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Background: In recent years, computer-aided diagnosis (CAD) systems have played an important role 
in breast cancer screening and diagnosis. The image segmentation task is the key step in a CAD system for 
the rapid identification of lesions. Therefore, an efficient breast image segmentation network is necessary 
for improving the diagnostic accuracy in breast cancer screening. However, due to the characteristics of 
blurred boundaries, low contrast, and speckle noise in breast ultrasound images, breast lesion segmentation 
is challenging. In addition, many of the proposed breast tumor segmentation networks are too complex to be 
applied in practice.
Methods: We developed the attention gate and dilation U-shaped network (GDUNet), a lightweight, 
breast lesion segmentation model. This model improves the inverted bottleneck, integrating it with tokenized 
multilayer perceptron (MLP) to construct the encoder. Additionally, we introduce the lightweight attention 
gate (AG) within the skip connection, which effectively filters noise in low-level semantic information across 
spatial and channel dimensions, thus attenuating irrelevant features. To further improve performance, we 
innovated the AG dilation (AGDT) block and embedded it between the encoder and decoder in order to 
capture critical multiscale contextual information.
Results: We conducted experiments on two breast cancer datasets. The experiment’s results show that 
compared to UNet, GDUNet could reduce the number of parameters by 10 times and the computational 
complexity by 58 times while providing a double of the inference speed. Moreover, the GDUNet achieved a 
better segmentation performance than did the state-of-the-art medical image segmentation architecture. 
Conclusions: Our proposed GDUNet method can achieve advanced segmentation performance on 
different breast ultrasound image datasets with high efficiency.
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Introduction

Breast cancer is one of the most common malignancies 
affecting women worldwide (1). Early detection and precise 
diagnosis are critical for successful treatment and improved 
patient prognosis. Clinically, breast ultrasound has become 
an important tool in the screening and diagnosis of breast 
lesions due to its noninvasive nature, cost-effectiveness, 
easy operation, and lack of ionizing radiation (2). In recent 
years, with the advancement of computer vision technology, 
Computer-aided diagnosis (CAD) systems have been widely 
used in clinical practice, especially in the early screening and 
diagnosis of breast cancer via ultrasound (3-5). CAD can 
facilitate the automated analysis and interpretation of breast 
ultrasound images, helping to detect and localize potential 
breast lesions. Image segmentation is a crucial step in CAD 
systems, and an efficient segmentation method can improve 
their accuracy in diagnosing diseases. However, accurate 
segmentation of breast ultrasound images is challenging due 
to the complexity of breast tissue, the presence of noise and 
artifacts in the images, and other factors. Therefore, the 
development of an accurate and efficient automatic breast 
ultrasound segmentation network has considerable clinical 
importance.

In recent years, researchers have proposed various 
methods for breast ultrasound image segmentation tasks 
based on convolutional neural networks (CNNs). Among 
them, the U-shaped network (UNet) (6) is a landmark 
network model in medical image segmentation, and many 
mainstream medical image segmentation methods have 
been derived from UNet. Almajalid et al. (7) improved 
UNet by using contrast enhancement and speckle-reduction 
preprocessing techniques. However, the 3×3 convolution 
kernel of UNet fixes the receptive field and only captures 
local information, ignoring the connection of global 
contextual information. To obtain a global view, Irfan et al. (8)  
obtained a larger receptive field by introducing dilated 
convolutions (9) with different dilation rates. However, 
considering the characteristics of blurred boundaries and 
shadowing effects of breast ultrasound images, the use 
of dilated convolution alone cannot accurately segment 
breast tumors. To further optimize the performance of 

breast tumor segmentation, an attention-enhanced UNet 
with hybrid dilation convolution was proposed by Yan 
et al. (10). Zhuang et al. (11) segmented breast lesions 
by introducing residual units, dilated convolution, and 
attention gate (AG). Although the performance of these 
segmentation networks is optimized, the lower layers of 
the networks still use small convolution kernels, which 
results in the extraction of shallow features that are 
too localized to fully cope with the perturbation of the 
fuzzy boundaries of breast ultrasound images. With the 
development of deep learning, many transformer-based 
medical image segmentation methods have emerged, which 
have improved the segmentation performance through 
the learning of images’ global information. Among these 
methods is TransUNet (12), whose overall architecture 
is UNet, but the encoder structure is combined with the 
encoder structure of the transformer so that the network 
can better capture local information and global information. 
MedT (13) extends the structure by introducing additional 
control mechanisms in the self-attentive module and further 
improves the performance of the model by applying a 
local-global training strategy. However, most transformer-
based networks need to be trained on large datasets, but 
breast ultrasound images are rare and typically included in 
small datasets, and thus the segmentation results of these 
transformer-based medical image segmentation networks 
are not satisfactory.

