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Abstract

Type II DNA topoisomerases are essential enzymes that catalyze topological rearrangement of double-stranded DNA using
the free energy generated by ATP hydrolysis. Bacterial DNA gyrase is a prototype of this family and is composed of two
subunits (GyrA, GyrB) that form a GyrA2GyrB2 heterotetramer. The N-terminal 43-kDa fragment of GyrB (GyrB43) from E. coli
comprising the ATPase and the transducer domains has been studied extensively. The dimeric fragment is competent for
ATP hydrolysis and its structure in complex with the substrate analog AMPPNP is known. Here, we have determined the
remaining conformational states of the enzyme along the ATP hydrolysis reaction path by solving crystal structures of
GyrB43 in complex with ADP?BeF3, ADP?Pi, and ADP. Upon hydrolysis, the enzyme undergoes an obligatory 12u domain
rearrangement to accommodate the 1.5 Å increase in distance between the c- and b-phosphate of the nucleotide within
the sealed binding site at the domain interface. Conserved residues from the QTK loop of the transducer domain (also part
of the domain interface) couple the small structural change within the binding site with the rigid body motion. The domain
reorientation is reflected in a significant 7 Å increase in the separation of the two transducer domains of the dimer that
would embrace one of the DNA segments in full-length gyrase. The observed conformational change is likely to be relevant
for the allosteric coordination of ATP hydrolysis with DNA binding, cleavage/re-ligation and/or strand passage.
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Introduction

Type II DNA topoisomerases are essential enzymes that

catalyze topological rearrangement of double-stranded DNA

(dsDNA) to maintain chromosomes in an appropriate state. In

particular, DNA gyrase introduces negative supercoils into

covalently closed dsDNA molecules using the free energy

generated by ATP hydrolysis. Bacterial DNA gyrase is a prototype

of this family composed of two subunits (GyrA, GyrB) and forms a

(GyrAGyrB)2 dimer of around 400 kDa.

The dimerization interface is composed of three contact areas

or gates (N-, DNA-, C-gate) that open-up successively and in a

coordinated fashion to allow DNA passage (Fig. 1). The current

view on the enzymatic mechanism is the following two-gate

mechanism (reviewed in [1–5]). The enzymatic cycle starts by the

binding of a segment of double-stranded DNA (gate-segment, G)

to the DNA-gate, followed by the trapping of another segment

(transfer-segment, T) through the ATP-actuated closure, i.e.

dimerization, of the N-gate. Subsequent cleavage of the G-

segment and opening of the DNA-gate allows transfer of the T-

segment through the gate. Finally, the G-segment gets resealed

and the T-segment is released by opening of the C-gate.

The GyrB subunit is comprised of three domains: the N-

terminal ATPase domain (GHKL family), the transducer domain,

and the C-terminal TOPRIM domain. First insight into the

detailed structure of bacterial topoisomerases was obtained with

the crystal structure of a 43 kDa N-terminal fragment of E. coli
GyrB (GyrB43) that comprises the ATPase domain and the central

transducer domain [6]. The structure showed a tight dimer with

contacts mainly mediated by the ATPase domains (N-gate). The

dimer delimits a central hole with a diameter of 20 Å, large

enough to accommodate double-stranded DNA (Fig. 1).

The structure was determined in the presence of the substrate

analog AMPPNP that is bound to the canonical site of the GHKL-

type ATPase domain, but also interacts with the QTK loop of the

transducer domain and an N-terminal "brace" of the other subunit

of the dimer. Latter interaction explains why only the dimeric

form of the GyrB43 fragment is competent for ATP hydrolysis as

evidenced by the greater than first-order dependence of the

reaction-rate on enzyme concentration [7] and how the presence
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of ATP stabilizes the closed conformation of the N-gate in GyrB

[8].

The different steps of DNA gyrase action have to be tightly

coordinated. In particular, G-segment cleavage and translocation

of the T-segment should occur only after N-gate closure to prevent

non-productive DNA cleavage and to ensure unidirectional

segment translocation. Thus, not surprisingly, it could be shown

that e.g. ATP hydrolysis is stimulated by the presence of DNA [9].

The question arises whether the ATP hydrolysis event per se, i.e.

the post-hydrolysis state prior to product release, can be sensed by

the enzyme to facilitate or even energize the next catalytic step. In

this context it is noteworthy that the substrate is found deeply

buried in the GyrB active site without an obvious exit route for the

products [6].

Structures of type II topoisomerases have been determined

previously for archael topoVI-B’ in complex with various

nucleotides [10,11] and for human topoII (htopoII) in complex

with AMPPNP and ADP [12], highlighting some of the

structural changes occurring along the ATP hydrolysis

pathway. Both studies discuss the central role of the conserved

lysine (K337 in E. coli GyrB) that is proposed to sense the

nucleotide state and to relay this information to the center of

the enzyme.

Here we report the structures of bacterial GyrB43 in complex

with (i) the pre-hydrolysis analog ADP?BeF3, (ii) the post-hydrolysis

ADP?Pi and (iii) the product ADP. Compared to the AMPPNP

complex structure [6,13], the post-hydrolysis state, i.e. the ternary

complex of GyrB43 with ADP and Pi, shows a substantial domain

reorientation, the significance of which is discussed in the context

of full-length DNA gyrase.

