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Repeat-associated siRNAs cause chromatin silencing
of retrotransposons in the Drosophila melanogaster
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ABSTRACT

Silencing of genomic repeats, including trans-
posable elements, in Drosophila melanogaster is
mediated by repeat-associated short interfering
RNAs (rasiRNAs) interacting with proteins of
the Piwi subfamily. rasiRNA-based silencing is
thought to be mechanistically distinct from both
the RNA interference and microRNA pathways.
We show that the amount of rasiRNAs of a wide
range of retroelements is drastically reduced in
ovaries and testes of flies carrying a mutation in
the spn-E gene. To address the mechanism of
rasiRNA-dependent silencing of retrotransposons,
we monitored their chromatin state in ovaries and
somatic tissues. This revealed that the spn-E
mutation causes chromatin opening of retroele-
ments in ovaries, resulting in an increase in histone
H3 K4 dimethylation and a decrease in histone H3
K9 di/trimethylation. The strongest chromatin
changes have been detected for telomeric HeT-A
elements that correlates with the most dramatic
increase of their transcript level, compared to other
mobile elements. The spn-E mutation also causes
depletion of HP1 content in the chromatin of
transposable elements, especially along HeT-A
arrays. We also show that mutations in the genes
controlling the rasiRNA pathway cause no dere-
pression of the same retrotransposons in somatic
tissues. Our results provide evidence that germinal
Piwi-associated short RNAs induce chromatin
modifications of their targets.

INTRODUCTION

A high level of transposable element expression is usually
deleterious for the organism, leading to mutations and
chromosomal rearrangements. Therefore, activity of
mobile elements is thought to be under keen cellular
control. Silencing of Drosophila selfish elements is realized
through the short RNA species, called repeat associated
short interfering RNAs (rasiRNAs) (1–5) and also Piwi-
interacting RNAs (piRNAs) (6). piRNAs play evolutio-
narily conserved roles in the regulation of transposable
elements in insects, mammals and zebrafish (7–9) and are
accumulated specifically in the germline (9–12).

In Drosophila, the rasiRNA pathway requires members
of the ‘Piwi subfamily’ of Argonaute proteins Piwi,
Aubergine (Aub) and Ago-3 (2–6) but not the
‘Argonaute subfamily’ members, Ago1 or Ago2 (3),
which guide microRNA and siRNA functions, respectively
(13). rasiRNAs of 24–28 nt in length are longer than
21–22 nt siRNAs derived from dsRNA or 21–23 nt
endogenous microRNAs (1,2). The increased length of
rasiRNAs has aroused a suggestion of a peculiar mechan-
ism of their formation (2). In flies neither Dicer-1, which
makes microRNAs, nor Dicer-2, which produces siRNAs,
are implicated in rasiRNA formation (3). Recent publica-
tions support a model in which discrete heterochromatic
loci produce rasiRNAs that are predominantly antisense to
transposons. The antisense rasiRNAs are bound by Piwi
and Aub proteins and guide formation of sense rasiRNAs
by cleavage of sense transposon transcripts (5,6).

It was demonstrated that short interfering RNAs are
implicated in chromatin modifications, such as methyl-
ation of histone H3 K9, in yeast, plants and animal
somatic cells (14–17). However, it remains unknown
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whether chromatin-based silencing of selfish elements may
be realized in the germline by Piwi-interacting RNAs, in
particular by rasiRNAs in flies.

We show that the significantly reduced abundance of
rasiRNAs derived from a wide range of transposable
elements in spn-E mutant ovaries is accompanied by the
increase of H3 K4 dimethylation, decrease of H3 K9
di/trimethylation and depletion of HP1 content in the
chromatin of retrotransposons. We demonstrate that
rasiRNA-mediated silencing of tested retrotransposons
takes place in ovaries, where it is necessary to protect
the genome against transposon-induced mutations in
progeny, but not in somatic tissues.