In addition, many breast ultrasound image segmentation 
methods improve segmentation performance while ignoring 
model complexity. When segmentation methods are too 
complex, it is difficult to apply them in practical situations 
such as clinical diagnosis, so reducing the model complexity 
is a key consideration. Recently, researchers have explored 
using networks based on multilayer perceptron (MLP) 
to improve the performance of computer vision tasks. 
Tolstikhin et al. (14) proposed the MLP mixer, which is 
based entirely on MLP. Valanarasu et al. (15) combined 
convolution and MLP to develop UNeXt and used it for 
medical image segmentation. UNeXt mainly uses the 
tokenized MLP module, which is an improvement of the 
standard MLP based on the Swin transformer (16). First, the 
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shifted MLP is used to move the axis of a specific channel 
in the feature map via a shift operation and then to focus 
on some specific locations. Two shifted MLPs are involved, 
one shifted in width and the other in height, similar to axial 
attention. Second, to encode the location information of 
the MLP features, a depth-wise separable convolution is 
performed between the two shifted MLPs, which involves 
fewer parameters. Third, a residual connection is made 
by adding the original features as residual information. 
The introduction of shift operations in MLP allows for 
the extraction of local information corresponding to 
different axial shifts. These MLP-based methods achieve 
provide a low number of parameters and a fast inference 
speed, yet being too lightweight may underrepresent task-
specific features and thus affect segmentation performance. 
Nonetheless, these methods offer new ideas for designing 
lightweight networks. 

To overcome the above-mentioned problems, we 
designed a lightweight breast tumor segmentation method, 
attention gate and dilation U-shaped network (GDUNet), 
by drawing on the modules of inverted bottleneck (17),  
dilated convolution, conditionally parameterized convolutions 
(CondConv) (18), AG (19), and tokenized MLP. The 
main contributions of our study are the following: (I) we 
propose a lightweight breast tumor segmentation method 

with attention gating, which captures multiscale contextual 
information. (II) We conducted extensive experiments 
on two breast ultrasound datasets, and the results showed 
that our segmentation method has better a segmentation 
performance than do the state-of-the-art segmentation 
methods, with fewer parameters, faster inference speed, and 
low computational complexity.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Biological and Medical Ethics Committee 
of Northeastern University (No. NEU-EC-2021B019S). 
Informed consent was obtained from all patients. 

GDUNet has an encoder-decoder architecture, as 
shown in Figure 1. The encoder consists of three inverted 
bottlenecks and two tokenized MLPs. Since the max 
pooling for downsampling causes some information loss, 
we use CondConv with kernel size of 2 and step size of 
2 for downsampling. Between the decoder and encoder, 
we embed an AG dilation (AGDT) block. In the decoder 
stage, we use tokenized MLP blocks for the first two 
layers and normal convolutional layers for the last three 
layers. Upsampling involves bilinear interpolation, which 

Figure 1 Overview of the proposed GDUNet architecture. H, height; W, width; C, number of channels; GDUNet, attention gate and dilation 
U-shaped network; MLP, multilayer perceptron; AGDT, attention gate dilation.
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reduces the number of parameters while maintaining model 
performance. We reduce the number of channels per 
layer compared to UNet. In downsampling, the number 
of channels per layer of GDUNet is 16, 32, 128, 160 and 
256, respectively. Due to the insertion of the AGDT block, 
in upsampling, the number of channels in each layer is 
set to 384, 160, 128, 32 and 16, respectively. In the skip 
connection, we introduce the improved AG.

CondConv 

Typically, increasing the size of traditional convolutional 
kernels and the number of channels can increase the capacity 
of the model, thereby improving its performance. However, 
this method can also greatly increase the complexity 
of the model. Yang et al. proposed CondConv (18),  
which parameterizes the convolutional kernel as a linear 
combination of n experts, which can increase the model 
capacity by setting higher n values. This improves 
performance with almost no increase in model complexity. 
Inspired by the principle of CondConv, in GDUNet, the 
max-pooling is replaced by CondConv with a kernel size 
of 2 and a stride of 2 in the downsampling stage. The 
experimental results in the Module performance experiment 
section of this paper showed that the performance 
was improved after using CondConv. The formula of 

CondConv is as follows:

( ) ( )( )1 1 n nOutput x a W a W xσ= + + ∗

                                
[1]

where α1... αn are functions of the input learned through 
gradient descent, σ is an activation function, and W1... Wn 
are designed with different convolution kernels.