Materials and Methods

Cloning
The gene of E. coli gyrB (residues 1-392) was amplified by PCR

from E. coli genomic DNA using the primer set prFVS107/

prFVS114 (59-GGGAATTCCATATGCATCACCATCACCAT-
CACTCGAATTCTTATGACTCCTCCAG-39 and 59-CGA-

CCTCGAGTTAGGTCATTTCACGCGCGCGACG-39). The

DNA sequence corresponding to the N-terminal His6-tag is in

italics. The amplified DNA fragment was then simultaneously

digested with NdeI and XhoI and ligated in the MCS2 of the

pRSFDuet-1 vector (Novagen) digested with the same restriction

enzymes, resulting in plasmid pFVS0109.

Protein expression, extraction and purification
The pFVS0109 plasmid was transformed into Ca2+-competent

E. coli BL21 (DE3). Cells were grown at 37uC in LB medium

supplemented with 50 mg/mL of kanamycin and 0.1% glucose to

an OD600 of 0.6 before induction with 500 mM isopropyl 1-thio-

D-galactopyranoside (IPTG) for 5 hours at 37uC. Cells were then

harvested by centrifugation. Cells containing overexpressed

GyrB43 were resuspended in lysis buffer containing 50 mM Tris

pH 7.5, 1 mM EDTA, 5 mM DTT and 5 mM imidazole and

disrupted using French press. Cell debris were pelleted by

ultracentrifugation at 200 000 g and the supernatant was applied

to two 1 mL HisTrap column (GE Healthcare) plugged in series.

The protein of interest was eluted with a gradient of elution buffer

containing 50 mM Tris pH 7.5, 1 mM EDTA, 5 mM DTT and

500 mM imidazole. The eluted fractions containing GyrB protein

were then loaded on a 5 mL HiTrap Q column (GE Healthcare)

pre-equilibrated with loading buffer (50 mM Tris pH 7.5, 1 mM

Figure 1. Domain architecture of E. coli DNA gyrase and model of DNA gyrase mechanism. (a) Domain architecture of E. coli DNA gyrase.
GyrB is composed of an ATPase (yellow), a transducer (orange) and a toprim (red) domain. GyrA is composed of a winged-helix (WHD, blue), a tower
(blue), a coiled-coil (light purple) and a b-pinwheel (b-PW, purple) domain. (b) A double-stranded DNA segment (G-segment) is captured at the DNA-
gate, the N-gate is open to allow access of the T-segment. (c) Upon ATP binding, the ATPase domains dimerize and the T-segment gets trapped. (d)
This is followed by ATP hydrolysis, G-segment cleavage, DNA-gate opening and T-segment translocation. The domain colored in light-grey represents
the transducer domain in the preceding orientation. The mechanistic details of this step are not clear, in particular whether prior to Pi release the
enzyme conformation is changed and how ATP hydrolysis and DNA passage are coordinated. For clarity, the coiled-coil and b-pinwheel domains of
GyrA are omitted in (b-d). Adopted from references [3,5].
doi:10.1371/journal.pone.0107289.g001
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EDTA, 5 mM DTT). Proteins were eluted with a gradient of

elution buffer containing 50 mM Tris pH 7.5, 1 mM EDTA,

5 mM DTT and 1 M NaCl. The protein was then concentrated

and injected on a Superdex 75 16/60 gel filtration column (GE

Healthcare) equilibrated with 50 mM Na-phosphate pH 7.2,

1 mM EDTA and 5 mM DTT. The different batches of pure

protein leading to the crystallization of GyrB in complex with

ADP?Pi, ADP?BeF3 or ADP were concentrated to 36 mg/mL.

GyrB43/nucleotide complexes crystallization
Crystals were obtained at 20uC using the sitting-drop vapour

diffusion method after mixing 0.2 mL protein solution with 0.2 mL

reservoir solution equilibrating against a reservoir of 80 mL. For

crystallization of GyrB43 in complex with ADP?Pi, the protein

solution was prepared by incubating GyrB with a 15 fold molar

excess of ATP and MgCl2. This allowed the ATPase reaction to

start and produce the reaction products: ADP?Pi. GyrB43 in

complex with ADP?Pi crystallized after one week in 0.1 M tri-

ammonium citrate pH 6.5 and 25% (w/v) PEG 2000. Crystals

were soaked in the reservoir solution supplemented with 20%

glycerol for cryoprotection. The protein sample leading to the

crystallization of GyrB43 in complex with ADP was prepared

similarly to the ADP?Pi sample. GyrB43 in complex with ADP

crystallized after a week in 10% (w/v) PEG 20000, 20% (v/v) PEG

MME 550, 0.02 M each carboxylic acid, 0.1 M bicine/Trizma

base pH 8.5 (Morpheus screen [14]). For crystallization of GyrB43

in complex with ADP?BeF3, a prerequisite is the formation of a

stable ADP?BeF3 complex. This was achieved by incubating

20 mM ADP with 500 mM NaF and 100 mM BeCl2 for 16 hours

at 4uC [8]. The protein solution was prepared by incubating

GyrB43 with a 15 fold molar excess of ADP?BeF3 and MgCl2.

Crystals grew after a week in 0.2 M NaF, 0.1 M Bis-Tris propane

pH 6.5 and 20% (w/v) PEG 3350. Crystals were soaked in the

reservoir solution supplemented with 20% glycerol for cryoprotec-

tion. All crystals were then flash frozen in liquid nitrogen and

stored until data collection.

