7426 measured reflections

 $R_{\rm int} = 0.051$

1871 independent reflections

1371 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(4-Methylphenyl)-2-thioxo-1,3thiazolidin-4-one

Durre Shahwar,^a M. Nawaz Tahir,^b* Naeem Ahmad,^a Muhammad Asam Raza^a and Saherish Aslam^a

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 19 July 2010; accepted 25 July 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.059; wR factor = 0.191; data-to-parameter ratio = 14.6.

In the title compound, $C_{10}H_9NOS_2$, the toluene group and the 2-thioxo-1,3-thiazolidin-4-one unit are planar with r.m.s. deviations of 0.0082 and 0.0136 Å, respectively. The dihedral angle between them is 71.20 (9)°. In the crystal, the molecules are stabilized through intermolecular $C-H\cdots O$ contacts, forming polymeric sheets extending parallel to the (011) plane. $C-H\cdots \pi$ contacts also occur.

Related literature

For related structures and the preparation, see: Shahwar *et al.* (2009a,b).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_9 \text{NOS}_2 \\ M_r = 223.30 \\ \text{Monoclinic, } P2_1/c \\ a = 14.5885 \ (18) \ \text{\AA} \\ b = 5.5766 \ (6) \ \text{\AA} \\ c = 12.9910 \ (15) \ \text{\AA} \\ \beta = 100.603 \ (6)^\circ \end{array}$

 $V = 1038.8 (2) \text{ Å}^3$ Z = 4Mo K α radiation $\mu = 0.48 \text{ mm}^{-1}$ T = 296 K $0.30 \times 0.20 \times 0.20 \text{ mm}$ Data collection

```
Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
```

 $T_{\min} = 0.939, T_{\max} = 0.950$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ 128 parameters $wR(F^2) = 0.191$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.45$ e Å $^{-3}$ 1871 reflections $\Delta \rho_{min} = -0.31$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1-C6 benzene ring.

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.93	2.45	3.360 (5)	167
0.93	2.51	3.432 (5)	169
0.97	2.71	3.565 (4)	147
	<i>D</i> -H 0.93 0.93 0.97	D−H H···A 0.93 2.45 0.93 2.51 0.97 2.71	$D-H$ $H\cdots A$ $D\cdots A$ 0.93 2.45 3.360 (5) 0.93 2.51 3.432 (5) 0.97 2.71 3.565 (4)

Symmetry codes: (i) x, y - 1, z; (ii) $x, -y + \frac{5}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

DS is grateful to the Higher Education Commission (Pakistan) for funding this project and Professor Dr Islam Ullah Khan for providing research facilities at Government College University, Lahore, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2279).

References

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009a). Acta Cryst. E65, 03014.
- Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009b). Acta Cryst. E65, 03016.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o2159 [doi:10.1107/S1600536810029569]

3-(4-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one

D. Shahwar, M. N. Tahir, N. Ahmad, M. A. Raza and S. Aslam

Comment

In continuation to synthesize various derivatives of 2-thioxo-1,3-thiazolidin-4-one, the title compound (I, Fig. 1) is being reported.

The crystal structure of (II) 3-(2-methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar *et al.*, 2009*a*) and (III) 3-(3-methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar *et al.*, 2009*b*) have been published which differ from (I) due to the position of methyl group.

In (I), the toluene group A (C1—C7) and group B (N1/C8—C10/S1/S2/O1) of 2-thioxo-1,3-thiazolidin-4-one moiety are planar with maximum r. m. s. deviations of 0.0082 and 0.0136 Å, respectively. The dihedral angle between A/B is 71.20 (9)°. This value is different from 84.44 (9)° and 83.30 (3)° as observed in (II) and (III), respectively. The molecules are stabilized in the form polymeric sheets due to C—H…O type of intermolecular H-bondings and C—H… π contacts (Table 1). The polymeric sheets extend parallel to the (0 T 1) plane (Fig. 2).

Experimental

The title compound has been prepared by the method described in (Shahwar et al., 2009a) and (Shahwar et al., 2009b).