Inverted bottleneck

GDUNet use large convolution kernels when extracting 
shallow features, and larger receptive fields can capture 
more contextual information, which can allow GDUNet to 
better distinguish the blurred boundaries of breast tumors. 
Large convolution kernels will increase the number of 
parameters, but inverted bottleneck can be a good solution 
to this problem. We refer to ConvNeXt’s (17) inverted 
bottleneck design. To better integrate this module into 
our method, we made some changes to this module, as 
shown in Figure 2. The inverted bottleneck in ConvNeXt 
adopts the transformer (20) style, using fewer activation 
layers and normalization layers. On this basis, we added 
a normalization layer and an activation layer, similar to 
the design of the residual network (ResNet) (21). This 
change could provide an improved network performance. 
As shown in the GDUNet block in Figure 2, the block first 
uses a 7×7 depth-wise convolution (22) that is followed 

Figure 2 Inverted bottleneck. ResNet, residual network;  ConvNeXt, a pure convolutional neural networks model; GDUNet, attention gate and 
dilation U-shaped network; conv, convolution; BN, batch normalization; ReLU, rectified linear unit; LN, layer normalization; Gelu, Gaussian error 
linear unit.
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by a normalization layer and then uses a 1×1 convolution 
to amplify the number of channels by 4 times. After an 
activation layer, a 1×1 convolution kernel is used to reduce 
to the original number of channels. Subsequently, another 
normalization layer is added. Finally, residual connections 
and activation layers are added. Batch normalization (23) is 
the first choice for most vision tasks, and we also use batch 
normalization. Through experiments, it was found that 
batch normalization outperforms layer normalization (24) 
in our network, as the statistical data in the convolutional 
layer may vary greatly in space, so normalization using 
statistical data from the entire layer is usually not ideal. 
For the activation function, we used the rectified linear 
unit (ReLU) (25) function. Since the Gaussian error linear 
unit (Gelu) (26) function requires Gaussian error function 
calculation, the computational complexity is higher than 
that of the ReLU function. Through experiments, we 
found that by using these two functions respectively in 
our method, the final performance result of the ReLU 
function was slightly better. 

AG 

The AG (19) can help the focus attention on salient features 
useful for a specific task and suppress irrelevant regions 
in the input image, which is important for improving 
segmentation performance. For GDNet, instead of the 
traditional AG, we used a larger convolution kernel. Since 
breast ultrasound images have the characteristics of noise 
dispersion and shadow effects, the use of large convolution 
kernels can better capture the contextual information and 
thus avoid mistaking noise as salient features. However, 
using a large convolution kernel will increase the complexity 
of the model. To avoid increased complexity, channel 
information and spatial information are extracted separately. 

In this way, we improve the segmentation performance 
while reducing the complexity.

In Figure 3, XL denotes the feature map corresponding 
to the Lth layer of the encoder, while g denotes the feature 
map of the next layer corresponding to XL in the decoder 
and is the gating signal. Since deeper g indicates that more 
knowledge would be learned by the model, the information 
contained in g can be used as a direction of attention for 
the model to subsequently learn. The space size of g is one-
half that of XL, so g is first upsampled to make the space 
size equal to XL. After upsampling g, we perform a 5×5 
depth-wise convolution of XL and g, respectively. In this 
step, we extract only the spatial information of the features, 
which corresponds to the first step of the depth-wise 
separable convolution. We then concatenate the features 
after g and XL convolution and then use 1×1 convolution 
to extract the channel information. This design can greatly 
reduce the complexity of the AG. Finally, XL is multiplied 
by the calculated attention coefficient α. This is done to 
superimpose the information in g on XL, and the attention 
can be directed to the target area. We applied the modified 
AG to the model, and the performance of the model was 
greatly improved. The computation of the AG can be 
summarized as follows:

( )( )1 5 5y Depthwise Upsample g×=
                                       

[2]

                                                                                         [3]( )2 5 5 ly Depthwise x×=

( )( )( )1 1 1 2,y Conv Relu Cat y y×=
                                         

[4]

( )( )a Sigmoid BN y=
 
                                                       [5]

'l lx a x= ∗                                                                           [6]

where lx  denotes the feature map corresponding to the L layer 
of the encoder, g denotes the feature map of the next layer 

Figure 3 Attention gate. Circles represent multiplication, and arrows indicate the direction of data flow. ReLu, rectified linear unit; Conv, convolution; 
Concat, concatenation.
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corresponding to lx  in the decoder, Depthwise denotes the 
depth-wise convolution, Cat denotes concatenation, BN denotes 
Batch normalization, and α denotes the attention coefficient.

AGDT block

We designed an AGDT block as shown in Figure 4. 
Specifically, in the AGDT block, the input features 
are subjected to a dilated convolution layer after a 3×3 
convolution operation. An enhanced AG is added between 
the 3×3 convolutional features and the input features 
to remove a few irrelevant features in the high-level 
semantic features. Subsequently, this feature is combined 
with the multiscale information obtained with the dilated 
convolution layer. The dilated convolution can obtain a 
larger receptive field according to the setting of different 
dilation rates, with the number of parameters remaining 
unchanged. This dilated convolution layer is superimposed 
by 6 dilated convolutions, and the dilation rates are 1, 2, 4, 
8, 16, and 32. The derived features are salient multiscale 
contextual information. In addition, a ReLU activation 
function is added after each dilated convolution.