Data collection, processing, structure determination and
refinement

Diffraction data were collected at the Swiss Light Source

(Villigen, Switzerland) at 100 K and processed using XDS [15]

and scaled either with XSCALE [15] or aimless [16]. GyrB43

structures were solved by molecular replacement using the

previously published structure of the 43-kDa N-terminal fragment

of GyrB (PDB entry 1EI1 [13]) as search model using Phaser [17].

Several rounds of iterative model building and refinement were

performed using Coot [18] and Refmac5 [19] or PHENIX [20].

5% of the data were excluded from refinement and used for cross-

validation. For the remodeling of the sulfate and asparagine side

chain of human topoIIA in complex with ADP?SO4 (PDB code:

1ZXN), the re-refined model was obtained from the PDB_REDO

databank [21]. Iterative model building and refinement was

performed as described above. The geometry of the final model

was assessed using MolProbity [22] showing .99% of the residues

in the core and allowed regions of the Ramachandran plot. Data

collections and refinement statistics are summarized in Table 1

and Table 2, respectively.

Structure analysis
Superimpositions were made using Modtrafo (T. Schirmer

unpublished, http://www.biozentrum.unibas.ch/schirmer/

modtrafo). Root mean square deviation (RMSD) were calculated

using lsqman [23]. To obtain the change in domain orientation,

the different structures were superimposed on their respective

ATPase domains. Then, the respective transducer domains were

superimposed and the resulting rotation matrix analyzed by

Modtrafo in terms of polar angles (V, Q, k) with V, Q defining the

orientation of the rotation axis and k the rotation angle.

Figures were prepared with Dino (A. Philippsen unpublished,

http://www.dino3d.org).

Accession numbers
Coordinates and structure factors have been deposited in the

Protein Data Bank (PDB) with accession numbers 4PRX, 4PU9

and 4PRV for GyrB43?ADP?Pi, GyrB43?ADP?BeF3 and Gyr-

B43?ADP, respectively. The re-refined and corrected coordinates

of htopoII?ADP?SO4 have been deposited in the PDB with

accession number 4R1F.

Results

Overall structures
To understand better the effect of ATP hydrolysis on the

mechanism of GyrB at the atomic level, we aimed to obtain

further structures along the reaction pathway, in particular the

ADP?Pi complex structure representing the post-hydrolysis state. A

43 kDa N-terminal fragment of GyrB from E. coli (GyrB43)

comprising the ATPase and the transducer domain [6,13] was

overexpressed and purified. The fragment was found to be

competent for ATP hydrolysis as assessed by an FPLC based

nucleotide quantification method [24] yielding kcat and Km values

of 2.7?1023 s21 and 0.45 mM, respectively. These values are

similar to those determined previously for this fragment [7,13].

GyrB43 was crystallized in presence of ATP substrate (12.5 mM)

that was expected to get hydrolyzed to ADP and Pi. In addition, a

high background phosphate concentration (50 mM sodium

phosphate buffer) was employed to saturate the c-phosphate

binding site.

Crystals of orthorhombic space group C2221 with one

monomer per asymmetric unit were obtained that diffracted to

1.8 Å. Data collection statistics are given in Table 1. The structure

was solved by molecular replacement using the structure of

GyrB43 (E. coli) in complex with AMPPNP that had been

determined in a different space-group previously (PDB entry 1EI1

[13], Fig. 2a), as search model. The electron density map (2Fo-Fc)

calculated with the molecular replacement phases showed well-

defined density for the ATPase domain, but rather poor density for

the transducer domain. The difference density (Fo-Fc) showed

disagreement in the QTK loop region (334–337), which is the part

of the transducer domain that extends into the ATP-binding

pocket. These observations provided the first indication of a global

conformational change.

Rigid- and jelly-body refinement improved the electron density

in the transducer domain and caused a drop in the Rfree from

46.7% to 35.1%. Subsequently, residues 330–340 comprising the

QTK loop were rebuilt based on a respective omit-map. An ADP

and an adjacent phosphate molecule could be placed unambig-

uously in the map. Final refinement yielded a GyrB43?ADP?Pi

model (Fig. 2b) with Rwork and Rfree values of 16.3% and 20.3%,

respectively (Table 2). The model comprises all residues from 4 to

378 except segment 304–314 at the tip of the transducer domain.

In addition, the structures of GyrB43 in complex with

ADP?BeF3 (2.4 Å) and in complex with ADP (2.0 Å) were solved.

In both cases, plate-like crystals of the same C2221 space-group,

but with cell constants distinct to those of the GyrB43?ADP?Pi

form were obtained. Both structures (Figs. 2c, d) were solved by

molecular replacement using the same search model (PDB entry

Structure of GyrB43 in Complex with ADP?Pi
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1EI1) as for the aforementioned structure of the GyrB43?ADP?Pi

complex. Again, the ligands could be unambiguously modeled into

the Fo-Fc maps. Data collection statistics are given in Table 1.

The quality of the electron density maps allowed the tracing of

95% and 94% of the polypeptide chain except segments 305–315,

389–392 for GyrB43?ADP?BeF3 and 303–315, 387–392 for the

structure of GyrB43?ADP, respectively. Final refinement statistics

are given in Table 2.

