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Abstract: Background: TRPM5 (transient receptor potential cation channel subfamily M member 5)
rs886277 polymorphism has been related to liver cirrhosis from different etiologies. The present study
investigates the association of TRPM5 rs886277 polymorphism with liver fibrosis progression and
cirrhosis development in chronic hepatitis C (CHC) patients. Methods: We conducted a retrospective
study of 208 non-cirrhotic patients with CHC, who had at least two liver stiffness measurements
(LSM) with a separation of 12 months (baseline LSM (LSM1) and the last LSM (LSM2)). Two outcome
variables were considered: (1) LSM2/LSM1 ratio; (2) cirrhosis progression (F4; LSM ≥ 12.5 kPa).
DNA genotyping was done at the CeGen using a MassARRAY platform. Results: The follow-up
time was similar irrespective of the rs886277 genotype (46.4 months in TT genotype, 46.4 months
in CT genotype, and 49.2 months in CC genotype; p = 0.649). The highest LSM increases were
found in patients with CC genotype compared with TT and CT genotypes (p = 0.044 and p = 0.038,
respectively). The cirrhosis progression was higher in patients with CC genotype than TT genotype
(p = 0.033). Thus, the rs886277 C allele was associated with higher cirrhosis progression (adjusted
odds ratio (aOR) = 2.64; p = 0.014). Moreover, rs886277 CC genotype was also related to higher
values of LSM2/LSM1 ratio (adjusted arithmetic mean ratio a(AMR) = 1.31; p = 0.001) and cirrhosis
progression (aOR = 4.33; p = 0.027). Conclusions: TRPM5 rs886277 polymorphism was associated
with liver fibrosis progression and cirrhosis development among hepatitis C virus (HCV)-infected
patients. Specifically, the rs886277 C allele and CC genotype were risk factors for advancing liver
fibrosis and cirrhosis compared to the rs886277 T allele and CT/TT genotype, respectively.

Keywords: chronic hepatitis C; hepatic fibrosis; cirrhosis; liver stiffness; TRPM5; SNPs

1. Introduction

Chronic hepatitis C (CHC) remains a significant public health problem worldwide.
About 71 million people are chronically infected with the hepatitis C virus (HCV), and
CHC is one of the leading causes of liver-related death and disability worldwide [1–3].
Patients develop hepatic fibrosis, cirrhosis, decompensated cirrhosis, hepatic failure, and
hepatocarcinoma after decades of infection [4]. Even patients who clear HCV infection after
treatment with direct-acting antivirals (DAAs) remain at risk of liver disease progression,
mostly cirrhotic patients [5,6].

The staging of hepatic fibrosis helps in the clinical management of patients with CHC
and may predict its evolution [7]. The hepatic biopsy is the gold standard to assess liver
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fibrosis, but this practice is in disuse for its contraindications and limitations, such as
invasive procedure, sampling errors, reading variability, hospitalization, cost, and delayed
results, among others [8]. Transient elastography is a non-invasive approach widely used
to evaluate liver fibrosis and cirrhosis [9]. The transient elastography quantifies liver
stiffness, which is proportional to the grade of hepatic fibrosis and correlates with fibrosis
stage in CHC [10]. However, transient elastography also has limitations such as variability,
inadequate accuracy, and risk for error [11].

Many factors are implicated in liver disease progression, such as transmission routes,
age at HCV infection, alcohol intake, duration of CHC, coinfections, insulin resistance, and
steatosis [4]. Furthermore, the patient’s genetic background, including single nucleotide
polymorphisms (SNPs), appears to be quite relevant in CHC pathogenesis and cirrhosis
progression [12,13].

The transient receptor potential cation channel subfamily M member 5 (TRPM5) gene
encodes a calcium-activated non-selective cation channel that participates in the signal-
ing mechanism for the taste sensation and insulin secretion in pancreatic β-cells [14,15].
Furthermore, TRPM5 is involved in the immune and inflammatory responses to differ-
ent pathogens through the taste transduction pathway [16–22]. The TRPM5 rs886277
polymorphism is a missense (Asn235Ser) variant related to liver fibrosis in HCV-infected
patients, primarily as part of the cirrhosis risk score (CRS), which comprised seven SNPs
predictive of fibrosis progression in HCV-infected patients [23–28] and liver transplanta-
tion [29]. However, most of these studies did not analyze cirrhosis progression, or rs886277
polymorphism was not directly associated with fibrosis or cirrhosis progression.