Loss function

The combination of loss functions used by our method is 

a combination of binary cross-entropy (BCE) and Dice 
loss. This not only enhances boundary sensitivity but also 
improves overall pixel classification accuracy. The steps for 
calculating the loss function are as follows:

( )( ) ( ) ( )( )
1

1 log 1 log 1
N

loss i i i i
i

BCE y p y y p y
N =

= − ⋅ + − ⋅ −∑
     

[7]

where y is the label, and p(y) is the predicted probability of 
the point being positive for all N points.





2
1loss

y y
Dice

y y

∩
= −

+
                                                         [8]

where y represents the pixel label of the real segmented 
image, and y  represents the pixel category of the segmented 
image predicted by the model.

( ) ( )- 0.5 , ,
loss lossBCE Dice loss lossL BCE y y Dice y y= +                     [9]

where y represents the true value, and y  is the predicted 
value.

Results

Datasets

Two datasets of breast ultrasound images were used. 
Specifically, dataset A is a private dataset consisting of 

Figure 4 AGDT block. The rectangles of different colors in the left figure represent the different convolutional features. AGDT, attention gate 
dilation; Dilated-Conv, dilated convolution; ReLU, rectified linear unit.
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878 breast ultrasound images of women aged 25–76 years,  
with a resolution of 775×580. The images contain tumors 
of different sizes, and each image contains only one 
tumor. The ultrasound machines used were the Logiq 
E9 (GE HealthCare, Chicago, USA) and the Epiq 5 
(Philips, Amsterdam, Netherlands). Two experienced 
radiologists participated in the delineation of the ground 
truth. Since the noise area of the original dataset is too 
large and the background area and region of interest 
(ROI) are unbalanced, we cropped dataset A between the 
background area and the target area according to a ratio 
close to 1:1. In all experiments, we used preprocessed 
dataset A.

Dataset B is a public breast ultrasound dataset published 
by Zhang et al. (27) The dataset consists of 562 breast 
ultrasound images of women aged 26–78 years, with 
resolutions of 550×357, 555×490, 546×360, and 600×480 
and each image containing only one tumor. The images 
were acquired and processed by the Second Affiliated 
Hospital  of  Harbin Medical  University,  Qingdao 
University Hospital, and the Second Hospital of Hebei 
Medical University using a variety of ultrasound devices: 
Vivid 7, EUB-6500 (Hitachi, Tokyo, Japan), iU22 (Philips), 
and Acuson S2000 (Siemens Healthineers, Erlangen, 
Germany). Four experienced radiologists participated in 
the ground truth delineation. More details on dataset B 
and how the final ground truth was obtained can be found 
in the literature (27).

To analyze the variability between dataset A and 
dataset B, we used the gray-level co-occurrence matrix 
method to extract the statistical features of difference 
entropy, sum entropy, correlation, sum average, difference 
average, difference variance, sum variance, angular second 
moments, entropy, contrast, homogeneity, and variance 
from each image as the statistics to be analyzed. The Mann-
Whitney test was then used to obtain the P value of each 
statistical feature. As can be seen from Table 1, the obtained 
P values were all less than 0.05, indicating a significant 
statistical difference between dataset A and dataset B. Our 
segmentation method showed excellent segmentation 
results on both datasets, indicating that our segmentation 
method has a strong generalization ability.

Implementation details

The GDUNet was trained on the two datasets using the 
Adam optimizer. The two datasets were randomly split 
into training, validation, and test sets in a ratio of 3:1:1. 
The learning rate, batch size, and training epoch were set 
to 0.001, 10, and 300, respectively. All input images were 
resized to 256×256, and a cosine annealing learning rate 
scheduler with a minimum learning rate of 0.0001 was 
used. To make the experimental results more convincing, a 
fivefold cross-validation experimental method was used on 
the two datasets and was carried out a GTX 1080 Ti GPU 
(Nvidia, Santa Clara, USA).