Refinement

All H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aryl and x = 1.5 for methyl H-atoms.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Fig. 2. The partial packing (*PLATON*; Spek, 2009) which shows that molecules form polymeric sheets extending parallel to $(0 \bar{1} 1)$.

3-(4-Methylphenyl)-2-sulfanylidene-1,3-thiazolidin-4-one

F(000) = 464
$D_{\rm x} = 1.428 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1371 reflections
$\theta = 3.3 - 25.2^{\circ}$
$\mu = 0.48 \text{ mm}^{-1}$
T = 296 K
Prism, light yellow
$0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer	1871 independent reflections
Radiation source: fine-focus sealed tube	1371 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.051$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -6 \rightarrow 6$
$T_{\min} = 0.939, T_{\max} = 0.950$	$l = -14 \rightarrow 15$
7426 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.191$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_0^2) + (0.1099P)^2 + 0.6595P]$

	where $P = (F_0^2 + 2F_c^2)/3$
1871 reflections	$(\Delta/\sigma)_{max} < 0.001$
128 parameters	$\Delta \rho_{max} = 0.45 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.07809 (7)	0.7565 (2)	0.48054 (8)	0.0640 (4)
S2	0.08797 (7)	0.4645 (2)	0.29429 (9)	0.0645 (4)
01	0.29145 (18)	1.1330 (5)	0.45318 (19)	0.0576 (9)
N1	0.20548 (18)	0.8215 (5)	0.3708 (2)	0.0419 (8)
C1	0.2640 (2)	0.7927 (6)	0.2936 (2)	0.0422 (10)
C2	0.3229 (2)	0.5995 (7)	0.2997 (3)	0.0486 (11)
C3	0.3830 (3)	0.5829 (7)	0.2290 (3)	0.0559 (12)
C4	0.3849 (3)	0.7554 (7)	0.1539 (3)	0.0522 (11)
C5	0.3251 (3)	0.9453 (8)	0.1489 (3)	0.0638 (14)
C6	0.2640 (3)	0.9667 (7)	0.2192 (3)	0.0561 (14)
C7	0.4528 (3)	0.7357 (9)	0.0792 (3)	0.0774 (18)
C8	0.2270 (2)	0.9984 (6)	0.4471 (3)	0.0455 (11)
С9	0.1587 (3)	0.9972 (8)	0.5211 (3)	0.0559 (12)
C10	0.1289 (2)	0.6787 (6)	0.3748 (3)	0.0470 (11)
H2	0.32242	0.48179	0.35029	0.0584*
Н3	0.42296	0.45210	0.23248	0.0672*
Н5	0.32517	1.06212	0.09782	0.0767*
Н6	0.22378	1.09710	0.21555	0.0676*
H7A	0.48304	0.88736	0.07508	0.1162*
H7B	0.41973	0.69135	0.01101	0.1162*
H7C	0.49876	0.61574	0.10415	0.1162*
H9A	0.12591	1.14909	0.51789	0.0672*
H9B	0.19110	0.97175	0.59244	0.0672*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0506 (6)	0.0820 (8)	0.0656 (7)	-0.0038 (5)	0.0268 (5)	-0.0086 (5)
S2	0.0524 (6)	0.0690 (8)	0.0715 (8)	-0.0092 (5)	0.0097 (5)	-0.0155 (5)

