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ABSTRACT
Type 2 diabetes is known as a risk factor for pancreatic cancer (PC). Various genetic and
environmental factors cause both these global chronic diseases. The mechanisms that
define their relationships are complex and poorly understood. Recent studies have impli-
cated that metabolic abnormalities, including hyperglycemia and hyperinsulinemia, could
lead to cell damage responses, cell transformation, and increased cancer risk. Hence, these
kinds of abnormalities following molecular events could be essential to develop our
understanding of this complicated link. Among different molecular events, focusing on
shared signaling pathways including metabolic (PI3K/Akt/mTOR) and mitogenic (MAPK)
pathways in addition to regulatory mechanisms of gene expression such as those
involved in non-coding RNAs (miRNAs, circRNAs, and lncRNAs) could be considered as
powerful tools to describe this association. A better understanding of the molecular mech-
anisms involved in the development of type 2 diabetes and pancreatic cancer would help
us to find a new research area for developing therapeutic and preventive strategies. For
this purpose, in this review, we focused on the shared molecular events resulting in type
2 diabetes and pancreatic cancer. First, a comprehensive literature review was performed
to determine similar molecular pathways and non-coding RNAs; then, the final results
were discussed in more detail.

BACKGROUND
Diabetes mellitus is a severe and worldwide health problem
that develops due to changes in the environment and lifestyle.
The global number of patients with diabetes will increase to
552 million by 2030. Previous studies have indicated that the
incidence of different cancers, including liver, biliary tract, col-
orectum, kidney, breast, pancreas, etc., is increased in diabetic
patients through abnormalities in glucose metabolism1. Pan-
creatic cancer (PC) is one of the most lethal malignancies
among the different kinds of cancers and is the seventh lead-
ing cause of global cancer deaths in industrialized countries.
The etiology of pancreatic cancer is complex and includes
both genetic and environmental factors2. Type 2 diabetes is
the third risk factor for pancreatic cancer after cigarette

smoking and obesity. According to the American Cancer Soci-
ety’s Cancer Facts and Figures 2013, at diagnosis, 25% and
40% of pancreatic cancer patients have diabetes and pre-
diabetes, respectively. A 50% increased risk of pancreatic can-
cer has been shown in long-term (>5 years) type 2 diabetes
patients, and vice versa pancreatic cancer can be a cause of
diabetes. Furthermore, in some cases, diabetes could be con-
sidered to be an early sign of a tumor. However, the associa-
tion between type 2 diabetes and pancreatic cancer is
complicated. On the one hand, diabetes can be considered as
an early prognostic tool for pancreatic cancer, and on the
other hand, it could be a predisposing factor for pancreatic
cancer2. This review aims to improve our understanding of
the association between type 2 diabetes and pancreatic cancer,
mainly focusing on the molecular mechanisms underlying this
association. This approach would greatly aid in developingReceived 2 August 2021; revised 11 November 2021; accepted 30 November 2021
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novel tools for the prevention, prognosis, diagnosis, and treat-
ment of this cancer.

TYPE 2 DIABETES
Type 2 diabetes is caused by resistance to insulin in target tis-
sues, insulin secretion deficiency, or both of them, leading to
hyperglycemia3. Polyuria, polydipsia, polyphagia, and weight
loss are different symptoms of type 2 diabetes4. According to
the International Diabetes Federation (IDF), about one in ele-
ven adults had diabetes mellitus worldwide, of which 90% of
them have type 2 diabetes. In addition, Asia is a significant
region with rapid growth in the type 2 diabetes epidemic5. The
risk of type 2 diabetes is determined by the interaction of
genetic, epigenetic, and lifestyle factors. Ethnicity, family history,
obesity, and overweight, unhealthy diets, low physical activity,
and smoking increase the risk of disease5.

PANCREATIC CANCER
Pancreatic cancer ranks fourth globally among all malignant
tumors, with early metastasis, high invasiveness, lack of specific
symptoms, and a high mortality rate6. Globally, aging is associ-
ated with an increased incidence and mortality rate of pancre-
atic cancer. The disease is slightly more common in men than
in women, and the incidence worldwide is 5.5 per 100,000 for
men and 4.0 per 100,000 for women. Environmental risk fac-
tors and lifestyles such as high alcohol intake and heavy smok-
ing habits in men could lead to pancreatic cancer. However,
undiscovered genetic factors may be potential influencers of
cancer incidence and mortality in males and females2. Pancre-
atic cancer can be classified into two types: exocrine pancreatic
cancer, which includes adenocarcinoma and is the most com-
mon type (85% of cases), and neuroendocrine pancreatic can-
cer, which comprises less than 5% of patients7. Several risk
factors may increase the chance of developing pancreatic can-
cer. Smokers have more than twice the risk of developing can-
cer8, although unlike other smoking-related diseases9, an
apparent mutation signature has not been detected10. Heavy
alcohol drinking is undoubtedly related to the risk of pancreatic
cancer, whereas there is no association with low-to-moderate
alcohol intake11. According to an American Cancer Society
(ACR) study, the risk of pancreatic cancer among overweight
people is higher compared with those with a normal BMI
(18.5–24.9 kg/m2)12. Family history has a significant role in
developing pancreatic cancer, and approximately 10% of indi-
viduals with pancreatic cancer have a family history of the dis-
ease13. Germline pathogenic variants in hereditary breast and
ovarian cancer genes (BRCA1 or BRCA2 and PALB2) may
pose an increased risk of pancreatic cancer14. Finally, defective
DNA mismatch repair genes MLH1, MSH2, MSH6, and PMS2
could increase cancer15. Other genetic factors contributing to
pancreatic cancer have been identified but are rare and often
personal variants16.
Hence, apart from the clinical staging of disease, there is no