Rigid domain reorientations
Structural comparisons of the individual domains of the three

newly determined GyrB43 structures in complex with ADP?Pi,

ADP?BeF3 and ADP with the previously published structure of

GyrB43?AMPPNP reveals that both the transducer and the

ATPase domain structures are virtually identical in all complexes

with root mean square deviation (rmsd) values between 0.32 and

0.57 Å (Table 3). Still, there are considerable conformational

changes between the structures as evident from Fig. 2. In

particular, the hole delimited by the two transducer domains of

the dimer is larger in GyrB43?ADP?BeF3 and GyrB43?ADP?Pi

than in the GyrB43?AMPPNP [6,13] and GyrB43?ADP struc-

tures.

Changes in the arrangement of the two domains are revealed

when superimposing the subunits on their ATPase domains

(Fig. 3), showing large differences in the respective Ca atoms

positions of the transducer domains. The largest rmsd (2.9 Å)

occurs between the ternary GyrB43?ADP?Pi complex and the

restrained GyrB43?AMPPNP substrate complex (Figs. 3a, c and

Table 3). The domain re-arrangement is a relative 12u rotation

(without translation component) with the rotation axis oriented

roughly along the long axis of the monomer and passing through

the domain interface (Fig. 3a). Thereby, the transducer b-sheet

rolls over the C-terminal helix of the ATPase domain (residues 222

to 232). This part of the interface is mostly hydrophobic.

Interacting residues close to the rotation axis are e.g. L197,

I222, V226 of the N-terminal and A255, V322 of the C-terminal

domain. Interestingly, a rotation about approximately the same

axis but by only 6u is needed to superimpose the transducer

domain of GyrB43?ADP?BeF3 onto that of GyrB43?AMPPNP

(Fig. 3b, c). No domain reorientation is observed for the binary

GyrB43?ADP complex. Table 3 shows that upon superposition of

the ATPase domain the transducer domain is still well aligned

(rmsd of Ca positions: 0.8 Å).

To further characterize the long-range structural changes,

intra-subunit distances were measured within the dimer struc-

tures. The changes in the distances are given in Fig. 4. Upon

ATP hydrolysis, the QTK loops (Q335 and T336) of the two

subunits get closer together at the dimerization interface, whereas

residues at the surface of the N-gate chamber (N294, L282) or the

C-terminal end (D377) of the transducer domain considerably

increase their inter-subunit distance (by up to 7 Å) (see morphing

in Movie S1). Accordingly, we define the conformations of the

GyrB43?ADP?BeF3 and the GyrB43?ADP?Pi complex "semi-

open" and "open", respectively (Fig. 2). Latter structural change

may well have relevance for the communication of the ATP

hydrolysis event to the core of the gyrase enzyme (see Discussion).

Crystal packing analysis
In general, variation in protein domain arrangements observed

in non-isomorphous crystals can be due to distinct crystal packing

Table 1. Data collection statistics.

GyrB43 in complex with ADP?Pi GyrB43 in complex with ADP?BeF3 GyrB43 in complex with ADP

X-ray source SLS X06SA (PXI) SLS X06DA (PXIII) SLS X06DA (PXIII)

X-ray detector Pilatus 6M Pilatus 2M Pilatus 2M

Wavelength (Å) 1.0000 0.9793 1.0000

Space group C 2 2 21 C 2 2 21 C 2 2 21

Cell dimensions a, b, c (Å) 77.6, 131.6, 92.4 88.1 143.2 79.9 88.2, 142.5, 79.1

Matthews coefficient (Å3Da21) 2.9 3.1 3.1

Solvent content (%) 57.9 59.3 59.3

Molecules in asymmetric unit 1 1 1

Resolution limits (Å) 46.19–1.80 (1.86–1.80) 44.08–2.40 (2.49–2.40) 75.03–2.00 (2.07–2.00)

Rmerge
{(%) 9.9 (112.5) 7.0 (32.8) 7.1 (59.4)

Rmeas
`(%) 10.4 (115.5) 7.6 (35.1) 7.7 (67.0)

CC 1/2 99.9 (80.5) 99.9 (97.4) 99.9 (93.7)

,I/s(I). 16.4 (2.0) 21.1 (6.1) 21.4 (3.3)

Total reflections 4739415 (429913) 1379915 (139976) 1929676 (179839)

Unique reflections 449052 (49261) 209072 (19966) 309053 (39203)

Wilson B-factor 25.0 36.3 23.5

Multiplicity 10.7 (10.1) 6.9 (7.1) 6.4 (5.6)

Completeness (%) 99.7 (97.4) 99.6 (99.5) 88.2 (95.8)

Mosaicity 0.16 0.46 0.19

Numbers in parentheses belong to the outer shell.
{Rmerge = ghklgi |Ii(hkl) - ,I(hkl).|/ghklgi Ii(hkl), where Ii(hkl) is the observed intensity for a reflection and ,I(hkl). is the average intensity obtained from multiple
observations of symmetry-related reflections.
`Rmeas = ghkl [N/(N-1)]1/2 gi |Ii(hkl) - ,I(hkl).|/ghklgi Ii(hkl), where Ii(hkl) is the observed intensity for a reflection, ,I(hkl). is the average intensity obtained from
multiple observations of symmetry-related reflections and N is the number of observations of intensity I(hkl).
doi:10.1371/journal.pone.0107289.t001
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forces. Therefore, the various crystal packings were analyzed in

detail.

