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Knowing the submitochondrial location of a mitochondrial protein is an important step in understanding its function. We
developed a new method for predicting protein submitochondrial locations by introducing a new concept: positional specific
physicochemical properties. With the framework of general form pseudoamino acid compositions, our method used only about 100
features to represent protein sequences, which is much simpler than the existing methods. On the dataset of SubMito, our method
achieved over 93% overall accuracy, with 98.60% for inner membrane, 93.90% for matrix, and 70.70% for outer membrane, which
are comparable to all state-of-the-art methods. As our method can be used as a general method to upgrade all pseudoamino-acid-
composition-based methods, it should be very useful in future studies. We implement our method as an online service: SubMito-

PSPCP.

1. Introduction

Mitochondrion is a type of membrane-enclosed subcellular
organelle that can be found in most eukaryotic cells [1].
It is involved in many biological processes, such as energy
metabolism, programmed cell death, and ionic homeostasis
[2]. Every mitochondrion can be divided into four sub-
compartments, including inner membrane, outer membrane,
intermembrane space, and the matrix. The proteins in mito-
chondria can vary in different tissues and organisms. For
example, human mitochondria may contain about 600 differ-
ent proteins [3], while over 900 proteins were found in mouse
mitochondria [4]. Mitochondria have been reported to be
related in several human diseases and may play an important
role in the aging process [5].

Computational identification of protein subcellular loca-
tions has become a challenge in the last decade. Recently,
the research in this area focused on four different topics: (1)
the prediction of multisites protein subcellular localization
[6-9]; (2) the prediction of protein sub-subcellular locations
[10], including the prediction of protein subnuclear locations,

submitochondrial locations, and subchloroplast locations; (3)
the prediction of topology-specific protein subcellular loca-
tions [11,12]; and (4) the prediction of conditional mislocated
protein subcellular locations [13]. Several promising results
have been achieved in these four topics. Li et al. did a serial
of interesting work to predict multisites protein subcellular
localization by introducing the multilabel classification meth-
ods [14-16]. Lin et al. presented a serial of impressive results
in predicting protein submitochondrial and subchloroplast
locations [17,18]. They also achieved great success in applying
computational approaches in identifying Golgi-resident pro-
tein types as well as mycobacterial membrane protein types
(19, 20].

Over the last few years, several studies focused on report-
ing computational methods to predict protein submitochon-
drial locations. Du and Li started this topic by proposing
the SubMito system and the first benchmarking dataset [21].
Nanni and Lumini introduced a genetic-algorithm-based
method to select sequence-based protein descriptors [22]. Shi
et al. introduced the wavelet-SVM method to improve the
prediction performance [23]. Fan and Li proposed a hybrid
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method using six different types of descriptors with incre-
mental diversity algorithm as a feature selection procedure
[24]. Zakeri et al. employed anther hybrid method to incorpo-
rate sequence-based descriptors, functional domain descrip-
tors, and secondary structure information [25]. Lin et al.
proposed to use the overrepresented tetrapeptides to predict
the protein submitochondrial locations [17]. All of these
methods improved the prediction accuracy on the same
benchmarking dataset [26, 27].

With the increment of prediction accuracy, the complex-
ity of algorithms and the dimensions of the feature vector to
represent the protein sequence are also increasing. Du and Li
started this topic by using 1080 dimensional vectors. Nanni
and Lumini created 15 artificial features by combining several
hundreds of different features. Shi et al. employed the discrete
wavelet transformation and summary statistics to reduce the
dimensions of features. Fan and Li introduced thousands of
original features and used incremental diversity algorithm
to reduce them to 613 dimensions. Zakeri et al. combined
over a thousand different features in their method. Lin et al.
used 160,000 original features and reduced them to 1302
dimensions using a confidence parameter. Except, SubMito,
all the state-of-the-art methods were using different machine-
learning-based algorithms to reduce the feature dimensions.
It seems that the key to improve the prediction performance
is to choose the right dimension reduction algorithms.

Although the dimension reduction algorithms are con-
solidated based on statistics and are supported well by the
underlying mathematical theories, it is usually difficult to rea-
son the selected dimensions in a biological sense. We admit
that the dimension reduction algorithms are effective and
useful. It should be regarded as a powerful tool to improve the
prediction performance of bioinformatics predictors. How-
ever, in this paper, we would present a method that can pro-
duce comparable prediction performance with only about 100
dimensions of features and without using any dimensional
reduction algorithm.

