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Abstract

Motivation: The presence of multiple infecting strains of the malarial parasite Plasmodium falcip-

arum affects key phenotypic traits, including drug resistance and risk of severe disease. Advances

in protocols and sequencing technology have made it possible to obtain high-coverage genome-

wide sequencing data from blood samples and blood spots taken in the field. However, analyzing

and interpreting such data is challenging because of the high rate of multiple infections present.

Results: We have developed a statistical method and implementation for deconvolving multiple

genome sequences present in an individual with mixed infections. The software package DEploid

uses haplotype structure within a reference panel of clonal isolates as a prior for haplotypes

present in a given sample. It estimates the number of strains, their relative proportions and the

haplotypes presented in a sample, allowing researchers to study multiple infection in malaria with

an unprecedented level of detail.

Availability and implementation: The open source implementation DEploid is freely available at

https://github.com/mcveanlab/DEploid under the conditions of the GPLv3 license. An R version is

available at https://github.com/mcveanlab/DEploid-r.

Contact: joe.zhu@bdi.ox.ac.uk or gil.mcvean@bdi.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Malaria remains one of the top global health problems. The major-

ity of malaria related deaths are caused by the Plasmodium falcip-

arum parasite (WHO, 2016), transmitted by mosquitoes of the

genus Anopheles. Patients are often infected with more than one dis-

tinct parasite strain (termed mixed infection, multiple infection, or

complexity of infection), due to bites from multiple mosquitoes,

mosquitoes carrying multiple genetic types or a combination of

both. Mixed infections can lead to competition among co-existing

strains and may influence disease development (de Roode et al.,

2005), transmission rates (Arnot, 1998) and the spread of drug re-

sistance (de Roode et al., 2004). In addition, within-host evolution

can lead to the presence of more than one genetically and phenotyp-

ically distinct strains (Bell et al., 2006).

The presence of multiple strains of P.falciparum makes fine scale

analysis of genetic variation challenging, since genetic differences

between strains of this haploid organism will appear as heterozy-

gous loci. Such mixed calls confound methods that exploit haplo-

type data to detect, among other phenomena, the occurrence of

natural selection or recent demographic events (Harris and Nielsen,

2013; Lawson et al., 2012; Mathieson and McVean, 2014; Sabeti

et al., 2002). In light of these difficulties, researchers usually focus

on clonal infections or resort to heuristic methods for resolving

heterozygous genotypes. The former approach discards valuable
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information regarding genetic diversity and relatedness, whereas the

latter tends to create chimeric haplotypes that are not suitable for

analysis, unless mixed calls are very sparse.

In comparison to the problem of phasing haplotypes within dip-

loid organisms, deconvolving the strains of a multiple infection dif-

fers because of uncertainty in the number of strains present and their

relative proportions. Consequently, existing tools for phasing dip-

loid organisms, such as BEAGLE (Browning and Browning, 2007),

IMPUTE2 (Howie et al., 2009) and SHAPEIT (Delaneau et al.,

2012; O’Connell et al., 2014), are not appropriate. Galinsky et al.

(2015), O’Brien et al. (2016) and Chang et al. (2017) have at-

tempted to address the multiple infection problem by inferring the

number and proportions of strains from allele frequencies within

samples. However, since they do not infer haplotypes, these

approaches have limited applicability.

As part of the Pf3k project (www.malariagen.net/data/pf3k-5),

an effort to map the genetic diversity of P.falciparum at global

scale, we have developed algorithms and a software package im-

plementation DEploid, for deconvolving multiple infections. The

program estimates the number of different genetic types present in

the isolate, the proportion or abundance of each strain and their

sequences (i.e. haplotypes). To our knowledge, DEploid is the first

package able to deconvolute strain haplotypes and provides a

unique opportunity for researchers to study the epidemiology of

P.falciparum.

2 Materials and methods

The following sections provide details on the statistical model used

for inference and its implementation, with additional detail being

provided in the Supplementary Material. Readers wishing to skip

technical details can move directly to the section on validation and

performance.