MATERIALS AND METHODS

Drosophila strains

Strains bearing spn-E1, piwi2 and armi1 mutations were ru1

st1 spn-E1 e1 ca1/TM3, Sb1 es (point mutation in helicase
domain of Spn-E), ru1 st1 spn-Ehls3987 e1 ca1/TM3, Sb1 es

(P-element insertion into spn-E) (18,19), piwi2/CyO (P-ry11
transposon insertion) (20) and armi1/TM3 (P-element
insertion) (21), respectively. P-element transformed flies
carrying the copiaLTR-lacZ construct were kindly pro-
vided by E. G. Pasyukova. Discrimination in X-gal
staining experiment of homo- and heterozygous larvae
carrying spn-E1, piwi2 and armi1 mutations was done
using GFP-expressing balancers CyO, P{w+m=hsp70:
GAL4}P{w+m=UAS: GFP} and TM3, Sb1 es P{w+m=
hsp70: GAL4}P{w+m=UAS: GFP}.

RT–PCR analysis

Total RNA was isolated from dissected ovaries or
carcasses using Trizol reagent (Gibco BRL). The first
strand of cDNA was synthesized using SuperScript II
reverse transcriptase (Gibco BRL) and oligo(dT) primer
or specific primer according to the manufacturer’s
instructions. cDNAs were analyzed by real-time quanti-
tative PCR using SYBR Green. For PCR the following
primers were used: 50-CCGTGGTCAACTTCACCAG
CTC-30 (adh d2) and 50-TCCAACCAGGAGTTGA
ACTTGTGC-30 (adh r2), corresponding to GenBank
sequence AE003410.1 for Adh gene; 50-TCCGCCCAG
CATACAGGC-30 (rp49 s2) and 50-CAATCCTCGTTGG
CACTCACC-30 (rp49 as2), corresponding to GenBank
sequence Y13939 for rp49 gene; 50-GCATGAGAGG
TTTGGCCATATAAGC-30 (cop-s) and 50-GGCCCACA
GACATCTGAGTGTACTACA-30 (cop-as), correspond-
ing to GenBank sequence XO4456 for copia; 50-CGCAA
AGACATCTGGAGGACTACC-30 (Het-s2) and 50-TGC
CGACCTGCTTGGTATTG-30 (Het-as2), corresponding
to GenBank sequence U06920 for HeT-A; 50-TGAAA
TACGGCATACTGCCCCCA-30 (I el s2) and 50-GCTG
ATAGGGAGTCGGAGCAGATA-30 (I el as2), corre-
sponding to GenBank sequence M14954 for I element.

X-gal staining and b-gal activity assay

X-gal staining and b-gal activity assays were performed
according to protocols described previously (2,22).

Samples containing 5–15 pairs of ovaries dissected from
1 to 3-days-old females or 4–15 carcasses were used for b-
gal activity assay. Measurements of b-gal activity were
normalized to the total protein evaluated by the Bio-Rad
protein assay kit.

Short RNA cloning and annotation

RNA preparation was performed as previously described
(23). Total RNA was isolated from adult ovaries
and testes. Cloning of miRNAs was performed
as described (24). Characterization of cloned small
RNAs was performed using local NCBI-BLAST 2.2.13
(25) against the canonical sequences of transposable
elements (http://www.fruitfly.org/p_disrupt/datasets/
ASHBURNER/D_mel_transposon_sequence_set.fasta);
Su(Ste) repeats (GenBank accession no. X59157|H-,
Z11734|H- and Z11735|H-); miRNAs (http://microrna.
sanger.ac.uk/sequences/, Release 8.0), tRNA (http://
lowelab.ucsc.edu/GtRNAdb/Dmela/) and rRNA
(GenBank accession no. M21017). Only hits with 95%
and higher similarity to transposable elements and Su(Ste)
sequences and 100% similarity to other sequences were
used. Parsing of results was done using corresponding
BioPerl modules (26).

Chromatin IP assay

Ovaries were dissected from 1 to 10-days-old females in
1X PBS and stored in 1.5ml tube on ice during isolation
(up to 2 h). PBS solution was removed after centrifugation
(3500 r.p.m. 1–2min). 10mg of material (about 150
ovaries or 100 carcasses) was used for one IP reaction.
The chromatin IP assay was performed as described
previously (27), using polyclonal rabbit antibodies
(Upstate): Anti-dimethyl-Histone H3 Lys4 (#07-030),
Anti-dimethyl-Histone H3 Lys9 (#07-441), Anti-
trimethyl-Histone H3 Lys9 (#07-523) and anti-HP1
(PRB-291C Covance innovative). Anti-TAF1 was kindly
provided by G. Cavalli. DNA precipitates were amplified
by semiquantitative PCR in the presence of aP32 dATP or
real-time quantitative PCR. PCR product quantities were
normalized to input and relations to a fragment of
intergenic spacer in the 60D region were calculated. No
identified or predicted genes are located 2.5 kb upstream
and 4.3 kb downstream of the 60D amplified fragment.
The TRANSFAC database search found no binding sites
for any known chromatin proteins and transcriptional
factors in the fragment. Final enrichment values of sample
PCR products were calculated using the following
expression: E(product)sample �E(60D)input/E(60D)sample

