cell-cell junctions

to intracellular locations, but the overall signal intensity was not significantly influenced (Fig 5B).

Fig 5. Effect of Leptospira infection on tight junction and gap junction proteins in endothelial cells. (A) tight junction protein, zonula

occludens-1 (ZO-1) and (B) gap junction protein, connexin 43 (connexin) in HDLEC are shown in green. The nuclei are stained in blue for all panels.

Scale bars represent 50 μm. Quantified signal intensity of the host protein is indicated in a right-hand graph (mean +/- SD, p-value is indicated below

each graph, the independent p-value shown as an asterisk for Copenhageni is compared to uninfected and Patoc-infected cells).

https://doi.org/10.1371/journal.pntd.0005830.g005
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Cytoskeletal protein–Filamentous actin

L. interrogans sv. Copenhageni infection apparently disrupted multiple proteins of the adhe-

rens junction, the tight junction protein ZO-1, and the gap junction protein connexin (Figs 4

and 5). The adherens junction and tight junction proteins directly or indirectly interact with

actin filaments to stabilize the cellular structure and cell junctions [72, 73]. To examine if Lep-
tospira infection influences actin filaments (microfilaments) in endothelial cells, filamentous

actin was labeled with Alexa Fluor-conjugated phalloidin. In permeabilized, uninfected

HMEC-1, actin filaments were visualized as net-shaped structures, spreading ubiquitously in

the cell (Fig 6, uninfected). When this cell type was infected with Copenhageni, the signal

intensity of actin filaments decreased to ~50% of uninfected cells (Fig 6, Table 2). L. biflexa sv.

Patoc infection demonstrated no reduction in signal intensity (Fig 6).

In another type of endothelial cells, HDLEC, the morphology of actin filaments appeared

well-organized, with long straight filaments rather than the net-shaped morphology (Fig 6A,

uninfected). In contrast to the reduction of the actin signal in Copenhageni-infected HMEC-1,

the signal decrease in HDLEC was minor (Fig 6). Instead, Copenhageni infection induced a

morphological rearrangement of actin filaments: intense localization of filamentous actin at

the cell periphery and reduction of stress fibers inside the cell (Fig 6, Table 2). Patoc infection

induced slightly more stress fibers but did not affect the overall morphology and signal inten-

sity of filamentous actin in HDLEC (Fig 6). Throughout our screening of host proteins, only

this protein demonstrated host cell-type specific changes in morphology and phenotype.

We also examined another cytoskeletal structure, the microtubule, by immune-labeling the

most critical protein, alpha-tubulin (Table 1). There was no detectable change in morphology

or signal-intensity in HMEC-1 or HDLEC infected with either Copenhageni or Patoc (S8 Fig).

These data suggest that the pathogenic Leptospira specifically modifies the actin filaments of

the cytoskeleton.

Discussion

To investigate the pathogenic effects of Leptospira infection of human endothelial cells, we uti-

lized immunofluorescence microscopy to screen for changes in host protein abundance and

Fig 6. Effect of Leptospira infection on actin filaments in endothelial cells detected by immunofluorescence microscopy. Actin filaments in

HMEC-1 and HDLEC are shown in green. The nuclei are stained in blue for all panels. Scale bars represent 50 μm. Quantified signal intensity of the host

protein is indicated in the right-hand graph (mean +/- SD, p-value is indicated below the graph, the independent p-value shown as an asterisk for

Copenhageni is compared to uninfected and Patoc-infected cells).

https://doi.org/10.1371/journal.pntd.0005830.g006
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distribution. Seventeen proteins indicated minor to major changes in Leptospira-infected

endothelial cells. These 17 proteins are classified into five biological groups: 1) extracellular

matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins,

4) cell-cell junction proteins, and 5) a cytoskeletal protein.

The most prominent phenotype of infection with pathogenic L. interrogans sv. Copenha-

geni was the dramatically reduced multiple adherens junction proteins and one of the tight

junction proteins (ZO-1), a gap junction protein (connexin) as well as filamentous actin (sum-

marized in Table 2). Infection with Leptospira, regardless of the strain’s pathogenicity or ability

to harm host cells, increased the signal intensity of some of the ECM proteins, ICAMs, cell sur-

face receptors, and intercellular proteins (Table 2). In general, the signal increase was more

intense when endothelial cells were infected with pathogenic L. interrogans sv. Copenhageni

than the saprophyte strain, L. biflexa sv. Patoc (Table 2).