2.1 Notations
We first introduce our notation (see Table 1). Our data, D, are the

allele read counts of sample j at a given site i, denoted as rj;i and aj;i

for reference (REF) and alternative (ALT) alleles respectively. These

are assigned values of 0 and 1, resepctively. Here we consider only

biallelic loci, though future extension to include multi-allelic sites

is simple. The empirical allele frequencies within a sample (WSAF)

pj;i and at population level (PLAF) fi are calculated by
aj;i

aj;iþrj;i
andP

j
aj;iP

j
aj;iþ
P

j
rj;i

respectively. Since all data in this section refers to the

same sample, we drop the subscript j from now on.

2.2 Model
We describe the mixed infection problem by considering the number

of strains, n, the relative abundance of each strain, w, and their al-

lelic states, h. Similar to O’Brien et al. (2016), we use a Bayesian ap-

proach and define the posterior probabilities of n, w and h given a

reference panel, N, and the read error rate, e, as:

P n;w; h; jN; e;Dð Þ / L n;w; h; jN; e;Dð Þ � P n;w; hð Þ: (1)

We assume a prior in which the haplotypes of the n strains are inde-

pendent of each other and dependent only on the reference panel.

Therefore, the joint prior can be written as:

P n;w; hð Þ ¼ P nð Þ � P wjnð Þ �
Yn
k¼1

P hkjNð Þ: (2)

The following sections describe details of the model and the ap-

proach to inference.

2.2.1 Likelihood function

Let w ¼ w1; . . . ;wn½ � and hi ¼ h1;i; . . . ;hn;i

� �
denote the proportions

and alleic states of the n parasite strains at site i. We use O’Brien

et al. (2016)’s expression for the expected WSAF at site i, qi, as:

qi ¼ w � hið Þ ¼
Xn

k¼1

wk � hk;i: (3)

The data, which can be summarized by the reference and alternative

allele read counts at each site, is modelled through a beta-binomial

distribution given the expected WSAF. We model the data at distinct

segregating sites as independent. Thus the likelihood function in

Equation (1) is only dependent on the haplotypes present and their

frequencies through their contribution to qi.

To incorporate sequencing error, we modify the expected WSAF

such that the allele frequency of ‘REF’ read as ‘ALT’ is 1� qið Þe,

and the allele frequency of ‘ALT’ read as ‘REF’ is qie. Thus, the ad-

justed expected WSAF becomes:

pi ¼ qi þ 1� qið Þe� qie ¼ qi þ 1� 2qið Þe: (4)

We model over-dispersion in read counts relative to the Binomial using

a Beta-binomial distribution. Specifically, the read counts of ‘ALT’ are

identically and independently distributed (i.i.d.) Bernoulli random vari-

ables with probability of success vi; i.e. ai � Binom ai þ ri; við Þ, and

vi � Beta a;bð Þ, where E við Þ ¼ a= aþ bð Þ ¼ pi. This is achieved by set-

ting a ¼ c � pi and b ¼ c � 1� pið Þ, such that the variance of the WSAF

is inversely proportional to c. Combined, we have:

L qije;Dð Þ / C ai þ c � pið ÞC ri þ c � 1� pið Þð Þ
C c � pið ÞC c � 1� pið Þð Þ : (5)

2.2.2 Prior distributions

Rather than model the number of strains, n, directly, we take the ap-

proach of fixing n to be at the upper end of what can realistically be

inferred (typically 5), using a skewed prior for proportions (such

that typically only 1–2 strains might be at appreciable frequency)

and then discarding strains inferred to have a proportion less than

some critical amount (e.g. 1 percent).