The GyrB43?ADP?Pi crystal form is distinct to that of the

published GyrB43?AMPPNP structure [13], still the molecular

packings are related (Fig. 5). Despite the distinct intra-dimer

distance between the transducer domains (marked by a black dot

in Fig. 5a), GyrB43 dimers are arranged to similar layers (Fig. 5a)

due to a conserved ATPase-transducer domain crystal contact

with an interface of ,490 Å2 (Fig. 5b). Layers are packed onto

each other according to the crystallographic 21 axes along b via
weak ATPase-ATPase contacts mediated by the "base" of this

domain. These interactions are dissimilar between the two crystal

forms with a smaller area in the GyrB43?AMPPNP form (218 Å2)

compared to the GyrB43?ADP?Pi form (387 Å2). Transducer

domains are very weakly or not at all involved in inter-layer

contacts in the AMPPNP or ADP?Pi complex, respectively.

The similarity in packing is reflected in relations between cell

parameters/symmetry elements of the two forms (Fig. 5c). In the

Table 2. Refinement statistics.

GyrB43 in complex
with ADP?Pi

GyrB43 in complex
with ADP?BeF3

GyrB43 in complex
with ADP

htopoII in
complex with ADP?SO4

PDB code 4PRX 4PU9 4PRV 4R1F

Resolution limits (Å) 46.19–1.80 (1.86–1.80) 44.08–2.40 (2.49–2.40) 75.03–2.00 (2.07–2.00) 30.00–2.51 (2.60–2.51)

Rwork * (%) 16.3 (23.7) 21.9 (28.0) 20.7 (38.5) 20.2 (27.6)

Rfree **(%) 20.3 (34.2) 27.3 (35.3) 25.9 (43.3) 24.1 (34.5)

Number of non-hydrogen atoms 39063 29979 39015 129360

macromolecules 29787 29899 29861 129093

ligands 39 32 28 133

solvent 237 48 126 134

Protein residues 363 374 369 1647

R.m.s.d from ideal

Bond lengths (Å) 0.022 0.016 0.018 0.012

Bond angles (u) 2.11 1.97 1.89 1.46

Ramachandran favored *** (%) 98 93 97 95

Ramachandran outliers *** (%) 0.28 0.81 0.27 0.54

Clashscore *** 1.09 4.32 2.13 5.35

Average B values (Å2) 30.3 42.2 29.5 64.3

macromolecules 30.0 42.4 29.6 64.5

ligands 21.3 30.0 22.3 56.0

solvent 36.1 40.3 29.8 55.1

Numbers in parentheses refer to the outer shell.
* Rwork = ghkl|| Fobs| - |Fcalc||/ghkl|Fobs|
** Rfree is the R value calculated for 5% of the data set that was not included in the refinement.
*** Molprobity.
doi:10.1371/journal.pone.0107289.t002

Figure 2. Conformational states of GyrB43 along the ATP hydrolysis reaction path. The various states have been trapped by co-
crystallization with the appropriate nucleotides. The dimeric structures are shown in cartoon representation with semi-transparent molecular surface
overlaid. Subunits are distinguished by a slight variation in colour hue. View perpendicular to the molecular dyad. (a) AMPPNP complex (PDB entry
1EI1 [13]), (b) ADP?Pi complex, (c) ADP?BeF3 complex and (d) ADP complex. Note the distinct opening angles defined by the two transducer domains
with the AMPPNP and ADP complexes in a "closed" conformation, the ADP?BeF3 complex in a "semi-open" and the ADP?Pi complex in "open"
conformation.
doi:10.1371/journal.pone.0107289.g002
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P21212 form (GyrB43?AMPPNP), the molecular dyad symmetry of

GyrB43 is non-crystallographic, whereas, in the C2221 form, it

coincides with the crystallographic 2-fold symmetry along the long

axis (b axis). The positions of local two-fold symmetry axis of

GyrB43?AMPPNP are depicted in green on Fig. 5c. In space

group P21212, the symmetry is broken by a slight shift of the local

symmetry axis along the horizontal direction (Fig. 5c) by 5% to

x = 0.29 compared to its theoretical position at a quarter in space

group C2221.

Concerning the GyrB43?ADP complex, the structure was

obtained in a crystal form unrelated to that of GyrB43?AMPPNP.

Still the two structures are virtually identical (see preceding

section) ruling out any crystal packing artifacts. Finally, the

GyrB43?ADP?BeF3 crystal structure was obtained in a form

isomorphous to that of GyrB43?ADP. Thus, the observed domain

rotation can be attributed to the presence of the BeF3 moiety.

Altogether, one can conclude that the observed distinct relative

orientations of the transducer domains are most likely not due to

any crystal packing artifacts, but should be a direct consequence of

the distinct complexation states of the ATP pocket.

Ligand binding
In the following, we describe in detail the structural changes in

GyrB43 that accompany ATP hydrolysis and are coupled to the

observed domain orientations. As described first for GyrB43 in

complex with AMPPNP [6,13], the nucleotide is deeply buried in

the core of the ATPase domain, with the triphosphate moiety

located at the N-terminal end of helix a6 (residues 118–126). The

active sites of both E. coli GyrB43?AMPPNP complex structures

[6,13] are virtually identical (Fig. S1) although the structure

determined by Brino et al. (PDB code: 1EI1) [13] contains a

mutation (Y5S) in the N-terminal arm. Furthermore, inter-species

comparison between GyrB from E. coli (PDB code: 1EI1) [13] and

Mycobacterium tuberculosis (PDB code: 3ZKB) [25] reveals a very

well conserved ligand-protein interaction network (Fig. S1).