Among ECM proteins, collagen type IV, decorin, and laminin were influenced by Leptos-
pira infection (Fig 1). It has been reported that outer membrane protein(s) of pathogenic Lep-
tospira can increase the production of an ECM protein, collagen type IV [76]. In this study, the

signal elevations of collagen and decorin were caused by both pathogenic and non-pathogenic

leptospires (Fig 1A and 1B). Kassegne et al. reported that L. interrogans possesses a collagenase,

which is involved in the invasion and transmission of the pathogenic species [77]. Morphologi-

cal changes we observed, formation of puncta as a result of infection (Fig 1A), may be a result

of protein degradation by collagenase activity, which could expose epitopes for antibody bind-

ing, increasing the fluorescence signal. For laminin, the structural rearrangement was specifi-

cally caused by the pathogenic Copenhageni (Fig 1C). The net-shape structure of laminin

appeared rolled up, forming thick bundles with little change in total signal intensity, suggesting

that this phenotype could be a secondary effect of the Copenhageni-mediated disassembly of

adherens junctions.

Leptospira infection influenced several cell-surface proteins/receptors, ICAM-1, ICAM-2,

CD36, and VEGF-receptor 2 (Fig 2, S2 Fig, Table 2). We observed a significant signal increase

of ICAMs in both HMEC-1 and HDLEC when infected with leptospires and the increase was

more prominent with Copenhageni in HMEC-1 (Fig 2). Because ICAMs cluster at intercellular

junctions distinct from the adherens junction and tight junction [61], the elevation of ICAMs

is likely an independent phenomenon from the disruption of adherens junctions by patho-

genic Leptospira. In pulmonary leptospirosis patients, an increase in ICAM-1 expression was

detected in the alveolar septa and pulmonary vessels [7]. However, it was also reported that

there was no significant change in ICAM-1 cell surface expression in HUVEC after 24 h and

48 h infection as detected by horseradish peroxidase reaction [78]. This difference may be due

to the sources of the cells or specific experimental conditions, as other work has shown that

leptospiral lipopolysaccharide (LPS) and outer membrane proteins increase ICAM-1 expres-

sion in HUVECs [38, 39]. During early stages of leptospirosis, leptospiral LPS and outer mem-

brane lipoproteins induce inflammation primarily via Toll-like receptor 2 (TLR2) and in some

experiments, via TLR4 activation [33, 34, 79–81]. Interestingly, pathogenic Leptospira infection

induces pro-inflammatory reactions in human (susceptible to leptospirosis) but activates anti-

inflammatory pathways in mice (not susceptible to clinical leptospirosis) [18, 36]. Thus, the

phenotype of ICAM increase in human endothelial cells may be a result of inflammatory reac-

tion induced by TLR-mediated signaling pathways and other pro-inflammatory responses.

The fatty acid/scavenger receptor CD36 is involved in the regulation of microvascular

endothelial cell migration and is implicated as having a role in inflammation [50, 51, 82].

CD36 is also known to interact with collagens [83]. Since we observed Leptospira-mediated

changes in collagen type IV and type VI (Fig 1A and S1A Fig), the signal increase phenotype of

CD36 that we observed could be induced by multiple factors, such as changes in collagen or
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inflammatory signaling. Another receptor, VEGF-R2, specifically reacts to VEGF in control-

ling the growth of vascular endothelial cells. Another function of VEGF-R2 is that this receptor

interacts with VE-cadherin, which physically limits the internalization of VE-cadherin from

adherens junctions [52]. Overproduction of VEGF-R2 might inhibit the internalization of VE-

cadherin, but we observed a reduction in VE-cadherin signal without apparent internalization

(Fig 4A and S3C Fig). The elevation of the VEGF-R2 signal may be a response to leptospire-

mediated VEGF increase rather than a direct response to Leptospira contact with endothelial

cells.

Leptospira infection increased the fluorescence signal and puncta formation of three intracel-

lular proteins, VEGF, RhoA, and ILK (Fig 3, Table 2). In addition to its function in vascular

endothelial growth, VEGF promotes vascular permeability via the phosphorylation and endocy-

tosis of VE-cadherin; this modulation is reversible [61]. There was no detectable internalization

of VE-cadherin (S3C Fig) and the signal increase of VEGF was not specific to the pathogenic

strain (Fig 3A), implying that any involvement of VEGF in pathogenicity is less likely. ILK is a

regulator of integrin-mediated signaling to regulate cell migration, adhesions, and vascular

integrity [57–59]. The Leptospira-mediated changes were statistically significant but modest and

also detected in cells infected both Copenhageni and Patoc strains (Fig 3C).