Table 1. Notation used in this article

Symbol Notation

i Marker index

j Sample index

r Read count for reference allele

a Read count for alternative allele

f Population level allele frequency (PLAF)

n Number of strains within sample

l Sequence length

w Proportions of strains

x Log titer of strains

hi Allelic states of n parasite strains at site i

hk;i Allelic state of parasite strain k at site i

p Observed within sample allele frequency (WSAF)

q Unadjusted expected WSAF

p Adjusted expected WSAF

N Reference panel

nk;i Allelic state of reference panel strain k at site i

G Scaling factor used for genetic map

e Probability of read error
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To achieve this, we model the proportions of the n strains

through a log titer, xk, drawn from a N g;r2
� �

prior. The proportion

of strain k, wk, is given by

wk ¼
exp xkð ÞPn

j¼1

exp xj

� � ; (6)

and the prior density is given by the distribution function for the

value of x.

Haplotypes, h, are modelled as being generated independently

from the reference panel by the Li and Stephens (2003) process,

though with a rate of mis-copying that is independent of the panel

size. That is, under the prior, a path through the reference panel is

sampled as a Markov process where recombination enables switch-

ing between members of the reference panel and mis-copying allows

the allelic state of the haplotype within the sample to differ from the

allelic state of the reference panel haplotype being copied at the site.

The transition probability of switching from copying reference

haplotype a to reference haplotype b is 1� exp �Gwið Þð Þ=jNj, where

wi is the genetic distance (in Morgans) between sites i and iþ1, G, is

a scaling factor (described below in more detail) and jNj is the size of

the reference panel. Note that unlike the original model, the recom-

bination or switching rate is not dependent on sample size.

For miscopying, let nk denote the state of the sequence in the ref-

erence panel N that hk is copying from at given site and l denote the

probability of miss-copying:

P nk ¼ hkð Þ ¼ 1� l;

P nk 6¼ hkð Þ ¼ l:

(

As above, this is a simple reparamterization of the original model,

but where the miscopying rate is independent of the sample size.

The emission probabilities are given by the convolution of the refer-

ence panel paths and the miscopying process, strain proportions and

the read error rate.

2.3 Inference
To infer the haplotypes present in a mixed infection and their rela-

tive proportions we use a Markov chain Monte Carlo (MCMC) ap-

proach. We learn the relative abundance of each strain by exploiting

signatures of within-sample allele frequency imbalance, using a

Metropolis-Hastings algorithm, which samples proportions (w)

given haplotypes (h). While updating w, we rely on ‘painting’ strain

haplotypes with a reference panel to recover individual haplotype

structure. Our Gibbs sampler updates h for a given w by adjusting

either a single sequence or a pair of haplotypes (to speed up conver-

gence). We iterate through these MCMC steps in a random order.

Details can be found in the Supplementary Material.

2.4 Implementation details
• Number of strains. As described above, we aim to infer more

strains than are actually present, starting the MCMC chain with

a fixed n, which has a default of 5. At the point of reporting, we

discard strains with a proportion less than a fixed threshold, typ-

ically 0.01.
• Parameters. The parameter c (Equation (5)) reflects how much

data are available. The mean coverage of the validation dataset

ranges from 106.20 to 147.04, with a mean of 124.487. In prac-

tice, we set the parameters c ¼ 100; g ¼ 0, r2 ¼ 5 which are ad-

justed accordingly when working with extremely unbalanced

samples (Section 2.2.2 and Supplementary Material). We set the

read error rate as 0.01 and the rate of mis-copying as 0.01.
• Recombination rate and scaling. We assume a uniform recom-

bination map, where the genetic distance between loci i and i þ 1

is computed by wi ¼ Di=dm where Di denotes the physical dis-

tance between loci i and i þ 1 in nucleotides and dm denotes the

average recombination rate in Morgans bp–1. We use the recom-

bination rate for P. falciparum of 15 000 base pairs per

centiMorgan as reported by Miles et al. (2016). The recombin-

ation rate is scaled by a factor G, which reflects the effective

population size, rate of inbreeding and size and relatedness of the

reference panel. In practice, we deconvolve over 1 million

markers in field samples. We use a value of G ¼ 20 to ensure

small values for recombination probabilities between any two

markers, with a mean of 0.015. A large value of G relaxes the

reference panel constraint, becoming an LD free model when G

is infinity. In practice, inference seems largely insensitive to

choices around this parameter. The scaled genetic distance Gw is

used to compute the transition probability of switching from

copying reference haplotype a to reference haplotype b (see

Supplementary Material for details).
• Update without linkage disequilibrium. For initializing the chain,