�E(product)input. The following primers were used for
PCR analysis in ChIP: 50-CAACA
CTACTTTATATTTGATATGAATGGCC-30 and 50-
CGAAAGGGGGATGTGCTGC-30 for amplification of
the promoter region of copiaLTR-lacZ construct; 50-
CAACACTACTTTATATTTGATATGAATGGCC-30/
50-GCGTACTTCTCGCCATCAAACG-30 and cop-s/
cop-as (see above) for endogenous copia promoter
region and ORF, respectively; 50-
ACCACGCCCAACCCCCAA-30/50-GCTGGTGGAGG
TACGGAGACAG-30 and Het-s2/Het-as2 (see above),
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corresponding to HeT-A promoter region and ORF,
respectively; 50-CGTGCCTCTCAGTCTAAAGCCTC-
30/50-CCCGGATTAGCGGTATTGTTGTT-30 and I el
s2/I el as2 (see above), corresponding to I element
promoter and ORF, respectively; adh d2 and adh r2 (see
above), corresponding to Adh gene; rp49 s2 and rp49 as2
(see above), corresponding to rp49 gene; 50-CGGC
GAGGGGGGAAAAGGAC-30 and 50-CTTGGCAGC
AGGTGGAAAATGTT-30, corresponding to the 60D
intergenic spacer.

RESULTS

The presence of rasiRNAs corresponding to a wide range
of transposable elements requires Spn-E function

The spn-E (spindle-E, homeless) gene encodes a putative
DExH box RNA helicase, which is required for rasiRNA-
mediated silencing of selfish elements (28–30). Previously
it was shown that the spn-E1 mutation leads to the loss of
testis short RNAs related to the Su(Ste) repeats (2) and
ovarian short RNAs of the HeT-A LINE element (30) and
roo LTR retrotransposon (3). To address the effect of the
spn-E gene on total rasiRNA abundance, we cloned short
RNAs from spn-E1 homo and heterozygous ovaries and
testes (Supplementary Table 1). In ovaries the quantity of
rasiRNAs was 5-fold higher than that of miRNAs. This is
a drastically increased ratio compared to the one
calculated previously for Drosophila embryos and adult
flies (about 0.65 and 0.1, respectively) (1). In contrast to
ovaries, approximately equal amounts of microRNAs and
rasiRNAs were observed in testes. The amount of
rasiRNAs cloned from homozygous spn-E1 ovaries was
6.7 and 3.3 times lower than in heterozygotes if normal-
ized to microRNA or to the sum of cloned fragments of
ribosomal and transfer RNA, respectively (Figure 1). Both
sense and antisense rasiRNAs abundance was decreased in
spn-E1 homozygous ovaries. spn-E1 exerted the most
pronounced effects on the amount of rasiRNAs related

to LINE elements (Doc, F-element, G2 and R1A1)
and some LTR retrotransposons (GATE, gypsy6 and
MAX-element). The total amount of LINE-related
rasiRNAs normalized to miRNAs was 20-fold lower in
homozygous spn-E1 ovaries, whereas only a 4-fold
decrease of LTR retrotransposon rasiRNA abundance
was revealed (Supplementary Table 1).

Derepression of transposable elements in the germline
correlates with opening of chromatin structure

To investigate the role of chromatin state in rasiRNA-
mediated transposable element silencing, we performed
ChIP analysis of chromatin in ovarian nuclei using
antibodies specific to known histone modifications. We
focused on the three extensively investigated retrotran-
sposons of Drosophila melanogaster: I element, HeT-A
(LINE elements) and LTR-containing copia element.
These three retrotransposons were shown to be up-
regulated due to spn-E1 and other mutations, affecting
the rasiRNA pathway in flies (3,28,30).