The present study’s objective was to investigate the association of TRPM5 rs886277
polymorphism with liver fibrosis progression and cirrhosis development in CHC patients.

2. Methods
2.1. Design and Study Population

We conducted a retrospective study of 208 CHC patients from Hospital Virgen de
la Salud (Toledo, Spain) enrolled between 2008 and 2016, as previously described [30].
The study was performed according to the 1975 Declaration of Helsinki, and the Research
Ethics Committee of the Hospital Virgen de la Salud approved it (CEIC/2013/32). All the
participants signed written consent.

The inclusion criteria were: (1) detectable plasma HCV RNA at baseline and during
the whole follow-up; (2) available DNA sample for DNA genotyping; and (3) available
data from liver stiffness measurements (LSM) at baseline and at least 12 months later. The
exclusion criteria were: (1) baseline hepatic cirrhosis (F4; LSM1 ≥12.5 kPa); (2) autoimmune
liver disease; and (3) coinfection with hepatitis B virus or human immunodeficiency virus.
All patients were of European descent.

We collected epidemiological, demographic, clinical, virological, and laboratory data
from medical records. The patients’ clinical management was done following clinical
guidelines at that time [31,32]. All patients were CHC at baseline, including those who had
been non-responder patients to interferon (IFN) therapy before the study. The follow-up
was interrupted when a patient started the HCV treatment and achieved sustained virologic
response (SVR). Patients who did not achieve SVR were not excluded from the study.

2.2. DNA Genotyping

We extracted genomic DNA from 200 µL of peripheral blood using the QIAsymphony
DNA Mini Kit (Qiagen, Hilden, Germany). Next, DNA genotyping was done at the CeGen
(Spanish National Genotyping Center; [33]) using the MassARRAY platform from Agena
Bioscience’s (San Diego, CA, USA) [34].

2.3. Hepatic Fibrosis

Transient elastography was used to assay the hepatic fibrosis using a FibroScan
(Echosens, Paris, France) by a trained physician, as we previously described [35]. LSM
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ranged from 2.5–75 kPa. Typically, around ten individual successful measurements were
obtained and averaged when the interquartile range to median ratio was <0.30. The LSM
cut-offs proposed by Castera et al. [36] were used to classify patients: (1) <7.1 kPa (F0–
F1—absence or mild fibrosis); (2) 7.1–9.4 kPa (F2—significant fibrosis); (3) 9.5–12.4 kPa
(F3—advanced fibrosis); and (4) ≥12.5 kPa (F4—cirrhosis).

2.4. Liver Fibrosis Outcomes

Each patient’s LSM value changed from the baseline LSM (LSM1) to the last LSM
(LSM2) in the absence of successful antiviral treatment that cleared HCV infection. Thus,
we consider three outcome variables: (1) Values of LSM in the two time-points (LSM1 and
LSM2), (2) LSM2/LSM1 ratio, and (3) cirrhosis progression (F4; LSM ≥ 12.5 kPa).

2.5. HCV Assays

HCV infection was diagnosed by enzyme-linked immunosorbent assays and poly-
merase chain reaction (PCR) tests. HCV genotype was determined by the INNO–LiPA HCV
II assay (Innogenetics, Ghent, Belgium). Plasma HCV RNA viral load was measured by
real-time PCR COBAS AmpliPrep/COBAS TaqMan HCV test (Roche Molecular Systems,
Pleasanton, CA, USA) and the limit of detection was 15 IU/mL.

2.6. Statistical Analysis

To compare independent groups, we used the Mann–Whitney U test and the Kruskal–
Wallis test for continuous variables. In addition, the Chi-square test or Fisher’s exact test
were used for categorical variables. In paired measurements, we used the Wilcoxon test for
continuous variables.