or if the markers present are very widely spaced, linkage disequi-

librium can be ignored, which is equivalent to setting the genetic

distance between adjacent loci to be infinitely high. Under these

circumstances, the haplotype updates become much simpler and

depend only on the population-level allele frequency (PLAF), for

example as estimated from the reference panel or provided

independently.
• Reporting We aim to provide users with a single point estimate

of the haplotypes and their proportions, although the full chain

is also available for analysis. To achieve this we report values at

the last iteration—i.e. we report a single sample from the poster-

ior. However, to measure robustness, we typically repeat the de-

convolution with multiple random starting points. We use a

majority vote rule on the inferred number of strains; we then se-

lect the chain with the lowest average deviance (after removing

the burn-in) as our estimate. The deviance measures the differ-

ence in log likelihood between the fitted and saturated models,

the latter being inferred by setting the WSAF to that of the

observed values. These parameters can be modified by users to

achieve a preferred balance between computational speed and

confidence. By default, we set the MCMC sampling rate as 5,

with the first 50% of samples removed as burn in and 800 sam-

ples used for estimation.
• Reference panel construction. To infer clonal samples for the ref-

erence panel we use the Pf3k project data, running the algorithm

without LD on all samples and identifying those with a dominant

haplotype (proportion > 0.99) as clonal. These clonal samples

are grouped by region of sampling to form location-specific refer-

ence panels. In addition, we have included a number of reference

strains, described in more detail below.

3 Validation and performance

As validation we used a set of in vitro mixtures created by Wendler

(2015) to simulate mixed infections. DNA was extracted from four

laboratory parasite lines: 3D7, Dd2, HB3 and 7G8, experimentally

mixed in different proportions (see Fig. 1), and submitted to the

MalariaGEN pipeline (MalariaGEN, 2008) for Illumina sequencing

and genotyping (Manske et al., 2012).
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This dataset only contains two unmixed samples, which is in-

sufficient for constructing a reference panel. Moreover, the

P.falciparum genetic crosses project (Miles et al., 2016) found that

due to sequencing error, mapping error and variation among variant

calling methods, genotype calls vary at the same locus for the same

strain of P.falciparum. To create a baseline reference haplotype for

each strain we therefore considered multiple samples that contains

the same parasite strains.

Inferring haplotypes for Dd2 strain. Since 3D7 is the reference

strain, we assume that strain Dd2 is the only source of ‘ALT’ reads

in samples PG0389-C to PG0394-C. Assuming markers are inde-

pendent from each other, let y be the read count for ‘ALT’ allele and

x be the total read count weighted by the Dd2 mixing proportion

(see Fig. 1 in brackets), we use a regression model (y ¼ b0 þ b1x) to

infer the Dd2 genotype: 1 if b1 is significant with P-values below

0.001; 0 otherwise.

Inferring haplotypes for HB3 and 7G8. Similarly, for samples

PG0398-C to PG0415-C, we let variables x1, x2 be the coverages

weighted by the mixing proportions of HB3 and 7G8 respectively;

we use a regression model (y ¼ b0 þ b1x1 þ b2x2) to infer the geno-

types of HB3 and 7G8: HB3 is 1 if b2 is significant with P-values

below 0.001; 0 otherwise; similarly for 7G8.