In spn-E1/+heterozygous ovaries the chromatin of
promoter and coding regions of tested retrotransposons
compared with that of the ORF of the ribosomal rp49
gene contained a significantly lower level of histone H3
dimethylated at lysine 4 (H3 K4me2), the principal mark
of transcriptionally active chromatin (31) (Figure 2). On
the contrary, chromatin of retrotransposons was enriched
with H3 K9me2 and particularly with H3 K9me3 mark,
which are specific for inactive chromatin (32,33)
(Figure 2). In spn-E1 homozygous ovaries we observed
an increase in H3 K4me2 and a decrease in H3 K9me3 in
promoters, as well as in coding regions of retrotranspo-
sons, but not in the chromatin of rp49 and Adh genes
(Figure 2). Since methylation of H3 K4 was shown to be a
cotranscriptional process (34), the increase in H3 K4me2
in the chromatin of retrotransposon coding regions may
be considered as a consequence of an elevated level of their
transcription.

Along with endogenous retroelements, we performed
ChIP analysis of a transgenic construct containing the
reporter lacZ gene driven by copia LTR (copiaLTR-lacZ)
located on the X chromosome. We also observed an
increase of H3 K4me2 occupancy in spn-E1 homozygous
ovaries, but no decrease of the repressive H3 K9me2 and
H3 K9me3 marks (Supplementary Figure 2). The absence
of this latter effect may be attributed to the euchromatic
location of the copiaLTR-lacZ transgene compared to the
mainly heterochromatic locations of endogenous copia
elements.

The level of TAF1 protein, which is a known
component of RNA polymerase II transcription initiation
complex TFIID (35), remained unchanged in spn-E1

homozygous ovaries in HeT-A and copia promoters.
The TAF1 level was increased 3-fold in the
I element promoter (Figure 2) and increased 2-fold in
copiaLTR-lacZ transgenic construct (Supplementary
Figure 2). These results allow us to propose that
chromatin opening is unlikely to occur as a result of
enrichment with basal transcription factors in promoter
regions.

Figure 1. The spn-E1 mutation leads to the decrease of the overall
rasiRNA abundance in ovaries. Length distribution of cloned rasiRNA
and the ratios of rasiRNA to microRNA amounts are indicated
by bars.
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We detected a significant amount of heterochromatic
protein HP1 in the chromatin of I element, HeT-A
and copia retrotransposons in ovaries. spn-E1 caused
reduction of HP1 content in retrotransposons, especially
for HeT-A (Figure 2). The 4-fold decrease of HP1 level
was observed in promoters and 6-fold decrease in coding
regions of HeT-A. At the same time, mutations in the
HP1-encoding gene, which are available only in hetero-
zygous state, lead to a drastic accumulation of HeT-A
transcripts (36,37). This indicates that even a 2-fold
decrease of HP1 level is sufficient for HeT-A derepression
and the observed loss of HP1 occupancy of HeT-A
chromatin, owing to spn-E1, causes transcriptional
activation.

The most pronounced changes of the histone marks
and HP1 level in HeT-A chromatin correlates with the
most dramatic increase of HeT-A transcript level,
compared to copia and I element in spn-E1 ovaries
(Figure 3).

rasiRNA-mediated chromatin silencing is restricted
to the germline

It was demonstrated that SPN-E, PIWI and AUB proteins
are required for heterochromatin formation in somatic
tissues of D. melanogaster (17). Some rasiRNA-pathway
components have also been shown to be required for
nuclear organization of a chromatin insulator (38),
functioning of Polycomb chromatin complexes (39) and

Figure 2. ChIP analysis of retrotransposons in ovarian chromatin. TAF1 occupancy and histone modifications in the chromatin of spn-E1/spn-E1

(light bars) and spn-E1/+ ovaries (dark bars) were tested. DNA in precipitates was measured by quantitative real-time PCR using primers to
promoter and coding regions (ORF) of LINEs (HeT-A and I element) and LTR retrotransposon copia. The level of H3 K4me2 histone modification
typical of transcriptionally active chromatin is significantly lower in retrotransposons, than in ORF of the constitutive rp49 gene. The spn-E1