clinical feature to inform decision-making for pancreatic cancer.

Possibly, due to the lack of patient numbers and the lack of desire
among surgeons, very few clinical trials are being carried out to
control the disease. Inadequate diagnostic tests may miss patients
in the early stages of the disease17. Surgery, chemotherapy, and
radiotherapy have been used traditionally to help increase
patients’ survival and to relieve their pain. However, there is still
no definite treatment for the advanced stage of cancer cases.
There is a need for further research for novel therapies and to
assess the outcomes of these approaches. Therefore, examining
different patients to identify the genes and variants involved in
the disease is a straightforward way to treat the disease18.

DIFFERENT ASPECTS OF THE ASSOCIATION BETWEEN
TYPE 2 DIABETES AND PANCREATIC CANCER
Assessing the association between the presence of diabetes and
the progression of pancreatic cancer faces many challenges. A
possible explanation for the observed relationship between type
2 diabetes mellitus and pancreatic cancer could be the shared
risk factors and metabolic abnormalities, including high choles-
terol intake, hyperglycemia, insulin resistance (IR), and chronic
inflammation19. A population-based study in British Columbia
and Canada found that people with type 1 diabetes mellitus are
at increased risk of pancreatic cancer20. Additionally, a meta-
analysis had considered eleven studies with a total of 14,399
patients, of whom 4,080 were type 2 diabetes-positive and
9,721 were non-diabetic. Their results showed that a plausible
manifestation of pancreatic cancer is recent-onset type 1 dia-
betes mellitus, whereas long-term type 1 diabetes mellitus is
probably a risk factor for this cancer21. A large number of
patients with pancreatic cancer show impaired metabolism of
glucose22. Tumor formation and progression are possibly corre-
lated with metabolic factors contributing to the long-term insu-
lin resistance23. A specific environment is necessary for tumor
formation. Overproduction of insulin, which usually occurs in
type 1 diabetes mellitus, provides an appropriate environment
for cells and blood vessels to proliferate in the pancreas24. Since
exogenous administration is the only source of insulin in type
1 diabetes mellitus, the risk of developing pancreatic cancer in
this disease can be low25. Diabetes mellitus could occur due to
developing pancreatic cancer or could be a consequence of this
disease26. The correlation between type 1 diabetes mellitus and
pancreatic cancer is not yet definite27. However, it has been
reported that the progression of tumor status is affected by type
1 diabetes mellitus, which contributes to increasing the size of
the tumor and the pancreatic ducts28. Hyperinsulinemia causes
insulin resistance, which in turn increases the risk of malig-
nancy. It is reported that pancreatic cancer is correlated with
obesity and the insulin pathway. The link between the reports
and the hypothesis shows that obesity increases insulin levels
and the risk of hyperinsulinemia. This condition leads to
decreased levels of insulin-like growth factor-binding proteins
(IGFBPs), and increased levels of circulating insulin-like growth
factor 1 (IGF1)29. Insulin and IGF1 both promote inhibition of
cancer cell apoptosis and contribute to the cell proliferation24.
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As a result, increased IGF-1 due to hyperinsulinemia will cause
tumor progression. IGF-1 and IGF-1 receptor (IGF-1R) have a
strong tendency to prevent apoptosis, and hyperinsulinemia in
an insulin resistance environment will potentiate this effect. In
tumor cells, the high receptor expression for IGF-1 and insulin
led to an increase in the circulating levels of active IGF-1 and
decreased hepatic production of IGFBP-1 and -2. Therefore,
hyperinsulinemia following insulin resistance may enhance
tumor cell growth via the IGF-1R and lead to the hypothesis
for the connection between type 1 diabetes mellitus and pan-
creatic cancer(Figure 1)30.