2. Materials and Methods

2.1. Datasets. There are several datasets existing for predict-
ing submitochondrial locations. These datasets are always
extracted from UniProt database with several filtering pro-
cedures. Since the methods, which were proposed along with
these datasets, may have different requirement to the dataset,
there are differences in the filtering procedures. In order
to reflect the most recent advances in the available data as
well as demonstrating the prediction power of the current
method, two datasets were adopted in the current study. One
dataset was directly extracted from the most recent version of
UniProt database, and the other is the SubMito dataset that
was published by Du and Li.

The procedures for filtering the raw data from UniProt
database are described as follows: First, the reviewed
sequences in the UniProt database, which are annotated
with subcellular location “mitochondrion,” were retrieved
using the UniProt online query and retrieval system. Sec-
ondly, the sequences were screened to ensure every sequence
has a uniquely annotated submitochondrial location among
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TABLE 1: Summary of the dataset.

. . . Number of protei
Submitochondrial locations umber of proteins

SML3-317 SML3-983
Inner membrane 131 661
Outer membrane 41 145
Matrix 145 177
Total 317 983

the four locations: mitochondrial inner membrane, mito-
chondrial outer membrane, mitochondrial matrix, and mito-
chondrial intermembrane space. Due to the limited number
of multi-sites submitochondrial proteins, we do not consider
them in the current study. Thirdly, the sequences which
are fragment of other proteins are excluded. The remaining
sequences are processed using the CD-HIT program to
remove the highly homologues sequences. The identity cutoft
was set to 40% in the CD-HIT program. Finally, the submi-
tochondrial locations, which contain less than 15 sequences,
were discarded. The remaining 983 sequences compose the
dataset of this study. Among the 983 sequences, there are 661
sequences from inner membrane, 177 sequences from matrix,
and 145 sequences from outer membrane. We use this dataset
as the basis to train and test our method. This dataset was
denoted as the SML3-983 dataset in the current study.

The dataset of SubMito was also adopted as the basis for
comparing the performance of our method to other existing
methods, as all existing methods reported jackknife test
performance on this dataset. The SubMito dataset contains
317 protein sequences from 3 submitochondrial locations,
including 131 sequences from inner membrane, 41 sequences
from outer membrane and 145 sequences from matrix. The
pairwise sequence similarity in the dataset is lower than 40%.
This dataset was denoted by the SML3-317 dataset in the cur-
rent study. The summary of both datasets is shown in Table 1.

2.2. Sequence Representations. In order to improve the per-
formance in predicting protein subcellular localizations, one
of the keys is to represent the protein sequences with an
effective discrete numerical form, which is able to reflect
the intrinsic correlation with their localizations [28]. The
PseAACs (pseudoamino acid compositions) have been com-
monly used to represent protein sequences in predicting
their subcellular locations [29]. It is also extended recently
to represent nucleotide sequences as well [30]. The basic idea
of the PseAAC is to extract the sequence order information
with the autocorrelation coeflicients of the protein sequence
if every residue on the protein sequence can be represented
with a number [31]. The physicochemical properties of amino
acids, like hydrophobicity and hydrophilicity values, were
used for this purpose [32].

Biology is a natural science with historical dimensions.
In the evolution history, the mutations in DNA level may
produce the changes of single residues or insertion or deletion
of several residues on the protein sequences. However, the
function and the localization of the protein may remain
unchanged. Therefore, we should investigate a group of
evolutionary related protein sequences rather than a single
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protein sequence, which will make it easy to determine which
residues are relatively more important in preserving the
function and the localization of the protein. In recent years,
the PsePSSM (pseudopositional specific scoring matrix),
which applies the pseudoamino acid composition concept
on the PSSM (positional specific scoring matrix), was widely
applied in representing protein sequences [33-36].

Next, we propose a method that replaces the physico-
chemical properties in the PseAAC with the PSPCP (posi-
tional specific physicochemical properties), which can be
derived from the PSSM and the existing physicochemical
properties.