Module performance experiment 

To better explore the impact of each module on network 
performance, we designed experiments to test the 
performance of each module. In the experiments, the 
modules were filled with regular convolutional layers when 
removing the tokenized MLP or inverted bottleneck. 
When removing the CondConv, the a max-pooling layer 
was used. AG and AGDT could be removed directly 
without filling. We measured the segmentation results 
of each method using the Dice similarity coefficient 
(DSC), as shown in the Table 2. It was found that if each 
module was removed individually, the performance of 
the GDUNet was reduced. Thus, each module played 
an important role in the segmentation results of the 
model. Specifically, after the inverted was replaced with a 
bottleneck with a conventional convolutional layer alone, 
the segmentation performance decreased the most, and 
the DSC decreased by 2.7% and 1.9% on dataset A and 

Table 1 Statistical differences between the two datasets

Texture feature P value

Differential entropy 3.27e−04

Correlation 4.02e−04

Sum average 2.59e−84

Difference average 1.35e−08

Difference variance 2.05e−12

Sum variance 9.13e−62

Sum entropy 9.14e−62

Angular second moment 2.70e−34

Contrast 6.54e−17

Entropy 5.17e−47

Homogeneity 5.22e−07

Variance 4.28e−90
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dataset B, respectively. When the tokenized MLP alone 
was removed, the segmentation performance of the model 
decreased the least, by 0.3% and 0.5% on the two datasets, 
respectively. It can be seen from the values in Table 2 that 
the decrease in DSC in dataset A was basically greater than 
that in dataset B. This may be due to significant differences 
between dataset A and dataset B. The breast cancer 
ultrasound images included in dataset A are relatively 
complex, with different tumor sizes and locations, making 
target segmentation difficult. Each module we introduced 
plays an important role in the complex dataset, so when a 
module is missing, there will be a significant difference in 
the DSC. The images in dataset B have relatively similar 
feature distributions, the tumor location is often located 
in the center of the image, and the tumor size changes are 
relatively symmetrical. Therefore, dataset B was found to 
be more conducive to target segmentation, with a higher 
probability of obtaining a high DSC, so the improvement 
was relatively limited.

Comparison with state-of-the-art methods

To demonstrate the effectiveness of our method, we 
compared the performance of GDUNet with those of 
recent widely used medical image segmentation methods, 
including UNet (6), UNet++ (28), attention UNet (29), 
Residual-Dilated-Attention-Gate-UNet (RDAU) (11), an 
asymmetry encoder-decoder architecture using Ghost-
Net and U-Net (ghost UNet) (30), semantic guided UNet 
(SGUNet) (31), medical transformer (MedT) (13), dilate 
transformer (DT) (32), MLP-based Rapid Medical Image 
Segmentation Network (UNeXt) (15), and ConvUNeXt (33).  

The main performance index results included DSC, 
area error ratio (AER), Hausdorff error (HE), and 
mean absolute error (MAE) (Table 3). It was found that 
GDUNet outperformed UNet, attention UNet, and 
UNet++—which are classical medical image segmentation 
methods—in all indicators on both datasets. Furthermore, 
GDUNet demonstrated significant advantages over the 
transformer-based MedT and DT. ConvUNeXt achieved 
a good performance in breast lesion segmentation among 
the segmentation methods compared. Compared to 
ConvUNeXt, GDUNet had a 1.4% increase and 1.6% in 
DSC and an 8.17 and 9.97 reduction in HE for datasets 
A and B, respectively. This indicates that GDUNet better 
reduced boundary errors. Meanwhile, the AER of the 
GDUNet on datasets A and B was 0.4% and 1.9% lower 
than that of ConvUNeXt, respectively, while the MAE 
of the GDUNet on was 10.61 and 4.53 lower than that 
of ConvUNeXt, respectively. In Table 4, we provide the 
confidence interval results for both datasets, and all the 
findings reported in Table 3 fall within the corresponding 
confidence intervals. 

To better demonstrate the good performance of 
GDUNet, we extracted the visual segmentation results of 
lesions with different characteristics on the two datasets 
for display (Figure 5). As apparent in the first row of the 
two dataset images presented in Figure 5, many methods 
performed poorly in the segmentation of small breast 
tumors, and the segmentation results included missed 
detection and false detection. As can be seen in the first row 
of dataset B in Figure 5, ConvUNeXt and UNeXt could not 
detect small breast tumors; moreover, in the second row 
of both datasets, except for ConvUNeXt and GDUNet, 
the other methods produced results for large lesions that 
were undersegmented; the third row in both datasets shows 
that GDUNet also demonstrated a good performance in 
irregular breast ultrasound images. The proposed method 
can effectively improve the segmentation accuracy of tumors 
with blurred boundaries. As shown in the fourth row in 
both datasets in Figure 5, for lesions without clear contours, 
many methods failed to predict tumor margins well, 
showing both undersegmentation and oversegmentation. 
The segmentation results suggest that compared to 
the other methods, GDUNet possesses considerable 
advantages. According to the overall visualization results, 
GDUNet achieved the best segmentation results.