MOLECULAR ASPECTS OF THE ASSOCIATION
BETWEEN TYPE 2 DIABETES AND PANCREATIC
CANCER
Signaling pathways
KRAS mutations constitute 86% of all somatic alterations in
PDAC. G12D and G12V are the predominant mutations
accounting for 80% of all KRAS mutations and initiate most
PDAC cases31. Q6 and K117 are also other mutations that
account for extra hotspots associated with activated KRAS in
PDAC32. The KRAS is a proto-oncogene that encodes a
GTPase as a molecular switch, which is bound with GTP in an
active form and bound with GDP in the inactive state. Guanine
nucleotide exchange factor (GEF) regulates the KRAS-GDP to
KRAS-GTP conversion, and the GTPase-activating protein

(GAP) promotes hydrolysis of GTP that keeps most of the
KRAS in an inactive form33. Mutation in KRAS leads to an
increase in glucose uptake, which ultimately results in glycolytic
flux34. Changes in the tumor microenvironment, including
inflammation and insulin resistance, which are associated with
obesity and type 2 diabetes, can augment the KRAS activation.
A high-fat diet with stimulation of KRAS activation can lead to
the transformation of normal pancreatic cells into pancreatic
intraepithelial neoplasm lesions. Actually, a fatty diet helps
KRAS to activate more inflammatory factors in the pancreas
that leads to the formation of neoplasm lesions leading to
PDAC with high penetrance35. Additionally, previous studies
have reported that mutant KRAS mice are more susceptible to
a high-fat diet, leading to an increase in the oncogenic KRAS-
mediated progression of invasive PDAC36. Activated KRAS
promotes different downstream signaling pathways, such as the
MAPK pathway and the PI3K pathway, leading to a cascade of
cellular responses and enhancing the proliferation, and invasion
of cancer cells37. These two different signaling pathways, includ-
ing metabolic (PI3K/Akt/mTOR) and mitogenic (MAPK) path-
ways, will become activated when insulin binds to its receptor
(Figure 2).

Metabolic pathway
The metabolic pathway is the one through which glucose, lipid,
and protein metabolism is regulated38. Insulin binding to its

Figure 1 | Schematic representation of different aspects of the association between type 2 diabetes and pancreatic cancer. Metabolism
abnormalities and molecular mechanisms are identified as two significant aspects of the association between type 2 diabetes and pancreatic
cancer.
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receptor causes phosphorylation and activation of the receptor
by the insulin receptor substrate (IRS) adapter proteins. This
connection also activates the phosphatidylinositol 3-kinase
(PI3K). Afterward, the phosphatidylinositol-3,4,5- triphosphate
(PIP3) synthesis is increased, and consequently, the three
phosphoinositide-dependent protein kinase 1 (PDK1) and Ser/
Thr kinase Akt are activated. After that, by phosphorylating
and inhibiting TSC1/2, a critical negative regulator of
mTORC1, AKT increases protein synthesis and cell growth
through the mTOR pathway. AKT is also involved in other
pathways. For example, inhibiting glycogen synthetase kinase 3
(GSK3) regulates glucose metabolism and glycogen synthesis.
AKT also can trigger the nuclear export of forkhead box O
transcription factors (FOXO) that are significant for apoptosis.
PIP3 is dephosphorylated by PTEN phosphatase, and thus the
metabolic pathway is negatively regulated39.

Mitogenic pathway
The activated insulin receptor also triggers the mitogen-
activated protein kinase (MAPK) pathway that causes cell pro-
liferation. Upon insulin binding to its receptor, growth factor
receptor-binding protein 2 (Grb2) binds to the activated recep-
tor and engages with the son of sevenless (SOS) to produce the
complex of receptor-Grb2-SOS. It facilitates the activation of
GTPase Ras and then RAF and MEK1/2 and MAPKs. The
active MAPKs translocate to the nucleus and regulate the activ-
ity of genes, cell growth, differentiation, and apoptosis by

phosphorylating different transcription factors. Thus, the
increased activation of the MAPK signaling pathway can pro-
mote the development of tumor cells40. Overall, upon insulin/
IGF-1 binding to their receptors, they can trigger signaling
pathways, including metabolic (PI3K/Akt/mTOR) or mitogenic
(MAPK) pathways, therefore increasing cell growth and
decreasing cancer cell apoptosis41. Hyperinsulinemia in type 1
diabetes mellitus, through an insulin resistance environment,
blocks the metabolic pathway. Stimulation of glucose trans-
portation into cells and induction of glycogen synthesis are the
consequences of this signaling pathway42. On the other hand,
insulin resistance cannot block the mitogenic pathway activity.
AKT and mTOR affect both the metabolic and mitogenic path-
ways. But in the hyperinsulinemia condition, AKT and mTOR
are driven towards the mitogenic pathway, which leads to the
cell growth and the proliferation of normal and tumor cells,
which contribute to the development of pancreatic cancer
(Figure 2)43.