Let P = R|R, --- R, be a protein sequence with length L,
where R} ,R,,.. ,R; are the L residues on the protein sequence.
By searching P against the SwissProt database using PSI-
BLAST program [37] with three iterations and 0.001 as the
e-value threshold, a PSSM can be produced as follows:

Ei oy EiL, - Eiy
E2—>1 E2—>2 E2—>20

E(P) = : o : , (1)
EL—>1 EL—»l EL—>20

where E;_, ; is a score generated by the PSI-BLAST. This score
described the propensity of the ith residue on the protein
sequence that is being changed to the jth type of amino acid
during the evolutionary process.

Because of the PSSM generation process in PSI-BLAST,
this number can be either positive or negative. It can also
vary in a large range. In order to make every element in (1)
within the range [0, 1], a conversion was performed to create
a standardized matrix as follows:

A2—>1 A2—>2 A2—>20
A(P) = ) : , (2)
AL—)I AL—>1 AL—>20
where
exp(E;_, ;
A= (’ J) i=12,...,L j=12,...,20

ivexp (B )
()

Let H(r, j) be the rth physicochemical property of the jth
type of residue. We now use the rth physicochemical property
to derive a PSPCP for R; on the protein sequence P, as given

by
20
di,r (P) = ZAiHjh (’3 ]) > (4)
=1

where d;,(P) is the PSPCP derived from the rth physico-
chemical property for R; and h(r, j) is the normalized rth
physicochemical property of the jth type of residues. It can
be computed as follows:

H(r,j)-m(r)

s(r) ’ ®)

h(r.j) =

where

L2
m(r) = EZH(r,j),
j=1

(6)

20
s(r) = \j%Z(H (r,j) - m(r))z.
=

We now use the PSPCP to replace the physicochemical
properties in the amphiphilic pseudoamino acid composi-
tions (AmPseAAC) [31]. We compute the following twenty
descriptors to replace the amino acid compositions in the
AmPseAAC:

1¢ ,
fiP) =LAy j=12..,20 7)
i=1

The pseudofactor that describes the kth tier sequence-
order effect with the PSPCP, which is derived from the rth
physiochemical property, can be formulated as (8)

| Lk
thy (P) = T D i (P i (P). (8)
i=1

Given the parameters, w and A, and R types of physico-
chemical properties, we create 20+ AR descriptors for protein
P as follows:

fa (P)
Y fa(P)+wIR Y uy, (P)
1 <n<20,
wuk,r(P) (9)
Y f(P)+w IR Y vy, (P)
n=20+(r—-1)A+k,
1<k<A 1<r<R,

qn(P):4

where w should be in the range (0, 1) and A can be a positive
integer less than the length of the shortest sequence in the
benchmarking dataset.

The protein P can be represented as a 20 + AR dimension
vector as

QM) =[q,(P), gy (P), ... g (P)]". (10

When the PSSM is not available, A; = 1 would be
assumed. The whole sequence representation would automat-
ically degrade to AmPseAAC.

2.3. Prediction Algorithm. We use SVM (support vector
machine) as the prediction algorithm in this study. It searches
for an optimal separating hyperplane, which maximizes the
margin in feature space [38]. We used an RBF (radial basis
function) kernel in this study, as the RBF kernel is the most
flexible and the most widely used kernel function. The RBF
kernel function can be formulated as follows:

K(Q(P,),Q(P,) =exp(1jQ(R) -Q(R)]),

where y is a parameter, Q(P,) and Q(P,) are 20 + AR
dimension vectors representing proteins P, and P, and “| - |”
is the operator that computes the Euclidean length of a vector.



2.4. Performance Evaluations. The jackknife test, which is
deemed to be the most objective and rigorous protocol for
evaluating predictive bioinformatics methods, was applied in
evaluating the performance of our method [39]. The follow-
ing summary statistics were used to measure the prediction
performance:

TP,TN, — FP_EN,
V(TP + EP) (TP, + EN,) (TN, + EP,) (TN, + EN,)

s=1,2,3,

3
acc = — 2= TP
¥> TP, + FN,

(12)

where Acc, is the prediction accuracy for the sth location,
MCC;, is the Mathew’s correlation coefficient [40] for the
sth location, ACC is the overall prediction accuracy, and
TP, TN,, FP,, and FN; are the numbers of true positives,
true negatives, false positives, and false negatives of the sth
location in the jackknife test, respectively.