To investigate how the haplotype inference accuracy is affected

by the quality of the reference panel (in terms of having haplotypes

close to those present in the samples) we experimented with decon-

volving the 27 lab-mixed samples with the following reference

panels:

• Panel I: five Asian and five African clonal strains from the Pf3k

resource: PD0498-C, PD0500-C, PD0660-C, PH0047-Cx,

PH0064-C, PT0002-CW, PT0007-CW, PT0008-CW, PT0014-

CW, PT0018-CW;
• Panel II: panel I with the addition of HB3;
• Panel III: panel II with the addition of 7G8;
• Panel IV: panel III with the addition of Dd2;
• Panel V: 3D7, HB3, 7G8 and Dd2 strains (the perfect reference

panel for the lab mixtures);
• Panel VI: Panel I with the addition of six (three each) clonal

strains from Asia and Africa: PH0193-C, PH0283-C, PH0305,

PT0060-C, PT0146-C and PT0158-C (a typical reference panel

for field samples of unknown geographical origin).

3.1 Accuracy
Our validation experiments use variant calls of these 27 lab-mixed

in vitro samples, which are produced by the Pf3k pipeline based on

GATK best practices (McKenna et al., 2010) on 2512 field isolates and

128 lab samples. The filter threshold is set at a level for which false posi-

tive genotype calls (calling a variant that doesn’t exist) and false negative

calls (not calling a true variant) are equal. From the 18 570 high-quality

biallelic SNPs, we observe a small number of heterozygous sites with

high coverage, which can potentially cause our model to over-fit the

data with additional strains. After the filtering step (see Supplementary

Material for details), we deconvolve the remaining 17 530 sites for all

experiments in the rest of this section, unless specified otherwise.

3.1.1 Proportions and number of strains

To evaluate accuracy of estimates we used the effective number of

strains, calculated as 1=
P

w2
i , which reflects the number and propor-

tions of strains present. We also assessed sensitivity of estimates to the

number of fitted strains (3 or 5). Typically, we find consistent infer-

ence of the effective number of strains regardless of the assumption of

number of strains or the use of LD information (see Fig. 1). The devi-

ance between the expected and inferred proportions per sample is

bounded by the inverse of the deviation between expected and

observed effective number of strains (derived in the Supplementary

Material), with an average of 0.023. We also explored the quality of

estimates for deconvolving a mixture of 3 strains (Dd2/7G8/HB3)

from different reference panels. In all cases we estimated the number

and proportion of strains accurately, for example Figure 2 shows the

proportions of strains Dd2/7G8/HB3 as being accurately inferred as

approximately 1
4 ;

1
2 and 1

4.

3.1.2 Haplotypes

To understand how the inferred haplotypes relate to the correct

haplotypes we use a dynamic programming algorithm to identify

switch errors, genotype discrepancies and regions where one or

more haplotype has been dropped out (a distinct form of genotype

error). Example deconvolutions are shown in Figure 2 and an over-

view of all experiments is shown in Figure 3. From our assessment

of haplotype inference, we conclude:

• The inference of relative proportions does not seem to be affected

by the use of linkage disequilibrium information from the refer-

ence panel or its closeness to the samples being analyzed (Fig. 2).
• The accuracy of haplotype inference is, however, dependent on

having an appropriate reference panel in terms of relatedness to

the samples being analyzed (Fig. 2).

Fig. 1. Experimental validation and effective number of strains inferred by

DEploid. We use Reference Panel V to deconvolve the same lab-mixed sam-

ples, assuming 3 and 5 strains within a sample. Each experiment is repeated

without a reference panel. Black crosses indicate the true effective number of

strains. Red crosses indicate median values obtained from 30 replicates

when using a panel and assuming that the maximum number of strains is 5.

