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Introduction
This document is complementary to an Expert Review Document
on Optical Coherence Tomography (OCT) for the study of coron-
ary arteries and atherosclerosis.1 The goal of this companion
manuscript is to provide a practical guide framework for the
appropriate use and reporting of the novel frequency domain
(FD) OCT imaging to guide interventional procedures, with a par-
ticular interest on the comparison with intravascular ultrasound
(IVUS).1– 4

Technique for optical coherence
tomography imaging
In the OCT Expert Review Document on Atherosclerosis, a com-
prehensive description of the physical principles for OCT imaging

and time domain (TD) catheters (St Jude Medical, Westford, MA,
USA) was provided.1

The main advantage of FD-OCT is that the technology enables
rapid imaging of the coronary artery, using a non-occlusive acqui-
sition modality. The FD-OCT catheter (DragonflyTM; St Jude
Medical) employs a single-mode optical fibre, enclosed in a
hollow metal torque wire that rotates at a speed of 100 r.p.s.
It is compatible with a conventional 0.014′′ angioplasty guide
wire, inserted into a short monorail lumen at the tip. The fre-
quency domain optical coherence tomography lateral resolution
is improved in comparison with TD-OCT, while the axial reso-
lution did not change. These features, together with reduced
motion artefacts and an increased maximum field of view up
to 11 mm, have significantly improved both the quality and
ease of use of OCT in the catheterization laboratory.3,4

However, the imaging depth of the FD-OCT is still limited to
0.5–2.0 mm.5
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Methodological issues: image
acquisition, safety, and
effectiveness
The main obstacle to the adoption of TD-OCT imaging in clinical
practice is that OCT cannot image through a blood field, and
therefore requires clearing or flushing of blood from the lumen.1

The 6 Fr compatible DragonflyTM FD-OCT catheter is so far the
only one in the market, as two other systems from Volcano and
Terumo, which have function similar to the DragonflyTM, are not
yet available. The DragonflyTM catheter is first advanced over a
regular guide wire, distal to the region of interest. A dedicated
marker, located 10 mm distal to the OCT lens, enables the pull-
back starting point selection.

The acquisition of an OCT image sequence requires a bolus of
crystalloid solution (usually contrast) injected through the guiding
catheter. The acquisition speed can be set up in a range
between 5 and 40 mm/s, based on the used OCT system. Most
expert users advocate the use of automated contrast injection to
optimize the image quality.

The previous experience with TD and FD-OCT technology
shows OCT acquisition to be safe,1,4,6 effective,1,4,6 –8 and highly
reproducible for the assessment of the luminal areas and
length.9 –11 A fair correlation between OCT and IVUS quantitative
measurements of the lumen areas was reported,9 –11 despite com-
parative studies showing that IVUS tends to slightly overestimate
lumen areas, while stent and neointimal areas are slightly higher
on OCT.9– 11 Frequency domain optical coherence tomography
image quality depends on an accurate acquisition technique and
proper guiding catheter engagement is needed to optimize direc-
tional contrast flushing.

Procedural definitions
Metallic stent struts are highly reflective structures that lead to
specular reflection with the excessive signal usually resulting in
‘blooming’ of the strut surface. Optical coherence tomography

shows only the reflection of the luminal surface of the stent
strut and is unable to provide a direct measurement of the strut
thickness.8,12

Two features indicate a strut: a highly reflective spot and/or an
associated shadow behind the strut. The presence of only one of
these two defining features is sufficient for strut identification.

For bioresorbable stents, the assessment of the whole thickness
is possible, since light can usually penetrate non-metallic materials.
They can be followed by serial images; the degradation process,
characterized by the presence of empty spaces replacing stent
struts, was documented for the first generation design,13 but was
not visible with the second-generation model, which maintains its
mechanical properties.14 Based on preliminary unpublished data,
the bioabsorbable magnesium stent has different properties; it is
visible after implantation and tends to disappear at the follow-up
due to magnesium degradation.

Stent overlap occurs in the cross sections in which two super-
imposed layers of stent struts are visible (Figure 1). Incomplete
stent apposition or malapposition occurs if there is a separation
of a stent strut from the vessel wall. Malapposition can be
addressed at a cross-section level and expressed as an area, or
can be evaluated at the strut level analysis.15 In the latter case, it
is defined as a measured distance greater than the strut thickness
for bare metal stents or greater than the sum of the thickness of
the strut plus polymer for drug eluting stents (DES)8,15