Roles of molecular biomarkers including circRNAs, lncRNAs,
and miRNAs in type 2 diabetes and pancreatic cancer
Previous studies have shown that the prevalence of type 1 dia-
betes mellitus is very high among people with pancreatic can-
cer. It is also reported that people with pancreatic cancer have
more evidence of type 1 diabetes mellitus than healthy people44.
According to these results, type 1 diabetes mellitus and pancre-
atic cancer are associated with each other, and finding the
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Figure 2 | Involvement of metabolic (PI3K/Akt/mTOR) and mitogenic (MAPK) pathways induced by insulin binding to its receptor in the
development of pancreatic cancer in healthy (a) and hyperinsulinemia (b) conditions.
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biomarkers that are common in these two diseases would help
in the prognosis or even in the treatment of the disease.
Recently, several molecular biomarkers have been reported,
including microRNAs (miRNAs), long non-coding RNAs
(LncRNAs), and circular RNAs (circRNAs). In this review, we
tried to gather all information about the roles of non-coding
RNAs related to diabetes and pancreatic cancer, and we focused
on the studies that aimed to describe these non-coding RNAs.
So, in these studies, the samples or the models are specifically
associated with these two diseases. But because of the numerous
functions and regulatory effects of non-coding RNAs and
shared pathways involved in different cancers, it is possible that
a specific non-coding RNA discussed in this study could also
be involved in other cancers or even in other diseases as well.
miRNAs are a class of small non-coding RNAs (ncRNAs) of

20–24 nucleotides in length, which have a significant role in
the cellular process control via regulating the gene expressions.
miRNAs bind to the 3’ UTR of target mRNAs to prevent
mRNA translation and to silence target expression45. Many
studies have reported that a small change in their expression
can lead to various diseases and cancer progression46. miR-25
is suggested as a candidate biomarker for pancreatic cancer47,
and miR-128a has an essential role in regulating the target
genes involved in significant insulin signaling cascades48.
Among these, a number of miRNAs are common between
these two diseases, and knowing them will help us to discover
the molecular connection of these two diseases.
LncRNAs belong to RNA species of at least 200 nucleotides

in length and are molecularly similar to mRNAs49. According
to studies, lncRNAs play significant roles in regulating chro-
matin modification, gene expression, and protein function50.
Besides, they possibly have a role in controlling miRNA level
and function, suggesting that lncRNAs have a negative correla-
tion with the expression of miRNAs51. Mounting evidence sug-
gests that dysregulated lncRNAs have been involved in several
diseases, such as pancreatic cancer and diabetes52. Furthermore,
some studies have reported lncRNA alterations between
patients with diabetic pancreatic cancer and non-diabetic pan-
creatic cancer.
Another class of ncRNAs are the circRNAs that were pri-

marily discovered in plant viroids53. Recently, circRNA expres-
sions were found in eukaryotic cells, and they are considered
erroneous splicing products54. The results obtained from differ-
ent experiments have indicated that the circRNAs role is disor-
dered in various diseases, including cancer and diabetes55. The
circRNA functions in diabetes are not yet fully understood, but
many studies have suggested that they may play a significant
role in the development of type 1 diabetes mellitus56. Addition-
ally, it is suggested that they could act as potential biomarkers
for the prognosis and early diagnosis of pancreatic cancer57.
For this reason, we were encouraged to collect different studies
that introduced potential miRNAs, lncRNAs, and circRNAs in
type 1 diabetes mellitus and pancreatic cancer. Then, we tried
to find common biomarkers among them to provide a

molecular reason for the relationship between these two dis-
eases. In the following, we will discuss these biomarkers sepa-
rately.

Circular RNAs
Circular RNAs (CircRNAs) are known to be a widespread
endogenous class of non-coding RNAs that are produced from
back splicing58. CircRNAs act as microRNA (miRNA) and pro-
tein sponges or decoys and are involved in protein scaffolding,
translation, splicing, and transcription. They are associated with
various diseases, including many types of cancers, cardiovascu-
lar diseases, and type 2 diabetes59. In recent years, the differen-
tial expression of circRNAs has been reported in pancreatic
cancer and in type 2 diabetes, some of which are illustrated in
Table 1. CircRNAs are involved in the b-cell function, inflam-
mation, and complications related to type 2 diabetes60. In pan-
creatic cancer, they participate in tumor invasion, metastasis,
apoptosis, and cell proliferation61. Among them, circANKRD36
is elevated in the peripheral leukocytes of type 2 diabetes
patients and correlated with chronic inflammation, probably
through interactions with miRNAs such as hsa-miR-3614-3p,
hsa-miR-498, and hsa-miR-501-5p. The expression of IL-6 was
associated with circANKRD3659. CircRNA_100782 also regu-
lates pancreatic carcinoma proliferation through the IL-6/
STAT3 pathway by acting as a sponge for miR-12462. Circular
RNA ciRS-7 plays a vital role as an oncogene in pancreatic
ductal adenocarcinoma (PDAC) through targeting miR-7, and
regulation of the EGFR/STAT3 pathway regulation leads to cell
proliferation and metastasis63. It also regulates b-cell prolifera-
tion and insulin secretion and has demonstrated decreased
expression in the islets of diabetic mice, leading to reduced b-
cell proliferation and survival along with impaired insulin secre-
tion64. In both diseases, these non-coding RNAs have been
reported as potential biomarkers, consisting of Cir-
cRNA0054633 in type 2 diabetes65,66, hsa_circ_0001649, and
circ-LDLRAD3 in pancreatic cancer67.