The coloured dots show the inferred effective number of strains across repli-

cates with intensity proportional to fraction
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Fig. 2. Comparison of true and inferred haplotypes for Chromosome 14 (2369 SNPs) in sample PG0396-C without linkage disequilibrium (top) and using

Reference Panels I to IV (from the second to the bottom). Reference Panel V gives results equivalent Panel IV and Panel VI gives results similar to Panel I. Red

bars mark wrongly inferred positions. The yellow, cyan and white background label the haplotype segments from strains 7G8, HB3 and Dd2 respectively. The

switch errors are obtained by counting the changes of a strain segment mapped to reference strains; the genotype errors are the discordance between the strain

and the mapped reference segments. These results demonstrate the value of including reference strains similar to those present in the sample being analyzed

Fig. 3. Comparison of DEploid and existing tools (COIL, pfmix, BEAGLE and SHAPEIT). (a) Estimates for the number of strains present in each mixed infection

(artificially mixed in the lab) as given by COIL and DEploid. (b) Comparison of the inferred effective number of strains of each mixture as given by pfmix and

DEploid. (c) Relationship between strain proportions and haplotype inference accuracy in the experimental validation for DEploid and BEAGLE/SHAPEIT (only

mixtures of two strains). We used Reference Panel V to deconvolute all 27 samples with default settings. Each point represents a deconvolved haplotype with

17 530 sites. Point shape refers to strain and colour indicates the method applied. We use LOESS smoothing to show the trend of error versus strain proportion.

Top panel shows switch error rate, the middle panel indicates genotyping error rate and the bottom panel indicates genotyping error rate through strain dropout.

Note that zero switch error is represented as points below one. In summary, we find that DEploid results for the number of strains and relative proportions in a

mixture are comparable to those achieved by existing methods, while inferred haplotypes are considerably better than from other methods

Deconvolution of multiple infections 13



• The strain proportion affects haplotype inference (see Fig. 3).

Our method infers strains with proportions over approximately

20% with high accuracy, but struggles with minor strains due to

insufficient data, in particular at sites when the minor strain car-

ries the alternative allele and the dominant strain carries the ref-

erence allele (see Fig. 3).

3.2 Comparison to existing methods
A mixed infection can be completely described by the number of co-

existing strains, their relative proportions and their associated

haplotypes. Existing methods for characterizing mixed infections

are limited to providing a summary statistic of relative inbreeding

(Fws, Manske et al., 2012), inferring the number of strains (COIL),

or simultaneously inferring the number of strains and their propor-

tions (pfmix, O’Brien et al., 2016). DEploid is the only method that

can also estimate haplotypes although it can be argued that conven-

tional tools for phasing diploid organisms (BEAGLE, SHAPEIT)

could be used to deconvolute mixtures of two strains.

In this section, we use the same dataset (27 samples) to compare

DEploid with all the methods mentioned above (see Supplementary

Material for details). Our method correctly infers the number of

strains in 24 out of 27 samples when a reference panel is provided.

In comparison, COIL correctly infers the number of strains in 23

samples. We notice that both methods struggle to identify strains

whose relative proportions is below 5% (Fig. 3a). Specifically, both

methods fail to detect the minor strain at 1% in sample PG0414-C.

However, while COIL typically fails to identify strains with a pro-

portion below 5%, DEploid tends to over-fit the minor strain with

an additional component.

The method pfmix infers the number of strains and proportions

solely from the allele frequency imbalance within sample: It infers

the strain proportions assuming different number of strains (from

one to eight), then uses the Bayesian information criterion to choose

the best model. As we were unsuccessful in our attempt to use pfmix

with our dataset, we ignore the model selection step of pfmix, and

infer proportions directly with fixed number of strains. Similar to

the comparison shown in Figure 1, we compute the observed and ex-

pected effective number of strains of each sample, and find consist-

ent results between DEploid and pfmix.

We also investigated the use of BEAGLE and SHAPEIT for

deconvolving haplotypes in mixtures of two strains. BEAGLE and

SHAPEIT would implicitly assume a 50:50 distribution of alleles,

since they have been designed for diploid organisms. Both methods

worked well for balanced mixtures (i.e. with proportions between

40 and 60%) as they mimic a diploid sample. However, as strain

proportions became more unbalanced, accuracy degraded and both

methods incorrectly inferred heterozygous sites as homozygous,

introducing a bias towards inferring the haplotypes of dominant

strains. We observed that strains with a relative proportion below

20% were always masked out by the dominant strain (Fig. 3c).