Figures 6a and 7a show that the terminal c-phosphate moiety is

held firmly in place with its terminal oxygens forming a multitude

of H-bonds with main-chain amide nitrogens of the N-terminus of

helix a6 and of the preceding glycine-rich loop. Furthermore, the

phosphate forms a salt-bridge with K337 from the transducer

domain and interacts indirectly via a water molecule with Q335

(also from the transducer domain) and with E42. Q335, in turn,

forms an H-bond with the main-chain carbonyl of residue 26 from

the ATPase domain (Fig. 6a and Fig. S3a). In the unreleased

GyrB43?AMPPNP structure [6], Q335 forms a direct H-bond

with the gamma-phosphate of the ligand and lacks the interaction

with carbonyl 26.

The structure of GyrB43 in complex with ADP and Pi shows the

immediate post-hydrolysis state at high resolution (1.8 Å) (Fig. 6b,

Fig. S3b and Fig. 7b). Although the distance between the b- and

the now liberated distal phosphorus is found significantly increased

by 1.5 Å to 4.5 Å, all protein - ligand interactions are virtually

unchanged compared to the AMPPNP complex. In particular,

despite inverted configuration, two of the oxygens of the

phosphate ion (O2, O3) are bonded to the same main-chain

amide nitrogens 115–116 and 118–119 as the c-phosphate in the

AMPPNP complex (compare panels (a) and (b) of Figure 6). The

phosphate oxygen O3 forms a short H-bond (2.50 Å) with the

terminal phosphate of ADP. In the small GTPase Rab11, an

analogous interaction (between GDP and Pi) has been identified by

crystallography [26] and by FTIR [27]. The phosphate oxygen

O4, the oxygen that evidently has been added upon hydrolysis,

projects out of the binding site and interacts with the d-nitrogen

group of H116. Furthermore, it forms a water mediated H-bond

with Q335 from the transducer domain. The side-chain amino-

group of K337 has moved by 1.0 Å, but is still within H-bonding

distance to the now liberated phosphate group. Strikingly, the

position of the QTK loop (residues 335–337) with respect to the

ligand(s) is considerably distinct in the pre- and post-hydrolysis

structure (by about 2.5 to 3 Å) (Fig. 6). This is due to the relative

rigid-body motion of the transducer domain described previously.

The movement appears to avoid a clash (1.7 Å) that would occur

between the Q335 side-chain in AMPPNP complex position and

the liberated phosphate group (Fig. 6c). Noteworthy, the side-

chain cannot escape sidewise, since its movement is severely

restricted by hydrophobic residues of the ATP lid loop (residues

99–120, shown in surface representation in Fig. 7). Rather, the

glutamine side-chain amide group finds a new favorable position

3.5 Å apart, where it interacts with its counterpart of the other

subunit (Q335*) and main-chain carbonyl 25 of the ATPase

domain.

The atom positions of the ADP?BeF3 ligand in the respective

complex are almost indistinguishable to that of the AMPPNP

ligand (Fig. S2a compared with Fig. 6a and stereoviews in Fig. S3a

compared with Fig. S3c). The substituents of the beryllium atom

are arranged tetrahedrally and the beryllium - b-phosphorus

distance (2.9 Å) is only marginally shorter than the c – b-

phosphorus distance (3.1 Å). The only major difference is the loss

Table 3. Pair-wise fit of GyrB43 domains after superposition of the ATPase domains (regular) or transducer domains (italics).

rmsd (Å) of ATPase domain (20-220)

rmsd (Å) of transducer domain (221–392) AMPPNP ADP?BeF3 ADP?Pi ADP

AMPPNP 0.422 0.389 0.393

ADP?BeF3 0.565 0.328 0.317

1.592

ADP?Pi 0.391 0.423 0.354

2.875 1.579

ADP 0.501 0.369 0.354

0.644 1.519 2.891

The values give the rmsd (Å) of the corresponding Ca positions. When superimposing the ATPase domains dimer, the pairwise rmsd range from 0.46 Å to 0.93 Å.
doi:10.1371/journal.pone.0107289.t003
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of the (indirect) interaction with Q335 due to the aforementioned

transducer domain rotation. Finally, the structure of the

GyrB43?ADP complex is globally (Table 3) and locally (Fig. S2b

and Fig. S3d) almost identical to that of GyrB43?AMPPNP

(Fig. 6a and Fig. S3a). The only difference is the presence of a

water molecule in the approximate position of the absent c-

phosphate. As expected from the unchanged domain organization,

the Q335 side-chain interacts with residue 26 in the same way as

in the AMPPNP complex structure.

Figure 3. Structure comparison of (a) GyrB43?ADP?Pi (magenta) and (b) GyrB43?ADP?BeF3 (violet) with GyrB43?AMPPNP (shown as
a dimer with yellow/grey colour with molecular dyad in black). The structures are superimposed on their ATPase domain (residues 20–220).
The rotation axes for the domain reorientation of the transducer domain with respect to the ATPase domain are indicated. These form an angle of
21.5u and 14.5u with the molecular dyad for GyrB?ADP?Pi and GyrB?ADP?BeF3, respectively. The insets show the QTK loop of the transducer domain
that is rotated relative to the ATPase domain in response to the nucleotide state (dashed lines); Q: Q335, K: K337. (c) Stereoview of the overlay of the
three aforementioned structures.
doi:10.1371/journal.pone.0107289.g003
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In the three newly solved structures, a magnesium ion is found

coordinated by the a- and b-phosphate moieties, one water

molecule and the side-chain of N46. In the ADP?Pi complex, the

coordination of the cation seems somewhat distorted to an

additional weak interaction with the orthophosphate (O4 - Mg2+

distance: 3.1 Å).