LncRNAs
LncRNAs are another group of ncRNAs that are longer than
200 nts and involved in almost every gene expression regula-
tion stage. There is growing evidence that highlights their role
in different kinds of diseases. The venn diagram below illus-
trates various lncRNAs in pancreatic cancer and in type 2 dia-
betes as well as shared lncRNAs involved in the development
of both pancreatic cancer and type 2 diabetes (Figure 3). In the
following, the molecular mechanisms of the most important
shared lncRNAs in both diseases will be discussed68.
Maternally expressed 3 (MEG3) is an imprinted maternally

lncRNA69, which is significantly decreased in microdissected
pancreatic cancer samples and cancer cell lines compared with
normal controls and has a prognostic value in the prediction of
pancreatic cancer. MEG3 knockdown leads to elevated cell pro-
liferation, migration, and invasion and induced epithelial-
mesenchymal transition (EMT)70. Its overexpression acts as a
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tumor suppressor by regulating PI3K/AKT/Bcl-2/Bax/Cyclin
D1/P53 and PI3K/AKT/MMP-2/MMP-9 signaling pathways71.
The increased expression levels of MEG3 were also reported in
the PBMCs of type 2 diabetes patients72, high fat diet, and ob/
ob mice hepatocytes. It increases hepatic insulin resistance
through enhanced FOXO1 expression73. In contrast, MEG3
expression was downregulated in the islets of type 2 diabetes
models (db/db mice) and was shown to be a regulator of beta
cells by impact on insulin production and cell apoptosis74.
Plasmacytoma variant translocation 1 (PVT1) is another

lncRNA that has been reported in relation to both diseases.
The salivary expression of PVT1 was increased significantly in
patients with pancreatic cancer and considered to be a potential
non-invasive biomarker75. It also showed elevated expression in
PDAC tissues and was related to tumor progression, making it
a potential biomarker for the prognosis prediction of patients76.
PVT1 regulates SERBP1 by acting as a miR-448 sponge which
leads to the proliferation and migration of PC cells77. It
involves EMT, cell proliferation, and migration by deregulating
P21 and TGFb/Smad signaling pathways78. In another study

related to diabetic nephropathy, the knockdown of PVT1
results in the significant reduction of FN1, COL4A1 (major
ECM proteins) and TGFb1, Pal1 (regulators of ECM proteins),
indicating that PVT1 may be involved in the progression of
diabetic nephropathy by mechanisms within ECM accumula-
tion79. In diabetes, PVT1 may also be involved in the suscepti-
bility of end-stage renal disease (ESRD) (Figure 4)80. H19 is
another elevated maternally expressed lncRNA in PDAC tissues
which was demonstrated to promote pancreatic cancer metasta-
sis by antagonizing Let-7 and increased HMGA2-mediated
EMT81. In addition, the axis of H19/miR is involved in PDAC
cell proliferation and migration by means of PFTK1 and down-
stream wnt signaling pathway82. Upregulation of E2F-1 is
another way in which H19 could be involved in PDAC cell
proliferation. E2F-1 is a direct target of miR-675 and there may
be a regulatory loop of H19/miR-675/E2F-1 that modulates the
cell cycle83. SOCS5 (the inhibitor of the STAT3 pathway) is
another direct target of miR-675-3p, so the H19/miR-675-3p
axis has a vital role in the EMT and pancreatic cancer
cell stemness maintenance through activating the STAT3

Table 1 | The list of circRNAs related to type 2 diabetes and pancreatic cancer

Disease Name Expression sample Gene association miRNA association

Pancreatic cancer hsa_circ_0000977 Decreased Tissue PLK1 miR-874-3p
CircZMYM2 Increased Tissues/cell line JMJD2C miR-335-5p
circ_0007534 Increased PDAC tissues/cell lines miR-625, miR-892b
circRNA_100782 Increased PDAC tissue IL6R