3.3 Simulation from field samples
The lab strain mixture reflects an artificial situation that is unlikely

in the field. To assess the performance of DEploid in realistic set-

tings, we created in silico mixtures from 212 clonal samples of

Asian origin with two proportions (25/75% and 45/55%) for 8071

sites from Chromosome 14. A further 20 randomly chosen samples

were used for the reference panel. To simulate data, we used empir-

ical read depths and drew read counts for the two alleles from the bi-

nomial proportions given by Equation (4). DEploid correctly

recovered the number of strains and proportions. As expected, we

observed more switches and genotype errors in 45/55% mixtures

than 25/75% mixtures, with means of 24.3 and 0.57 for switch

errors, and 0.013 and 0.0042 for per-site genotype errors (combin-

ing isolated and strain drop-out errors) respectively (Fig. 4). In sum-

mary, because field samples are likely to contain haplotypes much

more closely related to each other than the artificial lab strain mix-

tures, we consequently expect high genotype accuracy and, at least

for samples with unbalanced mixtures, very low switch error rates.

3.4 Run-time
The complexity of our program is O lm2

� �
, where m and l are the

number of reference strains and sites respectively. In practice, we

recommend dividing samples into distinct geographical regions to

perform deconvolution. We then compute the number of differences

between clonal strains, and use the 10 most different local clonal

strains as reference panel. The run time for deconvolution a field

sample range between 1 and 6 h, depending on the number variants

in a sample: For example, it takes 5 1
2 h to process sample QG0182-

C over 372 884 sites. We give worked examples of deconvolving

mixed infections from in vitro samples in the Supplementary

Material.

4 Discussion

The program DEploid and its analysis pipeline has been originally

developed for P.falciparum studies. Nonetheless, with some param-

eter changes, DEploid can potentially be used for deconvolution of

other datasets with a mixture of samples from a single species, for

example on data from Plasmodium vivax (Pearson et al., 2016) or

bacterial and viral pathogens. However, it is likely that fine-tuning

of parameters (for example, relating to mis-copying rates, read over-

dispersion and recombination), filtering of datasets to remove

poorly genotyped variants and collation of appropriate reference

panels will be necessary to achieve effective results. We show ex-

amples and discuss the effect of fine-tuning parameters in the

Supplementary Material.

There are several limitations of the current implementation, the

greatest of which is the quadratic scaling with reference panel size.

Note that a typical reference panel from field samples will not guar-

antee all haplotype structure representative of the population is pre-

sent. Therefore, it would be ideal to include as many reference

strains as possible. However, this approach is computationally pro-

hibitive. In practice, current approaches to related problems such as

Fig. 4. Histograms of switch error and genotype error across 78 simulated

Pf3k samples. We excluded four cases out of the 100 experiments where

simulated haplotypes were over 99% identical and 18 cases where average

coverage was below 20
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haplotype phasing (Delaneau et al., 2012) or inference from low-

coverage sequencing experiments (Davies et al., 2016) typically aim

to select a few candidate haplotypes (which might be a mosaic) from

a reference panel. Alternatively, the reference panel data can itself

be approximated, for example through graphical structures, as in

BEAGLE (Browning and Browning, 2007), or represented through

structures that enable efficient computation (Lunter, 2016). Our

current implementation also only considers biallelic variants. To re-

construct the complete haplotype, we should also consider structural

variants such as insertions and deletions, which will require tailored

error models. Such extensions will be pursued in future work.

Recently, single molecule sequencing with long-read data has be-

come available, for example through PacBio or Oxford Nanopore

Technologies. Read lengths of several kilobases can provide infor-

mation on linkage between variants within a sample, which is typic-

ally very limited from short reads, hence not considered here.

Similarly, single-cell technologies can provide long-range, though

typically very patchy information. Although integration of such data

types will require modifications to algorithms and technology-

specific error models, they also provide great potential to provide

highly accurate and genome-wide characterization of multiple

strains within samples.
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