The genetic association study between TRPM5 rs886277 polymorphism and the out-
come variables was performed by generalized linear models (GLM) for recessive, domi-
nant, and additive inheritance. A GLM with gamma distribution was used to evaluate the
LSM2/LSM1 ratio, which provides the arithmetic mean ratio (AMR). A GLM with binomial
distribution was used to analyze cirrhosis progression, which provides the odds ratio (OR).
GLM tests were adjusted by the most relevant covariables selected by a stepwise algorithm
(p-value < 0.20 at each step) from the following list of variables: age, gender, time since HCV
diagnosis, diabetes, injection drug use, high alcohol intake, time of follow-up, baseline
LSM, HCV treatment (before and after starting the study among non-responder patients),
HCV genotype, and other significant SNPs previously analyzed in this cohort (MERTK
rs4374383 [37], PNPLA3 rs738409 [38], IL7RA rs6897932 [35], MTHFR rs1801133 [39], and
DARC rs12075 [30]).

The statistical analysis was done with Stata 15.0 (StataCorp, TX, USA) and SPSS 24.0
(SPSS INC, Chicago, IL, USA). A p-value < 0.05 was statistically significant, and all p-values
were two-tailed.

3. Results
3.1. Characteristics of the Patients

The characteristics of HCV-infected patients stratified by TRPM5 rs886277 genotypes
(85 TT, 95 CT, and 28 CC) are described in Table 1. We did not find significant differences
in baseline characteristics among groups, except for HCV genotype 1 (p = 0.032) and 4
(p = 0.035).
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Table 1. Clinical and epidemiological characteristics of HCV-infected patients at baseline.

TRPM5 rs886277 Polymorphism
Characteristic TT CT CC p-Value

No. 85 95 28
Male 41 (48.2%) 51 (53.7%) 20 (71.4%) 0.102

Age (years) 47.5 (41.3; 59.3) 46.6 (41; 56.1) 46.7 (43.4; 58.3) 0.958
Time of HCV infection (years) 7.7 (3.5; 12.9) 9.5 (3.3; 13.8) 6.2 (1.4; 11.6) 0.284

High alcohol intake 12 (14.1%) 11 (11.6%) 5 (17.9%) 0.675
Prior injection drug use 12 (14.1%) 7 (7.4%) 2 (7.1%) 0.278
HCV genotype (n = 204)

1 66 (77.6%) 83 (90.2%) 25 (92.6%) 0.032
3 7 (8.2%) 6 (6.5%) 1 (3.7%) 0.709
4 11 (12.9%) 3 (3.3%) 1 (3.7%) 0.035
5 1 (1.2%) - - -

Prior failed IFN therapy 18 (21.2%) 24 (25.3%) 5 (17.9%) 0.656
Baseline LSM (kPa) 6.3 (5.2; 7.8) 5.9 (4.9; 7) 6.7 (5.4; 9) 0.328

F0–F1 (<7.1 kPa) 58 (68.2%) 73 (76.8%) 18 (64.3%) 0.287
F2 (7.1–9.4 kPa) 17 (20%) 15 (15.8%) 6 (21.4%) 0.725

F3 (9.5–12.4 kPa) 10 (11.8%) 7 (7.4%) 4 (14.3%) 0.255

Statistics: values were expressed as absolute numbers (%) or median (percentile 25; percentile 75). p-values were calculated with the
Kruskal–Wallis test for continuous variables or Chi-square test for categorical variables. Abbreviations: HCV, hepatitis C virus; LSM, liver
stiffness measurement; kPa, kilopascal; IFN, interferon; TRPM5, transient receptor potential cation channel subfamily M member 5.

3.2. Characteristics of TRPM5 rs886277 Polymorphism

Rs886277 SNP was in Hardy–Weinberg equilibrium (p = 0.858), had less than 5% of
missing values, and had a minimum allele frequency of more than 35% (Table 2). When we
compared the genetic frequencies of our cohort of HCV-infected patients with an Iberian
population in Spain (IBS; healthy subjects) reported by the 1000 Genomes Project [40], no
significant differences were found for alleles (p = 0.367) or genotypes (p = 0.816).

Table 2. Summary of characteristics of TRPM5 rs886277 polymorphism in patients infected with
HCV compared to the Iberian population (data from 1000 Genomes Project Phase 3) [41].