STAT3
microRNA-124

hsa_circ_0001649 Decreased PDAC tissues/cell lines caspase-9
caspase-3

circ-PDE8A Increased PDAC cells
Plasma

MET
MACC1

miR-338

ciRS-7 Increased PDAC tissues EGFR/STAT3 miR-7
hsa_circ_0006215 Increased Tissue SERPINA4 miR-378a-3p
circRHOT1 Increased Cell line miR-26b, miR-125a, miR-330, miR-382
circ-IARS Increased Tissue/plasma ZO1, RhoA, RhoA-GTP

F-actin
miR-122

circ-LDLRAD3 Increased Tissue/plasma/cell line
circ_0030235 Increased PDAC tissues/cell line miR-1253

miR-1294
Type 2 diabetes hsa-circRNA11783-2 Decreased Peripheral blood miR-608

miR-3907
hsa-CircRNA0054633 Increased Plasma
circANKRD36 Increased Peripheral blood leucocytes IL-6 hsa-miR-3614-3p

hsa-miR-498
hsa-miR-501-5p

hsa_circRNA_ 404457 Increased Serum
hsa_circRNA_063981
hsa_circRNA_100750
Hsa-circRNA-406918
hsa_ circRNA_104387
Hsa-circRNA-103410
hsa-circRNA-100192_
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pathway84. This lncRNA regulates CD24 and integrin expres-
sion, which results in sphere formation and invasion in pancre-
atic cancer cells85. Consistent with studies in pancreatic cancer,
the elevated expression of H19 has been reported in the dia-
betic liver, patients with type 2 diabetes with poor glycemic
control, and its increased hepatic expression is involved in dia-
betic hyperglycemia86,87. The downregulation of H19 by five
times in the muscles of patients with type 2 diabetes and mice
with insulin resistance suggests that more Let-7 (as a target of
H19) contributes to insulin resistance and type 2 diabetes88.
Metastasis-associated lung adenocarcinoma transcript-1

(MALAT1) is an overexpressed lncRNA in pancreatic cancer
tissues and cell lines involved in cell proliferation, migration,
apoptosis, and invasion through regulating the Hippo-YAP sig-
naling pathway89. In addition, six hub genes, including CCND1,
MAPK8, and VEGFA may be its targets. Several pathways con-
sist of mTOR, and MAPK signaling pathways are suggested as
being critical pathways in pancreatic cancer disease90. A feed-
back loop between MALAT1 and miR-200-3p promotes cell
invasion and migration in PDAC91. It also increases pancreatic
cancer proliferation and metastasis through stimulation of
autophagy92. In PDAC, MALAT1 regulates KRAS by sponging
miR-217 and inhibiting its translocation from the nucleus to
the cytoplasm93. On the contrary, the expression levels of
MALAT1 were downregulated in the serum of patients with
type 2 diabetes86. In another study, with different groups of
patients with type 2 diabetes and healthy controls, the expres-
sion level of MALAT1 showed upregulation in the serum of

groups of patients with nondiabetic retinopathy (NDR), non-
proliferative diabetic retinopathy (NPDR) and proliferative dia-
betic retinopathy (PDR), comparing each with healthy subjects.
Furthermore, the expression level of this lncRNA was increased
in diabetic retinopathy (DR) and PDR groups compared with
NDR, and NPDR compared with NDR patients. All together
these results showed that MALAT1 could be used as a potential
biomarker for screening diabetic retinopathy and proliferative
diabetic retinopathy early diagnosis94. The expression level of
MALAT1 was also upregulated in the PBMCs of type 2 dia-
betes patients compared with controls72.
LncRNA Growth Arrest-specific transcript 5 (GAS5) has

been studied in both diseases. Gas5 expression is significantly
downregulated in pancreatic cancer tissues compared with nor-
mal controls and negatively regulates the expression of CDK6
(cyclin-dependent kinase 6). Its overexpression in PC cells pro-
hibits cell proliferation, and its inhibition leads to a decrease in
G0/G1 phase and an increase in S phase95. GAS5 could inhibit
PC metastasis by positive regulation of PTEN through miR-32-
5p96. It is involved in Hippo pathway regulation by negative
regulation of miR-181c-5p and antagonizes the development of
multidrug resistance in pancreatic cancer cells97. In addition,
GAS5 regulates the miR-221/SOCS pathway, which results in
the suppression of metastasis, cell growth, and resistance to
gemcitabine98. In diabetic nephropathy (DN), GAS5 also acts
as a miR-221 sponge and increases its target, SIRT1, inhibiting
cell proliferation and fibrosis. The expression levels of GAS5
have been reported in type 2 diabetes patients with diabetic