(Figure 2). Acute malapposition is diagnosed immediately after
stent deployment (Figure 1),14 late malapposition at the follow-up,
while late acquired malapposition requires the comparison of the
post-intervention and follow-up images. Intra-stent tissue protru-
sion is defined as tissue prolapsed between stent struts extending
inside a circular arc connecting adjacent struts (Figure 3).16 A
thrombus is identified as an intra-luminal mass, with no direct con-
tinuity with the surface of the vessel wall or as a highly backscat-
tered luminal protrusion in continuity with the vessel wall and
resulting in signal-free shadowing.17 However, the discrimination
between a tissue prolapse and intra-stent thrombosis is not
simple and sufficiently validated. A dissection flap is a linear rim
of tissue with a clear separation from the vessel wall, plaque, or

Figure 1 Left panel: Stent overlapping in the left anterior descending artery. Despite an optimal angiographic result, optical coherence tom-
ography shows a malapposition of the proximal edge of the distal stent, with a 430 m distance from the inner (arrow heads) to the outer struts
(arrows). Right panel: the optical coherence tomography image of the same cross section obtained after additional high pressure inflation with a
non-compliant oversized balloon shows a correction of the malapposition.
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Figure 2 An optical coherence tomography cross section of a stent immediately following implantation in the right coronary artery. The stent
struts are clearly visible. There are struts that are apposed to the vessel wall. However, what is clearly evident is a group of stent struts
(between 4 and 12 o’clock) which are grossly malapposed to the vessel wall. Optical coherence tomography cannot penetrate through metallic
structures and hence only shows the endoluminal aspect of the stent strut. To be classified as malapposed, the strut must not be in contact with
the vessel wall with the distance between the endoluminal aspect and the vessel wall greater than the known thickness of the stent strut itself,
including the polymer thickness (arrow in the right panel and dotted line in the left panel with a magnified view).

Figure 3 Examples of intra-stent thrombotic formations and a plaque prolapse. (A and B) A tissue protrusion. Arrows show tissue prolapsed
between stent struts and extending inside a circular arc, connecting adjacent struts. (C) Intra-luminal globular protrusions at stent strut locations
with no direct continuation from the surface of the vessel wall (arrows). (D) A marked intra-stent thrombosis observed in a drug eluting stents
at a late follow-up. Arrows show an intra-stent mass with an irregular inner border. Images in (A) and (D) were obtained with frequency domain
optical coherence tomography, those in (B) and (C) with time domain optical coherence tomography.
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the stent struts.18 Dissections are also frequent at the stent edges
(Figure 4) and are defined by their longitudinal extension (mm), cir-
cumferential extension (degrees or quadrants), and width.

Clinical applications of optical
coherence tomography and
comparison with intravascular
ultrasound

Impact of plaque composition on
coronary intervention
Calcification
Unlike angiography, IVUS identifies calcium with high accuracy,19

but is unable to measure its thickness.1 Infrared light penetra-
tes calcium better, but calcific components with a thickness
.1–1.3 mm or a deep intra-plaque location can prove impossible
to penetrate.

In the presence of an important circumferential calcification
direct stenting should be avoided and the strategy can span from
a careful pre-dilatation to test expansion, to cutting balloons for
very short calcific rings or to pre-treatment with a rotational
atherectomy.19,20

As OCT accurately measures the radial and longitudinal exten-
sion of a lipid pool, its use may be encouraged to also predict the

risk of embolization of plaque components;1 this is in line with the
previous experience with VH-IVUS.21,22

Unlike angiography or IVUS, OCT holds promise in identifying
thrombi, measuring their dimensions and guiding their removal23

(Figures 5 and 6).

Assessment of ambiguous angiographic
lesions and deferral of interventions
In angiographically hazy lesions, OCT often detects ruptured
plaques with a thrombus attached to the site of rupture of the
fibrous caps over a partially emptied lipid pool.1,6 Under these cir-
cumstances, the decision for the need to proceed with treatment
can stem more from these morphological observations than from
the absolute measurement of the lumen area.

A technical drawback of both TD-OCT and FD-OCT in this ap-
plication is that a plaque located at the very ostium of the left or
right coronary arteries cannot be accurately imaged.1 As for
IVUS, preliminary data indicate that OCT can change the opera-
tor’s intention to treat, avoiding unnecessary interventional proce-
dures or modifying the strategy in some cases.6,24,25

As FD-OCT probes have a slightly thinner profile than IVUS
probes and pull-back imaging can be done at very high speeds (nor-
mally 20 mm/s), a significant fraction of severely diseased target
lesions can be imaged without causing luminal obstruction, with
symptomatic ischaemia being less likely. However, in the presence
of subocclusive lesions the OCT probe can cause a luminal

Figure 4 Left panel: Cypher stent deployed in the mid-right coronary artery with an optimal final angiographic result. Optical coherence
tomography (right inferior panels) shows a moderate dissection distal to the stent ending, missed by angiography. The distance between the
rim of the dissection and the vessel wall is 250 mm (line), slightly above the resolution of intravascular ultrasound, while the circumferential
extension of the plaque dissection is 908. The right upper panels are obtained at the stent minimum lumen area and show a well-apposed
stent with an MLA of 6.82 mm2.
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obstruction and it can be more convenient to perform OCT after
gentle pre-dilatation.