supplementary materials

01	0.0639 (16)	0.0610 (17)	0.0485 (15)	-0.0104 (14)	0.0122 (12)	-0.0037 (12)
N1	0.0403 (14)	0.0497 (16)	0.0369 (14)	0.0036 (12)	0.0106 (11)	-0.0002 (12)
C1	0.0431 (18)	0.050 (2)	0.0345 (16)	0.0003 (14)	0.0098 (13)	-0.0013 (14)
C2	0.051 (2)	0.052 (2)	0.0429 (19)	0.0044 (16)	0.0093 (15)	0.0068 (16)
C3	0.051 (2)	0.066 (2)	0.052 (2)	0.0110 (18)	0.0132 (16)	-0.0024 (19)
C4	0.049 (2)	0.070 (2)	0.0395 (18)	-0.0142 (18)	0.0133 (15)	-0.0076 (17)
C5	0.089 (3)	0.063 (2)	0.044 (2)	-0.003 (2)	0.024 (2)	0.0133 (18)
C6	0.075 (3)	0.049 (2)	0.047 (2)	0.0102 (18)	0.0185 (18)	0.0057 (17)
C7	0.060 (3)	0.123 (4)	0.055 (2)	-0.022 (2)	0.026 (2)	-0.019 (2)
C8	0.052 (2)	0.0459 (19)	0.0391 (18)	0.0040 (16)	0.0099 (15)	0.0013 (14)
C9	0.056 (2)	0.069 (2)	0.045 (2)	0.0045 (18)	0.0150 (16)	-0.0037 (17)
C10	0.0400 (18)	0.053 (2)	0.048 (2)	0.0015 (15)	0.0080 (14)	0.0010 (15)

Geometric parameters (Å, °)

S1—C9	1.798 (5)	C4—C7	1.513 (6)
S1—C10	1.732 (4)	C5—C6	1.394 (6)
S2—C10	1.627 (4)	C8—C9	1.507 (5)
O1—C8	1.194 (4)	С2—Н2	0.9300
N1—C1	1.441 (4)	С3—Н3	0.9300
N1—C8	1.393 (4)	С5—Н5	0.9300
N1—C10	1.381 (4)	С6—Н6	0.9300
C1—C2	1.371 (5)	С7—Н7А	0.9600
C1—C6	1.370 (5)	С7—Н7В	0.9600
C2—C3	1.385 (5)	С7—Н7С	0.9600
C3—C4	1.374 (5)	С9—Н9А	0.9700
C4—C5	1.366 (6)	С9—Н9В	0.9700
S1…N1	2.568 (3)	C6…H9B ^{vii}	3.0300
S1…S1 ⁱ	3.7490 (16)	C7…H3 ^{viii}	3.0200
S1…S1 ⁱⁱ	3.6396 (16)	С8…Н6	3.0500
S2…C2	3.497 (3)	$C8 \cdots H7B^{v}$	2.9800
S2…C8 ⁱⁱⁱ	3.651 (4)	С10…Н2	3.1000
S1…H9A ⁱⁱ	3.0300	H2…O1 ⁱⁱⁱ	2.4500
S2…H6 ⁱⁱⁱ	3.1500	H2…C10	3.1000
O1···C2 ^{iv}	3.360 (5)	H3…H7C	2.3500
O1…C6	3.132 (5)	H3····C7 ^{ix}	3.0200
O1···C7 ^v	3.321 (5)	Н5…Н7А	2.5700
O1…H2 ^{iv}	2.4500	H5…O1 ^x	2.5100
O1…H5 ^{vi}	2.5100	H6…S2 ^{iv}	3.1500
$O1 \cdots H7B^{v}$	2.6100	H6…C8	3.0500
N1…S1	2.568 (3)	H7A…H5	2.5700
C2…S2	3.497 (3)	H7A…H7A ^{xi}	2.4500
C2…O1 ⁱⁱⁱ	3.360 (5)	H7B…O1 ^{vii}	2.6100
C4···C8 ^{vii}	3.500 (5)	H7B…C2 ^{vii}	3.0800
C6…O1	3.132 (5)	H7B…C8 ^{vii}	2.9800