Endothelial permeability is controlled by the opening and closing of cell-cell junctions via

the rearrangement of junction proteins and cytoskeletal proteins [61]. To regulate the adhe-

rens junction organization and endothelial permeability, some small GTPases are involved

[53, 84]. For example, the small GTPase RhoA controls the endothelial barrier integrity via

remodeling of the actin cytoskeleton and of junction proteins [52, 54–56]. In this study, Leptos-
pira infection altered the actin cytoskeleton along with a moderate elevation of the RhoA signal

(Figs 6 and 3B). The increase of RhoA signal was not specific to Copenhageni infection, though

the signal intensity was higher than with Patoc inoculation (Fig 3B). These data suggest that

the involvement of these intracellular proteins in the Leptospira pathogenicity, especially in

disrupting the endothelial integrity, is relatively minor.

In this study, the most prominent L. interrogans pathogenic phenotype was the disruption

of adherens junctions (Fig 4, S4 Fig). The adherens junction proteins, VE-cadherin, p120 cate-

nin, alpha-catenin, and beta-catenin, showed drastically reduced immunofluorescence signals

specifically at the cell-cell junctions (Fig 4, S4 Fig; also see Fig 7 for structural features). Because

Copenhageni-infection did not disturb occludin and claudin (tight junction markers, S7 Fig),

the VE-cadherin/catenin-complex at the adherens junction is likely to be the main target of

pathogenic Leptospira species in endothelial cells (Fig 7).

VE-cadherin is essential for adherens junction formation and barrier maintenance in endo-

thelial cells, playing a critical role in vascular morphogenesis, especially remodeling and matu-

ration [71, 85]. The administration of the anti-VE-cadherin antibody BV13 redistributes VE-

cadherin molecules at adherens junctions in cultured endothelial cells and increases vascular

permeability in heart and lungs of mice [60]. VE-cadherin-associated catenins are also impor-

tant for the formation of the dynamic endothelial barriers. For example, VE-cadherin/beta-

catenin complexes are involved in the regulation of endothelial cell survival, and in VE-cad-

herin mutant cells, beta-catenin was not localized at intercellular junctions [71]. Inactivation

of the beta-catenin gene disrupted the cell junctional organization by reduction in alpha-cate-

nin expression and cell-adhesion strength, leading to hemorrhagic vessels [72]. Also, p120

catenin is involved in maintaining VE-cadherin expression [68]. Thus, VE-cadherin and cate-

nins are interconnected physically and functionally to regulate the expression and interaction

of these proteins, maintaining the stability and flexibility of endothelial junctional barriers

required for normal biological function. Our data indicate that pathogenic Leptospira strains
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target these adherens junction proteins important for the endothelial barrier integrity and dis-

assemble the junction-protein complex (Fig 7).

In contrast to the drastic disturbance of the adherens junction (Fig 4, S4 Fig), there were no

detectable changes in the tight junctional transmembrane proteins claudin 5 and occludin in

endothelial cells infected with L. interrogans sv. Copenhageni (S7 Fig). These tight junction

markers are less critical to the vascular barrier integrity since the deletion of the genes encod-

ing claudin 5 or occludin does not influence on the vascular morphology and barrier function

in mice [86, 87]. In our experiments, only ZO-1, a cytosolic peripheral protein, was apparently

mislocalized from tight junctions (Fig 5A). Reduction of ZO-1 was previously observed in Lep-
tospira-infected HUVEC [24]. ZO-1 is a tight junction protein when intercellular junctions are

mature but localizes at adherens junctions at an early stage of cell-cell contact [62, 73, 88]. In

the immature cell junctions, ZO-1 can directly associate with alpha-catenin and the actin cyto-

skeleton [67, 89] and indirectly associates with beta-catenin [90]. In the mature tight junction,

ZO-1 indirectly influences the endothelial integrity via association with claudin, occuldin,

and actin filaments [60, 75]. The published information and our data imply that Leptospira

Fig 7. Features of intercellular junctions in endothelial cells. The tight junction consists of claudin, occludin, and intracellular

zonula occludens (ZO) proteins. ZO-1, ZO-2, and ZO-3 directly associate with actin filaments. Pathogenic Leptospira infection

disrupted only the ZO-1 structure in tight junctions. The adherens junction is comprised of VE-cadherin, p120 catenin (p120),

alpha-catenin (α-cat), beta-catenin (β-cat), and nectin. Alpha-catenin is a molecular switch that interacts with either the cadherin/

beta-catenin complex or actin filaments. Our data indicate that the primary target of pathogenic Leptospira is the VE-cadherin/

catenins complex in adherens junctions.

https://doi.org/10.1371/journal.pntd.0005830.g007
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primarily disrupts the adherens junctions, resulting in mislocalization of one of the actin-bind-

ing proteins, ZO-1 (Fig 7).