Summarizing, the detailed analysis of the ATP binding site

revealed pronounced changes in the vicinity of the c-phosphate

subsite upon ATP hydrolysis. How these relate to the observed

rigid body motions, which in turn seem crucial for the

coordination of gyrase activity will be discussed below.

Discussion

The endergonic process of negative DNA supercoiling is driven

by ATP hydrolysis [28]. ATP binding to the ATPase domain of

the GyrB subunit causes N-gate closing and ensures directional

transfer of the trapped DNA T-segment through the DNA-gate.

Closure of the N-gate may also exert a pinching force that is

mediated by the transducer domains on the trapped DNA segment

to facilitate transfer through the DNA-gate [3]. It has been

demonstrated that ATP hydrolysis occurs sequentially for yeast

topoisomerase II [29]. Hydrolysis of the first ATP molecule is

sufficient for the catalysis of DNA cross-passage, while only upon

hydrolysis of the second ATP molecule the ATPase domains

dissociate to reset the enzyme. In contrast, B. subtilis GyrB

appears to hydrolyze ATP synchronously [30]. Considering the

close homology, a similar mechanism would be expected also for

bacterial DNA gyrase.

Here, we have studied the nucleotide-state dependent confor-

mations of GyrB43 prior to nucleotide release, i.e. prior to ATPase

domain dissociation, with the aim to provide further and detailed

structural information about the coordination of ATP hydrolysis

and strand passage.

Nucleotide-dependent topoisomerase II conformations
The triphosphate-nucleotide complexed conformations of the

ATPase/topoisomerase fragments match closely for the bacterial

[6,13], eukaryotic [12], and archaeal [10,11] structures. It has

been dubbed "restrained" conformation [11] due to the tight

packing of the transducer domain against the ATPase domain and

the multiple interactions of the ligand with the ATP binding site.

These include interactions with the ATP lid loop, the N-terminal

segment of adjacent subunit and the glycine rich loop that tightly

embraces the c-phosphate. Moreover, residues of the QTK loop

(being part the transducer domain) are also engaged in ATP

binding. For the slightly truncated subunit B of archaeal

topoisomerase VI (topoVI-B’), comparison of the restrained

(dimeric) AMPPNP complex with the "relaxed" (monomeric)

nucleotide-free state revealed a relative reorientation of the two

domains [11] giving a first hint for the potential of allosteric

communication via these domains. In the dimeric structures of

topoVI- B’, the ADP, ADP?Pi and the ADP?AlF4 complexes all

showed the restrained conformation [11]. This suggested that ATP

hydrolysis would elicit no large-scale structural response in topoVI.

In contrast, human topoisomerase II shows a semi-open ADP

complex characterized by an 8u outward rotation of the transducer

domain when compared with its restrained/closed AMPPNP

conformation [12] (Fig. S4a). Closer inspection and re-refinement

of the original structure (PDB code: 1ZXN), however, revealed

that the c-phosphate binding subsite is not empty, but occupied by

a sulfate ion in 3 of the 4 molecules of the asymmetric unit (the

active site of the fourth molecule contains a glycerol molecule).

The corrected structure (Fig. S4b) with improved statistics (Rwork/

Figure 4. Quantification of nucleotide induced structural changes within dimeric GyrB43. (a) Inter-subunit distance changes between
symmetry related residues of selected transducer domain Ca-atoms. The changes have been calculated relative to the AMPPNP complex structure,
green bars indicate an increase in distance, red bar indicate a decrease. (b) Cartoon representation of dimeric GyrB43 (ADP?Pi state) with the residues
used for the calculations in (a) indicated. View along the symmetry axis from the C-terminal side.
doi:10.1371/journal.pone.0107289.g004
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Rfree (%) of 20.2/24.1) has been deposited in the Protein Data

Bank (PDB code: 4R1F). Thus, the structure apparently represents

an ADP?SO4 mimic of the post-hydrolysis state and the domain

rotation may well be of functional relevance (Fig. S4, see also

below).

For bacterial gyrase, all of the conformational states along the

ATP hydrolysis pathway are now known. The canonical,

restrained structure is attained both in presence of AMPPNP

[6,13] and ADP, as for topoVI-B’. This indicates that the c-

phosphate is not required to restrain the conformation of the

enzyme. The effect of ATP hydrolysis would then be the

Figure 5. GyrB43 crystal packing of the P21212 (left, GyrB43?AMPPNP complex) and the C2221 (right, GyrB43?ADP?Pi complex)
form. (a) The molecular packing is shown within a slab perpendicular to b and centered at y = 1/4. In both forms, dimers are oriented with their
molecular dyads parallel to b (viewing direction). In the P21212 form (left) the molecular dyad is local (green elliptical symbol), in the C2221 form
(right) the molecular dyad is crystallographic (black symbol). In each case, neighbouring dimers are related by horizontal 2-fold screw-axes. Black
spheres represent the position of residue D377 at the end of the transducer domain (also depicted in Fig. 4b). (b) Details of the major crystal contact
formed in both packings between the transducer domain and the ATPase domain of a symmetry related dimer. (c) Representation of the symmetry
elements, same view as in panel (a). Unit cells are indicated by solid line. With respect to the arrangement of symmetry elements, the dashed
rectangle of the scheme at the right is equivalent to the unit cell of the left scheme. Local symmetry elements are indicated in green.
doi:10.1371/journal.pone.0107289.g005
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enhancement of nucleotide dissociation to reset the enzyme to the

monomeric ATPase state [5]. This is in contrast to, e.g., small

GTPases that act like a "loaded spring" and switch to a relaxed

state upon GTP hydrolysis and phosphate release [31].