Identification of vulnerable plaques
A number of IVUS studies attempted to characterize the appear-
ance of vulnerable plaques. Recently, the PROSPECT trial, based
on a signal radiofrequency analysis of the IVUS backscatter,
showed for the first time that IVUS can identify plaques with a
risk of events at 3 years.26 OCT, due to its high accuracy in the de-
tection of superficial plaque components, can directly measure the
fibrous cap thickness and can possibly detect plaques with a risk of a
rupture with greater accuracy. The utility of a combined approach
based on the use of OCT and VH-IVUS has been recently proposed
to better characterize deep lesion components.27,28 Possibly, in the
near future, a real-time application of OCT algorithms to character-
ize plaque components and identify local signs of inflammation will
facilitate OCT detection of plaque vulnerability.29,30

Advantages and pitfalls of optical
coherence tomography for guidance of
coronary interventions
Optical coherence tomography easily enables the comparison of
the minimal stent area with the reference area, which is the
most often used IVUS criterion for optimal stent expansion. The
demonstration of the usefulness of an IVUS-guided approach of a
bare metal stent expansion to reduce restenosis is more by
meta-analyses31 than by single randomized studies.32,33 There is
some evidence that IVUS guidance can improve the clinical
outcome in the presence of left main disease34 and tackles the
occurrence of thrombosis.35,36 The ability of OCT to address
luminal areas and identify underexpansion, malapposition,
uneven stent strut distribution, or small intra-stent thrombotic for-
mations makes the technique a very attractive tool for the preven-
tion of thrombosis. However, future studies are required to
determine whether OCT is as useful or more useful than IVUS
in this regard.

Figure 5 The figure shows optical coherence tomography potentialities to detect components of ruptured plaques. Left panel shows a sub-
occluded right coronary artery in a patient with an inferior myocardial infarction. Optical coherence tomography cross sections (B) and (C)
were obtained at the site of a plaque rupture and show a plaque with mixed composition (calcium + lipid) (arrow). At the shoulder of the
plaque, at the site of minimum thickness of the fibrous cap (arrow head), an intra-luminal thrombotic formation is shown (dotted arrow).
(A) A severe reduction in the lumen area due to a marked concentric thrombotic formation. As the penetration of optical coherence tomog-
raphy through a thrombus is limited, vessel media cannot be studied (arrow).
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Acute malapposition can contribute to a stent thrombosis by
disturbing the normal laminar blood flow along the vessel wall,
by promoting the deposition of platelets and fibrin37 and reducing
re-endothelialization and neointima formation.38 However, to date,
IVUS data suggest that acute and late-stent malapposition do not
increase the risk of major adverse cardiac events.39,40 Neverthe-
less, both studies detected a surprisingly small number of malap-
posed stents (,7.2%) using the IVUS-derived criterion of at
least one malapposed strut. Optical coherence tomography
studies following stent implantation have demonstrated a much
greater proportion of malapposed struts, even after optimal high-
pressure post-dilatation, with this phenomenon being particularly
evident in regions of stent overlap,41 after deployment of DES or
long stents, and in type C lesions.15

In patients with acute coronary syndromes, the occurrence of an
in-stent tissue protrusion, due to the presence of residual throm-
bus, is a common finding on OCT1,8,42 that may elevate the risk for
an acute and subacute stent thrombosis.

The need of serial OCT acquisitions to guide the selection of
balloons and stents and to correct underexpansion means
repeated contrast injections which may significantly increase the
total amount of procedural contrast. The main drawback of

OCT is its inability, unlike IVUS, to outline the vessel architecture,
and measure the external elastic membrane, and the longitudinal
extent of plaque burden in lesions with thicknesses exceeding
1.0–1.5 mm (Figure 7). This drawback may have some clinical impli-
cations, as the accepted criterion for the identification of reference
segments by IVUS is a plaque burden ,40%.33 Therefore, the pre-
intervention use of OCT to select the appropriate stent size and
length in diffusely diseased vessels is questionable.