A gap junction protein, connexin 43, was also mislocalized and showed reduced signal at

cell junctions in endothelial cells when infected with pathogenic Copenhageni (Fig 5B). The

non-pathogenic Patoc strain caused translocation of connexin 43 from the cell periphery to

intracellular locations without losing signal intensity (Fig 5B). Connexin 43 associates with a

variety of proteins located at adherens junctions and tight junctions, the cytoskeleton, and

actin-binding proteins, including p120 catenin, beta-catenin, and ZO-1 [74, 75]. Moreover,

the gap junction is not directly involved in endothelial permeability [62]. These data imply

that the gap junction is not a primary target of pathogenic Leptospira and that the phenotype

we observed is likely induced as a secondary effect following the disruption of the adherens

junction.

Infection with the pathogenic Copenhageni demonstrated cell-type-specific phenotypes in

the actin cytoskeleton: 1) reduction of the actin signal in HMEC-1 and 2) bundling and rear-

rangement of filamentous actin structure in HDLEC (Fig 6). Actin filaments physically interact

with multiple cell-junction proteins, which regulates the dynamic rearrangement of the actin-

filament structure [62]. For instance, alpha-catenin interacts with either cadherin/beta-catenin

complex or actin filaments, regulating actin assembly and organization [67, 69]. The inactiva-

tion of the beta-catenin gene influences the morphology of actin filaments in endothelial cells

[72], and ZO-1 regulates the cortical cytoskeleton at cell junctions [73]. The phenotypes of

Copenhageni infection, a decrease in filamentous actin in HMEC-1 and translocation of the

bundled-actin filaments to the cell periphery of HDLEC (Fig 6), may be induced by Copenha-

geni-mediated disruption of the VE-cadherin-catenin complex.

One of the functions of filamentous actin is stabilizing or reorganizing the intercellular

junctions through interacting with cell-junctional proteins [62]. The cadherin-catenin com-

plex is known to dynamically influence the actin cytoskeleton and vice versa: filamentous actin

is necessary for the regulation of endothelial opening/closing in addition to the stabilization of

cell-junctions [61, 62]. We considered the possibility that filamentous actin is the primary tar-

get of pathogenic Leptospira infection, but the inhibition of typical actin distribution or mobili-

zation at cell-cell junctions by cytochalasin D or jasplakinolide do not influence the dynamics

of cadherin and alpha-catenin [67], suggesting that filamentous actin is unlikely to be the pri-

mary target of pathogenic Leptospira.

In physiologic conditions in vivo, dynamic and transient remodeling of intercellular junc-

tions is well-controlled and critical to cellular maintenance, especially in endothelial cells [62,

91]. However, drastic and irreversible changes in endothelial junctions contribute to patholog-

ical endothelial permeability and leakage as well as vascular network disruption [62]. Miyahara

et al. identified intact cell attachment with some disturbance of intercellular junctions in hepa-

tocytes of pre-icteric hamsters, with cell detachment plus disrupted junctional association in

icteric hamsters [23]. In leptospirosis patients, proinflammatory response and vascular damage

are pathologic features of leptospirosis-associated pulmonary hemorrhage syndrome or acute

lung injury [11, 12, 25]. Thus, in the later stage of severe leptospirosis, Leptospira infection and

detrimental inflammatory responses, independent of TLR activation [33], overwhelm the cel-

lular maintenance system, leading to devastating damage to cell-cell junctions and vascular

systems of the host.

We used cultured human endothelial cells to investigate how Leptospira may lead to endo-

thelial permeability and, by inference, vascular damage seen in human patients and susceptible

animals. Our study demonstrated that the primary targets of L. interrogans are intercellular

junctions, primarily adherens junctions. Other host proteins affected by L. interrogans infec-

tion may be indirectly impacted by the damage to a modification of the primary targets. The
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changes in host proteins that were impacted by non-pathogenic Patoc, though not as robust as

those impacted by Copenhageni, may be a consequence of pro-inflammatory responses

induced by Leptospira LPS, cell-surface proteins, or secreted proteins.

Our systematic analyses of host proteins in Leptospira infected-human endothelial cells

demonstrated pathogen-specific phenotypes in the adherens junction, filamentous actin and

actin-associated proteins. Several phenotypes were observed with infection with either the

pathogen or the non-pathogen in multiple biological groups. These data suggest that this zoo-

notic agent may damage endothelial cells via multiple cascades or pathways, potentially leading

to the increased vascular permeability followed by severe illness in vivo. In addition, morpho-

logical and quantitative analyses of infected human cells by immunofluorescence microscopy

constitute a reliable method to investigate the pathogenicity and biological functions of Leptos-
pira strains and specific proteins in vitro. Further work based on these results will contribute

to our understanding of pathophysiological mechanisms of Leptospira infection.