2.5. Parameter Calibrations. There are several parameters in
our method. The value of these parameters will affect the
prediction performance of our method. These parameters
were calibrated to optimize the jackknife test overall accuracy.
Nine different types of physicochemical properties, which
are the same as the SubMito method, were applied in this
method. These physicochemical properties can be found in
Table 2. The parameters w and A were selected by enumera-
tions. The parameter w was enumerated in the range 0.05 to
1.0 with step 0.05. The parameter A was enumerated in the
range 2 to 20 with step 1. Altogether, 380 combinations of w
and A were tested. For every combination, a grid search was
carried out using LIBSVM software package [41] to optimize
the jackknife test performance by finding the best values of
the parameters y and C, which are the cost parameters in
training SVM models.

3. Results and Discussions

3.1. Prediction Performance. The jackknife test on SML3-983
dataset was shown in Table 3. The optimal performance was
achieved when w = 0.15, A = 11, y = 0.125, and C = 8. The
optimal jackknife test performance on SML3-983 was 89.01%.

Since all existing methods reported their jackknife test
performance on SML3-317 dataset, we also optimized our
method on that dataset for a performance comparison. On
SML3-317 dataset, we achieved the best performance when
w = 0151 = 9,y = 0125, and C = 2. The optimal
performance of our method on SML3-317 was listed in Table 4
with the comparison to the other existing methods.
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TABLE 2: Physicochemical properties used in this method.

AAlndex ID Property description

BULH?740101 Transfer free energy to surface
EISD840101 Consensus normalized hydrophobicity
HOPT810101 Hydrophilicity value

RADAS880108 Mean polarity

ZIMJ 680104 Isoelectric point

MCMT640101 Refractivity

BHARS80101 Average flexibility indices

CHOC?750101 Average volume of buried residue
COSI940101 Electron-ion interaction potential values

TABLE 3: Prediction performance on SML3-983 dataset.

Submitochondrial location ACC MCC
Inner membrane 95.46% 0.77
Outer membrane 77.93% 0.83
Matrix 74.01% 0.73
Overall 89.01%

On SML3-317 dataset, the overall prediction accuracy
of our method achieved over 93%, which is comparable to
all state-of-the-art methods. Obviously, some other methods
have achieved about 1% higher overall accuracy than our
method. Nevertheless, no existing method achieved better
prediction accuracy on all three submitochondrial locations.
It should also be noticed that our method achieved 98%
accuracy on the inner membrane class, which is higher
than Subldent, MitoLoc, and Fan and Li’s method. The only
method that has higher prediction accuracy on the inner
membrane class is the TetraMito. However, TetraMito has
a lower MCC value on the inner membrane class, which
indicates that the 100% accuracy on the inner membrane class
may be on the cost of decreasing accuracy of the other
locations. As anticipated, TetraMito has only 66% prediction
accuracy on the outer membrane class with a similar MCC
value to our method. The only drawback of our method is the
performance on matrix. The prediction accuracy is slightly
lower than existing methods. However, the MCC on matrix
location is still higher than most of the existing methods.
Therefore, it is fair to say that our method is comparable to all
state-of-the-art methods in predicting protein submitochon-
drial locations.

To further validate the performance of our method, we
carried out an independent dataset test. For both SML3-
983 and SML3-317 datasets, 80% sequences were randomly
selected as the training dataset. The predictor was trained
with these 80% sequences. The prediction performance was
estimated using the remaining 20% sequences. These proce-
dures were repeated 20 times for every dataset. The average
prediction performance and the standard deviation of the
accuracy were shown in Table 5. The independent dataset
test performance is similar to the jackknife test performance.
These results proved that the performance of our method was
not overestimated.
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TABLE 4: Performance comparison on SML3-317 dataset.
Methods Inner membrane Matrix Outer membrane Overall
ACC MCC ACC MCC ACC MCC
SubMito [21] 85.50% 0.79 94.50% 0.77 51.20% 0.64 85.20%
GPLoc [22] 83.20% 0.80 97.20% 0.85 78.10% 0.77 89.00%
Subldent [23] 91.60% 0.86 97.30% 0.79 82.90% 0.88 93.10%
Predict_SubMito [26] 91.80% 0.79 96.40% 0.79 66.10% 0.63 89.70%
MitoLoc [25] 97.70% 0.94 99.00% 0.93 68.30% 0.81 94.70%
Fan and Li [24] 94.70% 0.91 99.30% 0.96 80.50% 0.84 94.90%
TetraMito [17] 100.00% 0.90 96.60% 0.95 65.90% 0.79 94.00%
This work 98.60% 0.92 93.90% 0.89 70.70% 0.79 93.10%

TaBLE 5: Independent dataset test of the current method.