The paper by Zhang et al. (27) presents a benchmark 
for breast ultrasound image segmentation, dataset B, 
and compares the performance of 16 breast ultrasound 

Table 2 Module performance experiment

Network Dataset A Dataset B

GDUNet w/o token 0.803 0.920

GDUNet w/o AGDT 0.799 0.918

GDUNet w/o inverted 0.779 0.906

GDUNet w/o AG 0.791 0.919

GDUNet w/o CondConv 0.795 0.918

GDUNet 0.806* 0.925*

*, best result in the table. GDUNet, attention gate and dilation 
U-shaped network; w/o, without; token, tokenized multilayer 
perceptron; AGDT, attention gate dilation; inverted, inverted 
bottleneck; AG, attention gate; CondConv, conditionally 
parameterized convolutions. 
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Table 3 Performance comparison with convolutional and transformer baselines 

Method
Dataset A Dataset B

DSC AER HE MAE DSC AER HE MAE

UNet 0.730±0.008 0.632±0.036 97.75±1.87 54.99±1.37 0.840±0.007 0.378±0.032 53.91±2.55 24.60±1.57

UNet++ 0.704±0.008 0.702±0.037 102.48±1.93 65.18±1.49 0.849±0.006 0.310±0.019 83.89±3.07 42.83±1.94

Att UNet 0.703±0.008 0.654±0.032 92.25±1.99 44.23±1.35 0.872±0.005 0.245±0.010 72.05±2.93 33.30±1.71

RDAU 0.770±0.008 0.537±0.036 80.96±2.02 34.93±1.17 0.885±0.005 0.223±0.010 54.62±2.35 21.17±1.11

Ghost UNet 0.711±0.009 0.604±0.032 89.92±1.97 51.05±1.42 0.884±0.006 0.207±0.007 39.98±2.22 13.14±0.89

SGUNet 0.782±0.007 0.499±0.030 94.25±2.03 55.33±1.49 0.898±0.004 0.195±0.007 66.35±2.83 28.40±1.47

MedT 0.729±0.008 0.556±0.024 90.10±1.83 51.65±1.34 0.889±0.005 0.219±0.010 45.74±2.33 17.71±1.19

DT 0.769±0.007 0.588±0.036 83.50±1.99 35.74±1.18 0.889±0.004 0.224±0.009 38.89±2.03 14.48±1.05

UNeXt 0.769±0.008 0.546±0.037 80.67±2.09 35.11±1.23 0.902±0.004 0.189±0.007 29.58±1.76 10.71±0.91

ConvUNeXt 0.792±0.008 0.481±0.037 81.94±2.17 39.07±1.37 0.909±0.006 0.163±0.007 27.54±1.84 9.18±0.88

GDUNet 0.806±0.007* 0.477±0.036* 73.77±2.08* 28.46±1.05* 0.925±0.004* 0.144±0.005* 17.57±1.05* 4.65±0.41*

The data in the table are presented as the mean ± standard deviation. *, best result in the table. DSC, Dice similarity coefficient; AER, 
area error ratio; HE, Hausdorff error; MAE, mean absolute error; UNet, U-shaped network; Att UNet, attention UNet; RDAU, Residual-
Dilated-Attention-Gate-UNet; Ghost UNet, Ghost-Net and U-Net; SGUNet, semantic-guided UNet; MedT, medical transformer; DT, dilate 
transformer; GDUNet, attention gate and dilation U-shaped network.

Table 4 Confidence intervals of the comparison experiment 

Method
Dataset A Dataset B

DSC AER HE MAE DSC AER HE MAE

UNet 0.715, 0.747 0.562, 0.703 94.10, 101.41 52.30, 57.69 0.823, 0.850 0.322, 0.448 48.91, 58.91 21.53, 27.67

UNet++ 0.688, 0.720 0.631, 0.774 101.72, 109.31 62.30, 68.16 0.839, 0.863 0.268, 0.342 77.87, 89.89 39.02, 46.62

Att UNet 0.686, 0.721 0.591, 0.719 88.49, 96.27 41.70, 46.99 0.861, 0.883 0.225, 0.264 66.40, 77.89 30.00, 36.71

RDAU 0.754, 0.785 0.467, 0.609 77.01, 84.91 32.64, 37.22 0.875, 0.895 0.205, 0.245 43.20, 52.39 15.87, 20.22

Ghost UNet 0.675, 0.713 0.584, 0.711 86.20, 93.92 48.17, 53.75 0.873, 0.895 0.194, 0.221 35.82, 44.16 11.39, 14.88

SGUNet 0.768, 0.795 0.439, 0.559 90.28, 98.23 52.40, 58.26 0.889, 0.906 0.182, 0.207 60.81, 71.88 25.51, 31.28

MedT 0.715, 0.744 0.508, 0.604 86.523, 93.68 49.02, 54.28 0.879, 0.898 0.200, 0.238 41.16, 50.31 15.38, 20.06