Figure 3 | Venn diagram of lncRNAs in type 2 diabetes and pancreatic cancer. The involved lncRNAs in pancreatic cancer and type 2 diabetes are
shown in red and blue, respectively. The shared lncRNAs which are involved in both diseases are represented in pink.
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nephropathy compared with patients without diabetic
nephropathy99. The expression level of GAS5 was decreased in
the tissue of db/db mice100, the serum101, and plasma of
patients with type 2 diabetes, which is considered to be a bio-
marker of type 2 diabetes in Egypt102. In contrast, the elevated
expression of GAS5 was demonstrated in the PBMCs of
patients with type 2 diabetes72. GAS5 regulates the expression
of insulin receptors by binding to its promoter, in which its
depletion suppresses glucose uptake and insulin signaling103.
HOX transcript antisense RNA (HOTAIR) is considered to

be a negative prognostic factor with pro-oncogenic activity in
pancreatic cancer104. Its functional polymorphisms (SNP
rs4759314 and rs200349340) have been demonstrated to have
strong associations with susceptibility to pancreatic cancer105.
HOTAIR was elevated in PC tissues, PC cell lines, and the sal-
iva of pancreatic cancer patients in which its salivary expression
could be considered to be a novel biomarker for early pancre-
atic cancer75,106. It also sponges miR-613, which results in
notch3 expression regulation and pro-oncogenic functions by
regulating different sets of genes in Panc1 cells106. miR-663b is
another target of this lncRNA in which its inhibition causes
pancreatic cancer cell proliferation by increased levels of
insulin-like growth factor 2 (IGF2)107. Elevated HOTAIR levels
lead to increased resistance of PC cells to TRAIL-induced apop-
tosis by regulating death receptor 5 (DR5), making it a poten-
tial therapeutic target108. In pancreatic cancer cells, the
knockdown of HOTAIR increased radiosensitivity and the
effects of autophagy by overexpressing ATG7, which is more
evidence of its potential as a therapeutic target109. HOTAIR
could promote energy metabolism in pancreatic adenocarci-
noma cells by upregulating hexokinase-2 (HK2), which leads to
increased tumor cell proliferation110. Consistent with the men-
tioned studies in pancreatic cancer, an elevated expression of

HOTAIR was reported in the liver tissues of C57BL/6J mice
fed with a high-fat diet, db/db mice, and the PBMCs and liver
tissue of type 2 diabetes patients111. It develops hepatic insulin
resistance by suppressing the AKT/GSK pathway and the
expression of SIRT1111. In contrast, its expression did not show
significant changes in the serum of type 2 diabetes patients
compared with healthy controls101. HOTAIR is a critical regula-
tor in diabetic retinopathy and promotes diabetic cardiomyopa-
thy through PI3K/AKT pathway activation112. The expression
of glomerular HOTAIR was reported to be upregulated in
human diabetic kidney disease (DKD) and db/db mouse model
of diabetes, but surprisingly its knockdown did not change the
development of kidney damage in diabetic mice113.
lncRNA nuclear-enriched abundant transcript 1 (NEAT1) is

another upregulated lncRNA in PC tissues and cell line which
binds to E74 like ETS transcription factor 3 (ELF3) mRNA and
suppressing its degradation leading to develop PC cell growth
and metastasis114. The expression levels of NEAT1 were also
reported to be overexpressed in streptozotocin-induced rat
models of diabetic nephropathy and high-glucose-induced mice
mesangial cells. It targets miR-27b-3p and ZEB1, which results
in the promotion of extracellular matrix accumulation and
epithelial to mesenchymal transition in diabetic nephropathy115.
Another study also showed that NEAT1 sponges miR-23c and
develops diabetic nephropathy116.

MicroRNAs
In recent years, there has been growing evidence indicating that
miRNAs are involved in the pathogenesis of both type 2 dia-
betes and pancreatic cancer. MiRNAs are involved in different
pathways related to pancreatic cancer, including MAPK/KRAS,
PI3K/AKT, JAK/STAT, and Wnt/b-Catenin signaling path-
ways117. Furthermore, the aberrant expression of miRNAs has
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Figure 4 | The schematic representation of molecular mechanisms of MEG3 and PVT1 lncRNAs in the development of pancreatic cancer and type
2 diabetes.