HCV Cohort IBS Group p-value

No. 208 107
Alleles C 151 (36.3%) 80 (37.4%)

0.367T 265 (63.7%) 134 (62.6%)
Genotype CC 28 (13.4%) 17 (15.9%)

0.816CT 95 (45.7%) 46 (43.0%)
TT 85 (40.9%) 44 (41.1%)

HWE (p-value) 0.858 0.398

Statistics: Values expressed as absolute numbers (%). p-values were calculated by the Chi-squared
test. Abbreviations: HCV, hepatitis C virus; IBS, Iberian populations in Spain; HWE, Hardy–Weinberg
equilibrium; TRPM5, transient receptor potential cation channel subfamily M member 5.

3.3. TRPM5 rs886277 SNP and Liver Fibrosis Progression

The follow-up time was similar among TRPM5 rs886277 genotypes (46.4 months in
TT genotype, 46.4 months in CT genotype, and 49.2 months in CC genotype; p = 0.649).
Throughout this time, we found significant increases in LSM values at the end of follow-up
within each rs886277 genotype, compared to baseline (p < 0.001; Figure 1A). However, the
highest LSM increases were found in patients with CC genotype compared with TT and CT
genotypes (p = 0.044 and p = 0.038, respectively). Similarly, the rate of cirrhosis progression
was higher in patients with CC genotype than TT genotype (p = 0.033; Figure 1B).
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Figure 1. Summary of LSM values (A) and cirrhosis progression (B) stratified by TRPM5 rs886277 genotypes in HCV-infected
patients. Abbreviations: HCV, hepatitis C virus; LSM, liver stiffness measurement; IFN, interferon; TRPM5, transient
receptor potential cation channel subfamily M member 5.

We also evaluated the association between TRPM5 rs886277 polymorphism and liver
fibrosis progression by GLM tests (Table 3). Regarding the additive model, the presence
of rs886277 C allele was associated with higher values of LSM2/LSM1 ratio (AMR = 1.15;
p = 0.002) and cirrhosis progression (OR = 1.91; p = 0.032), but only cirrhosis progression
remained significant after adjusting for the most relevant covariables (adjusted OR = 2.64;
p = 0.014). That is, for each C allele, the risk of progressing to cirrhosis increases 2.64
times. With regard to the recessive model, rs886277 CC genotype was related to higher
values of LSM2/LSM1 ratio (adjusted AMR = 1.31; p = 0.001) and cirrhosis progression
(adjusted OR = 4.33; p = 0.027, Table 3). The presence of the CC genotype is associated
with a 1.33-fold increase in the baseline LSM value and increases the risk of progressing to
cirrhosis 4.33 times.

Table 3. Association between TRPM5 rs886277 polymorphism and liver fibrosis progression during
the follow-up in HCV-infected patients.

Unadjusted Adjusted

Outcome AMR (95% CI) p(a) aAMR (95% CI) p(b)

LSM2/LSM1
Additive (CC vs. CT vs. TT) 1.15 (1.05; 1.25) 0.002 1.08 (0.99; 1.17) 0.061
Recessive (CC vs. TT/CT) 1.44 (1.20; 1.72) <0.001 1.31 (1.12; 1.55) 0.001

Progression to F4 OR (95% CI) p (a) aOR (95% CI) p (b)

Additive (CC vs. CT vs. TT) 1.91 (1.06; 3.45) 0.032 2.64 (1.21; 5.75) 0.014
Recessive (CC vs. TT/CT) 2.82 (1.06; 7.51) 0.038 4.33 (1.18; 15.91) 0.027

Statistics: p-values were calculated by univariate regression (a) and multivariate regression (b) adjusted by the
most relevant covariates (see statistical analysis section). Significant differences are shown in bold. Abbreviations:
aAMR, adjusted arithmetic mean ratio; aOR, adjusted odds ratio; 95%CI, 95% confidence interval; p-value, level of
significance; LSM, liver stiffness measurement; F4, cirrhosis; TRPM5, transient receptor potential cation channel
subfamily M member 5.