DT 0.755, 0.782 0.518, 0.659 79.61, 87.39 33.43, 38.06 0.884, 0.898 0.201, 0.237 34.96, 42.93 12.44, 16.57

UNeXt 0.752, 0.784 0.475, 0.619 76.59, 84.77 32.70, 37.50 0.894, 0.910 0.175, 0.203 26.15, 33.05 8.95, 12.49

ConvUNeXt 0.776, 0.807 0.409, 0.556 77.67, 86.16 36.36, 41.74 0.898, 0.920 0.148, 0.176 23.93, 31.13 7.46, 10.90

GDUNet 0.792, 0.821 0.406, 0.547 69.70, 77.86 26.41, 30.50 0.918, 0.931 0.135, 0.154 15.51, 19.63 3.86, 5.45

The numbers are the 95% confidence intervals for qualitative segmentation results (lower limit, upper limit). DSC, Dice similarity coefficient; 
AER, area error ratio; HE, Hausdorff error; MAE, mean absolute error; UNet, U-shaped network; Att UNet, attention UNet; RDAU, Residual-
Dilated-Attention-Gate-UNet; Ghost UNet, Ghost-Net and U-Net; SGUnet, semantic-guided UNet; MedT, medical transformer; DT, dilate 
transformer; GDUNet, attention gate and dilation U-shaped network.
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segmentation methods on this dataset. In addition to 
the comparison with the reproduced segmentation 
methods in Table 3, GDUNet was also compared with 
the segmentation results of each segmentation method 
listed in Zhang et al.’s a paper (27) for public dataset B 
(Table 5). It can be concluded that GDUNet’s DSC, AER, 
and HE were the highest, although the MAE was less 
distinguished, with a difference of only 0.8 from the lowest 
MAE. In addition, we extracted four classical models 
from Table 5 and performed a fivefold cross-validation 
experiment on dataset A. The results in Table 6 indicated 
these four models performed worse on dataset A than 
on dataset B, indicating that dataset A is more complex 
than is dataset B. Additionally, GDUNet had the best 
performance.

Efficiency analysis

To understand the segmentation efficiency of the models, we 
separately calculated the number of parameters, inference 
time, and computational complexity [in one billion floating-
point operations per second (GFLOPs)] for each model. 
The results are shown in Figure 6. GDUNet’s GFLOPs 
and inference time were 0.69 and 8.50, respectively, which, 
among those of all compared models, were only higher 
than those of UNeXt. The parameter set of GDUNet was 
3.42, which is higher than those of MedT and UNeXt. 
This is mainly due to the ADGT block, which introduces 
multiple convolution operations to improve performance. 
Although MedT had a small number of parameters, its 
GFLOPs and inference time were much higher than 

Figure 5 Visual segmentation comparison of the UNet, UNet++, Att UNet, RDAU, Ghost UNet, SGUNet, MedT, DT, UNeXt, ConvUNeXt and 
GDUNet models. UNet, U-shaped network; Att UNet, attention UNet; RDAU, Residual-Dilated-Attention-Gate-UNet; Ghost UNet, Ghost-
Net and U-Net; SGUNet, semantic-guided UNet; MedT, medical transformer; DT, dilate transformer; GDUNet, attention gate and dilation 
U-shaped network.

Dataset A

Image   Ground turth    UNet         UNet++      Att UNet       RDAU    Ghost UNet   SGUNet        MedT           DT            UNeXt    ConvUNeXt   GDUNet

Image   Ground turth    UNet         UNet++      Att UNet       RDAU    Ghost UNet   SGUNet        MedT           DT            UNeXt    ConvUNeXt   GDUNet

Dataset B
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those of GDUNet. Compared to ConvUNeXt, GDUNet 
reduced the number of parameters by 0.08, reduced the 
computational complexity by a factor of 10, and improved 
the inference speed by a factor of 4. In comparison with the 
classic UNet, the number of parameters was 10 times less, 
the computational complexity was 58 times less, and the 
inference speed was doubled. 

Overall, GDUNet outperformed all other models in terms 
of segmentation performance. In terms of segmentation 
efficiency, GDUNet was second only to UNeXt. GDUNet 
had high efficiency and quality segmentation results, which 
are valuable features for CAD systems.

Weight analysis of BCE and Dice loss

The weights of BCE and Dice loss were set to 0.5 and 1, 
respectively, in UNeXt’s loss function. We use this loss 
function setting as well. Since the boundaries of lesions 
in breast ultrasound images are blurred, giving more 
weight to Dice loss can help to improve the sensitivity to 
boundary pixels of the model. For this reason, we designed 
exploratory experiments for weighting coefficients on 
dataset A. The experimental results are shown in Table 7. 
It can be seen that when the BCE weight was 0.5 and the 
Dice loss weight was 1, the quantitative result of GDUNet 
reaches the best, although the MAE index is a bit higher.