412 J Diabetes Investig Vol. 13 No. 3 March 2022 ª 2021 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

R E V I EW A R T I C L E

Dehghanian et al. http://wileyonlinelibrary.com/journal/jdi



been reported in the tissue118, plasma119, serum120, and
PBMC121 of type 2 diabetes and pancreatic cancer patients,
which highlights their disruption in these diseases. Circulating-
free miRNAs have been identified in the biofluids of type 2 dia-
betes and pancreatic cancer patients, which leads to their appli-
cation to non-invasive tests122. As a consequence, the diagnostic
and prognostic potential of these non-coding RNAs has been
widely investigated, and various numbers of them have been
identified as biomarkers in relation to type 2 diabetes and pan-
creatic cancer. MiR-21 is one of the best examples in which
previous studies reported its possible role as a biomarker123.
Circulating miR-21-5p could be a promising non-invasive bio-
marker in pancreatic cancer patients, and serum levels of miR-
21 are a predictor for the chemosensitivity of advanced pancre-
atic cancer124. The elevated tissue levels of miR-21 were corre-
lated with shorter pancreatic cancer disease-free survival and
overall survival and were proposed as a diagnostic and prog-
nostic biomarker for pancreatic ductal adenocarcinoma125. In
diabetic nephropathy, the serum levels of miR-21 could also be
a diagnostic biomarker126. MiR-221 is another potential bio-
marker for both diseases. In pancreatic cancer, miR-221-3p
induces cell proliferation, suppresses apoptosis, and its serum
level is proposed as a biomarker127. In addition, the plasma
miR-221 may be a valuable biomarker for the diagnosis and
prediction of malignant outcomes in pancreatic cancer
patients128. The serum levels of this miRNA serve as a potential
biomarker for both the occurrence and progression of diabetic
retinopathy in type 2 diabetes patients129. MiR-23a, as an onco-
genic regulator of pancreatic cancer, is a potential biomarker in
pancreatic cancer diagnosis and treatment. Its serum level is
also a valuable biomarker for early diagnosis of pre-diabetic
and type 2 diabetes patients130,131. Our literature review demon-
strates that more than 149 common miRNAs are commonly
involved in the development of both type 2 diabetes and pan-
creatic cancer diseases. The pattern of each miRNA expression
and its molecular function in type 2 diabetes and pancreatic
cancer are reported in Table 2.
Several studies aimed to determine the role of miRNAs

related to recent-onset diabetes associated with pancreatic can-
cer, which could also be considered as potential biomarkers. Six
serum miRNAs (miR-483-5p, miR-19a, miR-29a, miR-20a,
miR-24, miR-25) have been differentially expressed in PC-
associated new-onset diabetes mellitus (PaC-DM) samples and
could be considered as potential biomarkers for the accurate
discrimination of PaC-DM from healthy controls and non-
cancer new-onset type 2 diabetes132. In another study, the exo-
somal miRNAs and their potential in PaC-induced b-cell dys-
function were explored by treating pancreatic b cells with
exosomes from PaC cell lines. The results highlight that exo-
somes could be essential mediators in the pathogenesis of paC-
DM. In addition, exogenous miR-19a can be a crucial mediator
which directly targets adenylyl cyclase 1 (Adcy1) and exchanges
protein directly activated by cAMP 2 (Epac2). Both proteins
are involved in insulin secretion133. MiR-18a-5p is also

associated with early diabetes, and it is suggested that miR-20b-
5p and miR-29 could have a role in the identification of early
diabetes in pancreatic cancer134. Another study was performed
based on the reduced risk of pancreatic cancer in patients with
diabetes by oral administration of metformin. Metformin sup-
presses cell proliferation, migration, and invasion through reex-
pression of miRNAs ((let-7a,let-7b, miR-26a, miR-101, miR-
200b, and miR-200c), as their loss is typical in pancreatic can-
cer. These miRNAs are reported to target cancer stem cell
(CSC) genes suggesting that metformin could be useful in over-
coming the resistance to therapeutic approaches for pancreatic
cancer135. Metformin also inhibits human pancreatic cancer
proliferation and tumor growth through altering miRNAs
related to cell cycle-related proteins136. Nine miRNAs were sig-
nificantly upregulated in metformin treated pancreatic cancer
cells, and among them, the expression of miR-26a, miR-192,
and let-7c is dos dependent137. A Panc02 pancreatic tumor cell
transplant model in diet-induced obese (DIO) C57BL/6 mice
was also used to explore the effect of metformin and rapamycin
on miRNA alternations. Rapamycin results in the increased
expression of let-7b and miRNAs involved in cell cycle regula-
tion, while metformin (but not rapamycin) leads to reduced
glucose and insulin levels. Metformin also caused decreased
expression of miR-34a and its direct targets (Notch, Slug, and
Snail)138.
Type 2 diabetes is a known metabolic disorder with specific

properties, including insulin resistance, and pancreatic cancer is
the most common exocrine pancreas malignancy. Mounting
evidence indicates a complex relationship between these two
diseases. However, similar events such as shared risk factors,
metabolic abnormalities, signaling pathways, and non-coding
RNAs could be a cue to describe this association. This manu-
script has highlighted the shared molecular events and similar
non-coding RNAs in type 2 diabetes and pancreatic cancer. An
increased understanding of the molecular mechanisms that
explain this link could provide a powerful tool for prevention
and therapy of this lethal cancer.
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