mutation increases the level of H3 K4me2 and decreases the level of H3 K9me3 and HP1 both in promoters and ORFs of retrotransposons, but not
in chromatin of rp49 and Adh genes. The obtained data were normalized to the fragment of intergenic non-transcribed spacer, located in the 60D
region. The amplified spacer fragment contains no binding sites for any known chromatin proteins and does not belong to any repeat that may be
silenced.
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variegated repression of a white reporter carried by the
1360 element (40) in somatic tissues. The origin of short
RNAs in these cases remains unknown. We investigated
the regulation of Het-A, I element and copia in somatic
tissues of flies, carrying mutations in the spn-E, piwi and
armi genes, which control the rasiRNA pathway (3). The
steady-state levels of HeT-A, I element and copia related
to rp49 and Adh transcripts were comparable in ovaries,
heads and carcasses (flies without ovaries) of spn-E1/+,
piwi2/+and armi1/+heterozygous flies, indicating that
tested retrotransposons are not exclusively germ-line
transcribed. Nevertheless, we observed up-regulation of
retrotransposon transcripts only in ovaries, but not in
carcasses or heads of homozygous spn-E1, piwi2 and armi1

flies (Figure 3;data not shown). Furthermore, we found no
effects of the spn-E1 mutation on the histone modifications
in carcasses (Figure 4).
To extend the analysis of retrotransposon expression in

somatic tissues, we used a transgenic copiaLTR-lacZ
construct (Figure 5A). Activity of b-gal increased 10, 9
and 13 times in extracts of homozygous spn-E1/hls3987,

piwi2 and armi1 ovaries, respectively, as compared to
heterozygous ovaries, whereas the expression level
remained unchanged in carcasses (Figure 5B). Expression
of the construct was dramatically increased in germinal
nurse cells and developing oocytes of spn-E1, piwi2, armi1

Figure 4. ChIP assay in carcasses. The occupancy of histone modifica-
tions in the chromatin of retrotransposons in spn-E1/spn-E1 (light bars)
and spn-E1/+ ovaries (dark bars).

Figure 3. Increase of retrotransposon transcript abundance in homo-
zygous spn-E1, piwi2 and armi1 ovaries, but not in somatic tissues. The
steady-state level of transcripts corresponding to HeT-A, I element and
copia retrotransposons and house-keeping genes (rp49 and Adh) was
detected by quantitative RT–PCR in ovaries and carcasses (flies
without ovaries) of heterozygous or homozygous mutant females.
Bars indicate the ratio of transcript amount in homozygous flies to
heterozygous ones normalized to Adh transcript amount. piwi2

mutation produces less pronounced effects that may result from the
severe morphological ovarian defects induced by this mutation.
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homozygous and spn-E1/hls3987 trans-heterozygous ovaries
(Figure 5C). lacZ expression level remained unchanged in
brain, imaginal discs and salivary glands of spn-E1, piwi2

and armi1 larvae as compared with heterozygous or wild-
type controls (Figure 5D; data not shown). Thus, the
chromatin-based regulation of tested retrotransposons
mediated by rasiRNAs is realized in the germline.

DISCUSSION

We demonstrated that short rasiRNA species, known to
be associated with Piwi subfamily proteins (3–6), have a
germline-specific function in the maintenance of chroma-
tin modifications of retrotransposons. The spn-E, piwi and

armi genes are predominantly expressed in germ cells and
their mutant states lead to abnormalities in germ-line
development and sterility (41–44). Moreover, evidence of
germ-line specificity of the rasiRNA-mediated silencing
pathway is supported by the observation, that rasiRNAs
are significantly more abundant in the germline than in
somatic tissues. Germline-specific silencing of mobile
elements is considered an important defense mechanism
against mutations caused by mobile element transposi-
tions, because selfish transposable elements are thought to
be expressed mainly in germinal cells to ensure their
amplification and transmission to the progeny. A distinct
function of rasiRNA-mediated silencing concerns
the maintenance of Drosophila telomeric state. Extension