Optical coherence tomography has an easier application for
the treatment of late in-stent restenosis because the strong re-
flective power of the stent struts allows their detection
through thick layers of hyperplasia, allowing optimal sizing of
high-pressure balloons to correct underexpansion and facilitating
the use of cutting balloons.15

Stent follow-up
Delayed healing and poor endothelialization are common findings
in the pathological specimens of vessels treated with DES,43 and
recent post-mortem studies demonstrated that a late-stent throm-
bosis was strongly associated with the ratio of uncovered/total
stent struts.44

Figure 6 The application of a score based on the semi-quantitative assessment of a thrombus (number of the involved quadrants on the
cross-sectional optical coherence tomography images) and the longitudinal extension of the thrombus itself. By applying this semi-quantitative
grading, in each cross section, a thrombus is classified as absent or subtending 1, 2, 3, or 4 quadrants. The score is then calculated as the sum of
each cross-section score.
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Several experimental and clinical studies have demonstrated the
high correlation between OCT and histological measurements of
tissue coverage of stent struts,45,46 although OCT is unable to
identify the endothelium.1 In a subanalysis of the ODESSA trial,
8% of the stented segments with no detectable neointima by
IVUS were found to have neointimal coverage by OCT.41

Follow-up OCT data revealed that most of the DES, including
those with a biodegradable polymer, were covered with thin
neointima, but few revealed complete coverage.47– 51 Incomplete
stent apposition without neointimal hyperplasia was significantly
associated with the presence of an OCT-detected thrombus at
the follow-up, and may constitute a potent substrate for a
late-stent thrombosis;52 however, so far a subclinical thrombus
has not been related to the risk of major adverse cardiac events.53

Furthermore, incomplete stent apposition and the absence of
OCT tissue coverage are more frequently found in the setting of
acute coronary syndromes, particularly after DES deployment
(Figure 8).54 It is difficult to offer any recommendation at this
stage for the use of OCT for the late follow-up of individual
patients but anecdotal cases of OCT application to rule out the
need for the prolongation of a dual antiplatelet treatment in
patients requiring undeferrable surgery have been reported. The
main application is, at present, the comparison of different stent
platforms, assuming that a more uniform strut coverage could
improve the late outcome.

Standardized methodology for
core laboratory optical coherence
tomography image analysis
Optical coherence tomography is being increasingly used as a sur-
rogate method for evaluating stents.15 The ability to provide serial
images and analyse a large number of OCT cross section and stent
struts represent an advantage over standard histopathology. Core
laboratory OCT image analysis should, however, be performed
according to a standardized methodology and after a deep under-
standing of the method.15 Many OCT readers suggest to address
images not only at a strut level, but including also cross-sectional
and in-stent level analyses, to further study an in-stent coverage
uniformity and individual propensity towards incomplete stent
healing. Furthermore, if available, automated tools should be
applied to reduce possible intra- and inter-observer’ variability.55

Ideally, for each strut information on malapposition, coverage,
presence of thrombotic formations, and tissue prolapse should
be given. Different classifications have been adopted so far by
OCT readers and data on intra- and inter-observer variability for
the applied methods are not available. As a rationale solution,
the following classification can be adopted to define stent struts
throughout the pull-back image sequence: embedded covered
struts: covered by tissue with at least 50% of the strut boundary
below the level of the luminal surface; protruding covered struts:
covered by tissue and with the strut boundary located above the
level of the luminal surface; uncovered apposed struts: for those
not covered by tissue but abutting the vessel wall; uncovered and
malapposed struts: for those not covered by tissue and not abutting
the vessel wall.1,15,41

Figure 7 Optical coherence tomography is very well versed at
detecting microstructures in close proximity to the vessel wall. Its
limited tissue penetration (,1.5 mm), however, means that the
extent of plaque is unable to be determined. In this example,
diffuse, poorly reflective tissue is seen consistent with a lipid
rich plaque (arrow), however, its extent beyond 1 mm from
the vessel wall is limited.

Figure 8 Malapposed struts tend not to heal with tissue cover-
age unlike well-apposed ones. Optical coherence tomography
images obtained 1 month after Taxus stent deployment in the
right coronary artery. Optical coherence tomography showed
malapposition of the drug eluting stents with many struts not ad-
hering at the vessel wall. The vast majority of malapposed struts
(from a to l) were uncovered while only two of them (arrows)
had some tissue coverage. On the other hand the two well-
apposed struts (m, n) were covered.
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Some OCT readers explored different patterns of stent cover-
age56,57 describing a homogeneous vs. heterogeneous pattern of
intimal thickening.56 An intra-stent thrombus is typically shown
as an in-stent globular appearance and can be reasonably identified.
In the presence of stent malapposition, the lumen area should be
divided into an in-stent lumen area and an extra-stent lumen
area. Stents overlapping segments and bifurcation lesions with
major side branches should be noted.

Conclusions
Optical coherence tomography enables an accurate vessel lumen
and stent assessment, providing a high image quality with fast pull-
back speeds, procedural safety, and patient tolerability. Optical
coherence tomography offers unique insights into stenting proce-
dures that otherwise would be missed using conventional angiog-
raphy or IVUS. Whether such anatomical details will lead to
superior or complementary information with respect to IVUS in
guiding coronary intervention, particularly in the era of DES,
remains to be defined.
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optical frequency domain imaging (OFDI) for in vivo evaluation of stent
healing: comparison with light and electron microscopy. Eur Heart J 2010;31:
1792–1801.

F. Prati et al.2520b