C7…O1 ^{vii}	3.321 (5)	Н7С…Н3	2.3500
C8····S2 ^{iv}	3.651 (4)	H9A…S1 ⁱⁱ	3.0300
C8····C4 ^v	3.500 (5)	H9B····C1 ^v	3.0200
C1···H9B ^{vii}	3.0200	H9B····C2 ^v	3.0300
C2…H9B ^{vii}	3.0300	H9B····C3 ^v	3.0400
$C2 \cdots H7B^{v}$	3.0800	H9B····C4 ^v	3.0700
C3…H9B ^{vii}	3.0400	H9B····C5 ^v	3.0400
C4···H9B ^{vii}	3.0700	H9B···C6 ^v	3.0300
C5H9B ^{vii}	3 0400		
	02.95 (19)	52 C10 N1	127 1 (2)
C_{9}	95.85 (18)	S2-C10-N1	127.1 (3)
CI—NI—C8	119.3 (3)	C1—C2—H2	121.00
C1—N1—C10	123.3 (3)	С3—С2—Н2	121.00
C8—N1—C10	117.4 (3)	С2—С3—Н3	119.00
N1—C1—C2	119.5 (3)	C4—C3—H3	119.00
N1—C1—C6	119.3 (3)	C4—C5—H5	120.00
C2—C1—C6	121.1 (3)	С6—С5—Н5	119.00
C1—C2—C3	118.7 (3)	С1—С6—Н6	121.00
C2—C3—C4	121.5 (4)	С5—С6—Н6	120.00
C3—C4—C5	118.7 (4)	С4—С7—Н7А	109.00
C3—C4—C7	120.4 (4)	С4—С7—Н7В	109.00
C5—C4—C7	120.9 (4)	С4—С7—Н7С	109.00
C4—C5—C6	121.0 (4)	H7A—C7—H7B	109.00
C1—C6—C5	119.0 (4)	H7A—C7—H7C	109.00
01 - C8 - N1	124 3 (3)	H7B-C7-H7C	109.00
01 - 08 - 09	1245(3)	S1-C9-H9A	110.00
N1_C8_C9	121.3(3)	S1H9B	110.00
S1 C9 C8	106.9(3)	C_{8} C_{9} H0A	110.00
S1C6	100.9(3)	C° C° L° L°	110.00
SI-C10-S2	122.26 (19)		110.00
SI-CIO-NI	110.7 (2)	H9A-C9-H9B	109.00
C9—S1—C10—N1	1.8 (3)	C10—N1—C8—C9	-0.3 (4)
C10—S1—C9—C8	-1.9 (3)	N1-C1-C6-C5	176.0 (3)
C9—S1—C10—S2	-178.1 (3)	C6—C1—C2—C3	0.1 (5)
C10—N1—C1—C2	-72.1 (4)	N1—C1—C2—C3	-175.8 (3)
C8—N1—C10—S2	178.7 (3)	C2—C1—C6—C5	0.0 (5)
C8—N1—C1—C6	-69.3 (4)	C1—C2—C3—C4	0.3 (6)
C10-N1-C1-C6	111.9 (4)	C2—C3—C4—C7	178.6 (4)
C8—N1—C1—C2	106.7 (4)	C2—C3—C4—C5	-0.7 (6)
C1-N1-C10-S1	177.6 (2)	C3—C4—C5—C6	0.9 (6)
C8—N1—C10—S1	-1.2 (4)	C7—C4—C5—C6	-178.5 (4)
C1—N1—C10—S2	-2.5 (5)	C4—C5—C6—C1	-0.5 (6)
C1—N1—C8—O1	0.7 (5)	O1—C8—C9—S1	-178.3 (3)
C10—N1—C8—O1	179.5 (3)	N1—C8—C9—S1	1.5 (4)
C1—N1—C8—C9	-179.1 (3)		

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*, -*y*+2, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*+1, *z*; (v) *x*, -*y*+3/2, *z*+1/2; (vi) *x*, -*y*+5/2, *z*+1/2; (vii) *x*, -*y*+3/2, *z*+1/2; (vii) -*x*+1, *y*+1/2, -*z*+1/2; (ix) -*x*+1, *y*-1/2, -*z*+1/2; (x) *x*, -*y*+5/2, *z*-1/2; (x) -*x*+1, -*y*+2, -*z*.

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ben	zene ring.			
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2···O1 ⁱⁱⁱ	0.93	2.45	3.360 (5)	167
C5—H5…O1 ^x	0.93	2.51	3.432 (5)	169
C9—H9B…Cg2 ^v	0.97	2.71	3.565 (4)	147
Symmetry codes: (iii) $x, y-1, z$; (x) $x, -y-1$	+5/2, z-1/2; (v) x, -y+3/2,	z+1/2.		