Figure 5. Structure and expression of the reporter construct copiaLTR-lacZ. (A) copia LTR comprises the known upstream regulatory region,
including 137 bp of the transcribed fragment. (B) b-gal activity in ovaries and carcasses. Bars indicate the ratio of b-gal activity in spn-E1/hls3987 trans-
heterozygous and piwi2, armi1 homozygous to heterozygous flies. The strong increase in b-gal activity due to the mutations was revealed in ovarian
extracts (dark bars), whereas no significant changes were detected in extracts of carcasses (gray bars). Measurements of b-gal activity were normalized
to total level of protein in extracts. (C) Expression of copiaLTR-lacZ located on the X-chromosome in spn-E1, piwi2, armi1 homozygous and trans-
heterozygous spn-E1/hls3987 ovaries. In heterozygous spn-E1/+, spn-Ehls3987/+, piwi2/+ and armi1/+ ovaries lacZ expression occurs at a low level.
In ovaries of homozygous and trans-heterozygous (spnE1/hls3987) females expression is increased in germinal nurse cells (arrow 2) and developing
oocyte (arrow 1), but not in somatic follicle cells (arrow 3). (D) lacZ expression level is not increased in somatic organs of spn-E1 and piwi2 larvae.
lacZ staining of larval brain (first row), haltere imaginal discs (second row) and salivary glands (third row) is shown.
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of telomeres is realized by germ-line specific transpositions
of HeT-A, TAHRE and TART LINE elements (45–47).
The aub and spn-E genes are implicated in the control of
HeT-A and TART expression, accumulation of corre-
sponding rasiRNAs and frequency of HeT-A and TART
attachment to broken chromosome ends in ovaries (30).
Thus, here we demonstrated the involvement of the
rasiRNA pathway in the chromatin modification of
beneficial telomeric retrotransposons and dangerous
transposable elements.
We found that elimination of rasiRNAs in Drosophila

ovaries caused by spn-E1 leads to the decompaction of
chromatin of retrotransposons. The decrease of HP1 level
and the changes in histone modification patterns, mani-
festing itself in an increase of H3 K4me2 and decrease of
H3 K9me3 were observed. A correlation between the most
dramatic increase of HeT-A transcript abundance, owing
to the spn-E1, piwi2 and armi1 mutations (Figure 3), and
the most significant changes of chromatin structure caused
by spn-E1 compared to the I element, copia and copiaLTR-
lacZ (Figure 2, Supplementary Figure 2) suggest that
changes of chromatin structure in ovaries of rasiRNA
mutants are accompanied by transcriptional activation of
retrotransposons. At the same time, we detected no effects
of spn-E1 on the chromatin state of retrotransposons in
somatic tissues. The observed germline specificity of
rasiRNA-mediated retrotransposon silencing is in appar-
ent contradiction with the observations that the spn-E,
piwi and aub mutations affect heterochromatin formation
in somatic tissues (17,48) and these genes are required for
variegated repression of a white reporter carried by the
1360 element (40). It is appropriate to point out that the
size of the short RNAs corresponding to the 1360 element
(40) and transgenic Fab-7 copies (39) (�23 nt) in somatic
tissues is consistent with Dicer-produced siRNAs, but not
with rasiRNAs, suggesting that silencing of mobile
elements in somatic tissues may be realized via RNAi,
but not the rasiRNA pathway. Alternatively, rasiRNA-
dependent heterochromatin formation might be induced
in early stages of embryonic development and then be
epigenetically inherited in somatic tissues in a rasiRNA-
independent manner.
The mechanism of chromatin modification caused by

rasiRNAs remains obscure. Although the Piwi protein
was shown to be localized in cell nuclei (4,6,42), we failed
to detect Piwi in the chromatin of retrotransposons (data
not shown). Possibly, Piwi is associated with the nascent
RNA but may easily leave chromatin. It has been
suggested that rasiRNAs direct cleavage of retrotranspo-
son transcripts (4–6). We propose that slicing of the
nascent transcript mediated by the Piwi protein is capable
to transform RNA polymerase II to a silencing complex.
A similar model has been put forward to explain the
spreading of transcriptional silencing in fission yeast
Schizosaccharomyces pombe. It has been suggested that
the sliced nascent transcript might recruit the silencing
machinery to perform chromatin modification (49,50).
Further experiments are required to verify this model of
chromatin silencing in the D. melanogaster genome.
Our observations emphasize the proposed role of

rasi(pi)RNAs in the formation of heterochromatin

enriched by mobile elements and other repeats.
Heterochromatin serves as a genome region to recruit
and spread regulatory proteins to control chromosomal
processes, including transcription as well as chromosome
segregation. Actually, the disturbance of silencing of the
Stellate repeats in the D. melanogaster genome is
accompanied by chromosome meiotic non-disjunctions
(51–53) and was shown to be triggered by spn-E mutations
(22,51). Interestingly, spn-E mutations also lead to
breakages in ovarian chromosomes (44) that might be
caused by chromatin opening. The peculiarities of
rasiRNA-dependent chromatin modification in
Drosophila male and female germinal cells
require further detailed studies taking into account
the known role of heterochromatin in chromosome
mechanics (54).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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