Supporting information

S1 Fig. Effect of Leptospira infection on extracellular matrix proteins in endothelial cells

detected by immunofluorescence microscopy. (A) collagen type VI and (B) fibronectin in

HMEC-1 and HDLEC are shown in green. The nuclei are stained in blue for all panels. Scale

bars represent 50 μm. Quantified signal intensity of the host protein is indicated in the right-

hand graphs (mean +/- SD, p-value is indicated below each graph, the independent p-values

shown as a dagger are compared to uninfected cells).

(TIF)

S2 Fig. Effect of Leptospira infection on ICAM-2 and cell surface receptors in HDLEC

detected by immunofluorescence microscopy. (A) ICAM-2, (B) CD-36, and (C) vascular

endothelial growth factor-receptor 2 (VEGF-R2) in HDLEC are shown in green. The nuclei

are stained in blue for all panels. Scale bars represent 50 μm. Quantified signal intensity of the

host protein is indicated in the right-hand graphs (mean +/- SD, p-value is indicated below

each graph, the independent p-values shown as an asterisk or a double-dagger are compared to

uninfected cells).

(TIF)

S3 Fig. Effect of Leptospira infection on VE-cadherin in endothelial cells in various experi-

mental conditions. (A) infection of HMEC-1 at various MOIs, (B) early time point of infection

(7 h post-inoculation), and (C) detection of VE-cadherin after methanol permeabilization. VE-

cadherin in HMEC-1 and HDLEC is shown in green. The nuclei are stained in blue for all pan-

els. Scale bars represent 50 μm.

(TIF)

S4 Fig. Effect of Leptospira infection on adherens junction proteins in HMEC-1 detected

by immunofluorescence microscopy. (A) p120 catenin, (B) alpha-catenin, and (C) beta-cate-

nin in HMEC-1 are shown in green. The nuclei are stained in blue for all panels. Scale bars

represent 50 μm. Quantified signal intensity of the host protein is indicated in the right-hand

graphs (mean +/- SD, p-value is indicated below or inside the graph, the independent p-values

shown as an asterisk or a double-dagger for Copenhageni are compared to uninfected and

Patoc-infected cells).

(TIF)

S5 Fig. Effect of Leptospira infection on the adherens junction protein beta-catenin in

HDLEC. Beta-catenin is shown in green as a single color (top panels), nuclei are shown in
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blue as a single color (DAPI, middle panels), and overlay images (bottom panels). Scale bars

represent 50 μm.

(TIF)

S6 Fig. Effect of Leptospira infection on the adherens junction protein nectin in endothelial

cells. Nectin 2 in HMEC-1 and HDLEC is shown in green. The nuclei are stained in blue for

all panels. Scale bars represent 50 μm. Quantified signal intensity of the host protein is indi-

cated in the right-hand graph (mean +/- SD, p-value is indicated below the graph).

(TIF)

S7 Fig. Little effect of Leptospira infection on the tight junction proteins claudin and occlu-

din in endothelial cells. (A) claudin 5 and (B) occludin in HDLEC are shown in green. The

nuclei are stained in blue for all panels. Scale bars represent 50 μm. Quantified signal intensity

of the host protein is indicated in the right-hand graphs. There was no significant difference in

the signal intensity of claudin 5 or occludin between infected and uninfected cells.

(TIF)

S8 Fig. Little effect of Leptospira infection on the microtubule protein alpha-tubulin in

endothelial cells. Alpha-tubulin in HMEC-1 and HDLEC is shown in green. The nuclei are

stained in blue for all panels. Scale bars represent 50 μm. Quantified signal intensity of the host

protein is indicated in the right-hand graph. There was no significant difference in the signal

intensity of alpha-tubulin between infected and uninfected cells.

(TIF)

S9 Fig. No significant effect of Borrelia infection on VE-cadherin in endothelial cells.

Endothelial cells were infected with the wild-type Borrelia burgdorferi B31-A3. VE-cadherin in

HMEC-1 and HDLEC is shown in green. The nuclei are stained in blue for all panels. Scale

bars represent 50 μm. Quantified signal intensity of the host protein is indicated in the right-

hand graph. There was no significant difference in the signal intensity of VE-cadherin between

infected and uninfected cells.

(TIF)
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