Table 5 Comparison with the state-of-the-art methods in dataset B

Network DSC AER HE MAE

FCN-AlexNet (34) 0.84 0.39 25.1 7.1

SegNet (35) 0.89 0.22 21.7 4.5

CE-Net (36) 0.90 0.22 21.6 4.5

SCAN (37) 0.90 0.20 26.9 4.9

DenseU-net (38) 0.88 0.25 25.3 5.5

MultiResUNet (39) 0.91 0.19 18.8 4.1

STAN (40) 0.91 0.18 18.9 3.9*

Fuzzy FCN (41) 0.92 0.14* 19.8 4.2

Huang et al. (42) 0.93* 0.15 26.0 4.9

GDUNet 0.93* 0.14* 17.6* 4.7

*, best result in the table. DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff error; MAE, mean absolute error; FCN, 
fully convolutional network; SegNet, deep fully convolutional neural network architecture for semantic pixel-wise segmentation; CE-Net, 
context encoder network; SCAN, semantic context-aware network; MultiResUNet, the U-Net Architecture for Multimodal Biomedical 
Image Segmentation; STAN, small tumor-aware network; GDUNet, attention gate and dilation U-shaped network.

Table 6 Extended experiments for dataset A

Network DSC AER HE MAE

SegNet 0.71 0.66 90.6 52.5

CE-Net 0.80 0.51 75.1 31.1

DenseU-net 0.76 0.62 91.1 45.3

MultiResUNet 0.74 0.79 114.2 70.8

GDUNet 0.81* 0.48* 73.8* 28.5*

*, best result in the table. DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff error; MAE, mean absolute error; 
SegNet, deep fully convolutional neural network architecture for semantic pixel-wise segmentation; CE-Net, context encoder network; 
MultiResUNet, the U-Net Architecture for Multimodal Biomedical Image Segmentation; GDUNet, attention gate and dilation U-shaped 
network.
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Figure 6 Comparison chart of the efficiency of GDUNet and the other methods. From left to right, the value of the ordinate runs from high to low. 
Parameters (M), number of parameters; UNet, U-shaped network; Att UNet, attention UNet; RDAU, Residual-Dilated-Attention-Gate-UNet; 
Ghost UNet, Ghost-Net and U-Net; SGUNet, semantic-guided UNet; MedT, medical transformer; DT, dilate transformer; GDUNet, attention 
gate and dilation U-shaped network; GLOPs, one billion floating-point operations per second.
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Channel number analysis

To reduce parameters, we attempted to decrease the 
number of channels. As shown in Table 8, we conducted 
experiments with different channel number settings on the 
single fold of dataset A. Finally, we used the settings of 16, 
32, 128, 160, and 256 channels in UNeXt. The number 
of channels in the decoder stage changes to accommodate 
the dilated convolutional modules between the encoder 
and decoder. According to the experimental results, 
adding channels did not improve performance but instead 
increased computational overhead. Setting a lower number 
of channels will result in insufficient feature representation 
and therefore performance degradation.

Discussion

For segmentation networks, enlarging the receptive 
field and attention mechanism are two commonly used 
optimization strategies. We adopted a larger convolution 
kernel and used dilated convolution to enlarge the receptive 
field of the model. To improve attention gating, we used 
channel and spatial separation methods. In addition to 
improving model performance, we also adopted methods 
such as reducing the number of channels and introducing 
tokenized MLPs to reduce the number of parameters and 
computational complexity of the model in order to make 
the model more clinically applicable. The dataset used in 
this study only included two-dimensional breast ultrasound 

Table 7 Results obtained from using varying weight coefficients in dataset A

Loss DSC AER HE MAE

0.5 × BCE + 0.5 × Dice loss 0.804 0.485 77.91 27.64

0.5 × BCE + Dice loss 0.814* 0.395* 75.73* 30.13

BCE + 0.5 × Dice loss 0.801 0.454 76.41 27.57*

1.5 × BCE + 0.5 × Dice loss 0.803 0.557 82.47 32.00

0.5 × BCE + 1.5 × Dice loss 0.805 0.509 79.76 30.46

*, best result in the table. BCE, binary cross entropy; DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff error; MAE, 
mean absolute error.
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images. As there are three-dimensional breast ultrasound 
images in the medical field, we will examine the application 
of GDUNet in three-dimensional image breast ultrasound 
segmentation in the future.

Conclusions

We propose the GDUNet, a lightweight and efficient 
CNN-based breast ultrasound image segmentation 
method. GDUNet uses an improved inverted bottleneck 
and tokenized MLP blocks to form an encoder and uses 
CondConv for downsampling. To further improve the 
performance, the AGDT block and the AG are included 
to enhance the segmentation performance of the model. 
The experimental results showed that GDUNet not only 
has high efficiency but also achieved a state-of-the-art 
segmentation performance on two breast cancer ultrasound 
datasets.
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