4. Discussion

This study focused on the impact of TRPM5 rs886277 polymorphism on liver fibrosis
progression and cirrhosis. We found that patients carrying rs886277 C allele and CC
genotype had an increased risk of liver fibrosis progression and cirrhosis development.
The association found between TRPM5 rs886277 polymorphism and liver fibrosis and
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cirrhosis was independent of the effect of other SNPs, since logistic regression models
were adjusted by the most relevant covariables, including five SNPs previously reported in
this cohort (MERTK rs4374383 [37], PNPLA3 rs738409 [38], IL7RA rs6897932 [35], MTHFR
rs1801133 [39], and DARC rs12075 [30]). These five SNPs were related to liver fibrosis
progression and development of cirrhosis [30,35,37–39].

TRPM5 is a Ca2+-impermeable channel that modulates cellular Ca2+ entry, determines
the membrane potential, and regulates nerve signals and insulin secretion [14,15]. In a nega-
tive feedback loop, Ca2+ activates TRPM5 to promote Na+ influx, which induces membrane
depolarization and a subsequent decrease in the driving force for Ca2+ entry [14,42,43].
TRPM5 is present in pancreatic β-cells, where it modulates glucose metabolism. Glucose-
induced insulin secretion is decreased and glucose tolerance is impaired in Trpm5−/−
mice [44], while activation of TRPM5 may stimulate the pancreatic β-cells to secrete insulin,
preventing the onset of diabetes mellitus type II [45,46]. Minor alleles of several TRPM5
SNPs, which are in linkage disequilibrium with rs886277, have been related to higher
glucose level and reduced insulin sensitivity during an oral glucose tolerance test [47]
and metabolic syndrome [48]. These two factors are associated with the development of
steatosis, hepatic fibrosis, and cirrhosis [49]. On the other hand, calcium is a secondary
messenger that regulates multiple hepatic functions, and its dysregulation is a hallmark
of chronic liver diseases, which may also hinder liver regeneration [50]. TRPM5 rs886277
polymorphism is a missense variant (Asn235Ser) in exon 5, which could generate a protein
with altered expression or channel functions, causing an increase in intracellular Ca2+ and
hepatotoxicity, resulting in hepatic scarring and cirrhosis.

We explore the putative functionality of TRPM5 rs886277 polymorphism with the
rVarBase database [51]. We observed that this variant is located in an active chromatin
region, which could be contributing to gene expression changes. In fact, this has been
described in primary natural killer (NK) cells from peripheral blood. In the liver, NK cells
account for almost 50% of all intrahepatic lymphocytes, playing a critical role in regulating
the liver immune response in both physiological and pathological circumstances [52]. In
this setting, TRPM5 rs886277 polymorphism could lead to altered gene transcription in
NK cells, contributing to liver disease’s pathogenesis. Additionally, an analysis of TRPM5
rs886277 polymorphism in the Genotype-Tissue Expression (GTEx) Portal [53], a public
resource that provides data of tissue-specific gene expression and regulation according to
variant data, showed this polymorphism had been described as an expression quantitative
trait loci (eQTL), the C allele and CC genotype being linked to lower TRPM5 expression in
pancreas. Moreover, since a sustained inflammatory response is involved in liver injury,
it is interesting to note that TRPM5 deficiency in mice increases inflammatory cytokine
production in B lymphocytes following lipopolysaccharide stimulation and exacerbates
endotoxic shock severity [42]. These studies suggest that defects in the expression or
functionality of TPRM5 may promote a sustained inflammatory response contributing to
fibrosis progression and cirrhosis development.

5. Limitations of the Study

Firstly, our study has a retrospective design and may introduce determination and
selection biases. Furthermore, the retrospective design has also led to the absence of
relevant clinical data to assess liver disease progression. Secondly, the sample size was
small, which limited statistical power. Thirdly, the follow-up time was variable in each
patient, but all the patients included in the study had more than 12 months of follow-up
(75% had more than 28 months), and it was similar among TRPM5 rs886277 genotypes.
Finally, more than 20% of patients were non-responders to previous interferon therapy.
However, we decided to include them because IFN-based treatment does not seem to
protect against the progression of CHC in non-responders [54].
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6. Conclusions

TRPM5 rs886277 polymorphism was associated with liver fibrosis progression and
cirrhosis development among HCV-infected patients. Specifically, the TRPM5 rs886277 C
allele and CC genotype were risk factors in the progression of liver fibrosis and cirrhosis
compared to the TRPM5 rs886277 T allele and TT/CT genotype, respectively.
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