Dataset Average ACC Standard deviation of ACC
SML3-317 90.24% 3.27%
SML3-983 87.17% 1.81%

The values in this table are obtained by 20 times 20% independent dataset
test.

3.2. Advantages of PSPCP. In the method section, we have
already described how to generate the PSPCP features. We
will now discuss why we use (4) to define a replacement of
physicochemical properties in the PseAAC.

The protein functions, including its subcellular locations,
are largely determined by the physicochemical properties
of the residues on the sequence. However, not all residues
contribute to the protein functions equally. Some of the
residues are important, while others are not. In the evolu-
tionary process, the important residues tend to be conserved,
or at least can only vary to limited types that possess similar
physicochemical properties. But the unimportant residues
would not be conserved. Thus, we can assume that all unim-
portant residues would have similar replacement propensity
patterns in the evolutionary history. Although it is difficult to
figure out which residue is important and which is not, based
on our assumption, the average physicochemical properties
in the evolution history would be similar for all unimportant
residues. Thus, if we compute the average physicochemical
properties in the evolution history, the important residues
would possess physicochemical properties that are much
more different to those unimportant ones. This is why we use
PSPCP, which is the average physicochemical properties of all
residues in the evolution history, to replace the conventional
physicochemical properties in the PseAAC.

Developing novel methods for predicting protein sub-
mitochondrial locations is not only a race of prediction
performance. There are many different quality terms other
than prediction accuracy that can be used to describe how
good a prediction method is. There are two major advantages
of our method, the simpleness and the potential to improve
all existing PseAAC-based methods.

The feature vectors in all state-of-the-art methods usually
have several hundreds to over a thousand dimensions, which
is a number much larger than the number of the samples in
the benchmarking dataset. In the general concept of machine
learning, a feature vector with lower dimensions is usually

preferred when a similar performance can be achieved when
other conditions are the same. Our method uses only about
100 dimensions feature vectors, which is lower in dimension
than all existing methods except SubIdent.

Our method also has the potential to improve all existing
PseAAC-based methods. Actually, the current method only
replaces the physicochemical properties in the SubMito
method with the PSPCP, which is derived from the same
physicochemical properties in SubMito and the PSSM infor-
mation. This simple replacement resulted in 8% performance
improvement, which proved that the PSSM information is
very useful in classifying protein sequences. Our method
also gives a simple and effective way on how to integrate the
PSSM information into all existing PseAAC-based methods.
PsePSSM, which only extracts the information from PSSM,
has achieved great success. Therefore, it can be anticipated
that our method, which integrates PSSM within the PseAAC,
could start a new way to utilize PSSM information more
efficiently.

As pointed out by TetraMito, the GO-based methods
usually achieve better performances, like Fan and Li’s work.
There is no doubt that GO-based methods are very useful in
computationally determining protein subcellular locations.
In the view of a user, today’s GO-based methods require
the same input as the sequence-based ab initio methods and
provide a better result, which is very promising in practical
studies. However, this cannot conceal the following fact.
When a protein sequence was given to predict its locations,
the performance of GO-based methods relies on whether
similar sequences of the given sequence can be found in
the UniProtKB database. Therefore, almost every existing
GO-based method tried to incorporate some sequence-based
information as its complement. Our method provides a
perfect complement to the GO-based methods, as all GO-
based methods, which used to incorporate PseAAC as the
complement, can now be upgraded to use PSPCP within
PseAAC. Actually, these methods can work side by side to
help each other in a practical study.

3.3. Software Availability. We have developed an online
service called SubMito-PSPCP. This service can be accessed
using the following URL: http://www.pufengdu.org/srv/
bioinfo/submito-pspcp/. The datasets SML3-983 and SML3-
317 can both be downloaded from the “download” page of this
service.
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4. Conclusions

We developed a computational method that can predict
the protein submitochondrial locations. We proposed the
positional specific physicochemical properties concept and
used this concept along with the pseudoamino acid compo-
sitions to generate protein descriptors. With only about 100
dimensions of the descriptors, we achieved comparable pre-
diction performance to those methods using over a thousand
descriptors. We hope this method can be an alternative choice
in predicting protein submitochondrial locations.
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