Here, we have shown for the bacterial GyrB43 fragment that

there is an additional effect of ATP hydrolysis that occurs prior to

phosphate release and may be of functional significance. The

ADP?Pi post-hydrolysis state is characterized by a virtually

unchanged ATPase dimer structure, but with the transducer

domains reoriented as rigid bodies by 12u relative to their position

in the substrate analog complex (see morphing in Movie S1).

Interestingly, also human topoII may undergo a similar

structural transition as inferred by the comparison of the respective

AMPPNP and ADP?SO4 complexes (Fig. S4). As for bacterial

gyrase, the pivot of the motion is at the center of the interface

between the C-terminal ATPase domain helix and the transducer

b-sheet, but the direction of the rotation axis is different (Fig. S4a).

In contrast, the archaeal topoisomerase IIB enzyme topoVI

exhibits no structural change upon ATP hydrolysis [11]. This can

be attributed to a distinct QTK loop with only the lysine

conserved in this distantly related topoisomerase family (Fig. S5),

see below.

The conformational change observed in GyrB43 can be traced

back to the significant, but small (1.5 Å) increase in the distance

between the b-phosphate and the terminal c-phosphate or

phosphate moiety, respectively. The direct structural consequences

of the shifted c-phosphate position on the local organization of the

binding site and particularly on the position of the QTK loop will

be discussed in the following section.

The central role of the QTK loop in bacterial and
eukaryotic topoisomerases (topoisomerases IIA)

All topoisomerases IIA studied so far adopt the restrained/

closed conformation in complex with tri-phosphate substrate

analogs. In contrast, the post-hydrolysis complex has adopted the

open state, since the phosphate would severely clash with Q335

from the QTK loop of the transducer domain in the restrained

state (Fig. 6c). Close inspection of the restrained structure reveals

that such strain cannot be relieved by a simple side-chain rotation

of the tightly buried glutamine. Also, there is no apparent route for

the phosphate to leave the binding site, since the previously

described tunnel [13] seems too narrow (Fig. 7). Instead, the

observed movement of the entire transducer domain appears

mandatory to accommodate the post-hydrolysis state in which the

side-chain of Q335 forms a new set of H-bonds, i.e. with its

symmetry mate Q335* and a main-chain carbonyl of the ATPase

domain.

Thus, Q335 appears to fulfill a central role by acting as a two-

state switch in response to the nucleotide state of the ATPase

domain. Indeed, an early biochemical in vivo study on E. coli

Figure 6. Structures of the GyrB43 nucleotide binding site as determined for (a) the substrate analog complex GyrB43?AMPPNP
(PDB entry 1EI1 [13]) and (b) the post-hydrolysis complex GyrB43?ADP?Pi with Fo-Fc omit map shown at a contour level of 3.0 s.
Note the distinct interaction of the QTK loop (transducer domain) with the 25–26 loop (ATPase domain) in the two states. The rotation axis for the
relative domain reorientation is shown as straight line (same in Fig. 3a) (c) Stereoview of the superimposition of the structures shown in (a) and (b)
after superposition on their ATPase domain. The exclamation mark indicates the steric clash that would occur between Q335 in the AMPPNP complex
conformation (yellow) with the Pi moiety of the post-hydrolysis state (magenta).
doi:10.1371/journal.pone.0107289.g006
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gyrase [9] had already identified this glutamine as indispensable

for the regulation of ATP hydrolysis by DNA binding. A later

study on a QTK deletion mutant of human topoII again showed

deregulation of the enzyme with DNA cleavage no longer

controlled by the nucleotide state of the enzyme [32].

The equivalent of the QTK loop in archaea carries no

glutamine (Fig. S5) and exhibits a distinct main-chain geometry

[10]. Therefore, the nucleotide-binding pocket is considerably

more spacious. This explains why the post-hydrolysis state can be

accommodated in the restrained conformation and why no ATP

hydrolysis induced structural changes have been observed [11].

Whether also in archaeal topoisomerases the event of ATP

hydrolysis can be signaled to the core of the enzyme remains to be

investigated.

Coordination of ATP hydrolysis and supercoiling activity
Modification of DNA topology needs the coordinated catalysis

of various steps. Therefore, it is not surprising that DNA binding

positively affects ATPase activity as shown for E. coli gyrase [33].

The simplest explanation for this allosteric regulation is that T-

segment binding to the N-gate chamber of gyrase induces a

change in the relative disposition of the two transducer domains

which in turn is coupled to local changes in the ATPase active site

[29]. Since the transducer domain carries the active lysine (K337),

a reorientation of the transducer domain with respect to the

ATPase dimer with the bound ATP substrates should indeed affect

ATP hydrolysis.

Such DNA induced domain reorientation has, to our knowl-

edge, not yet been observed directly. It is likely, however, that for

such communication the in-built domain mobility described in

detail here is exploited again. In the restrained state, the side-chain

amino-group of K337 is in H-bonding distance to the c-phosphate

of the substrate analog and, thus, probably capable to stabilize the

negative charge of the transition state [9]. In the other, open

conformation of the enzyme, the K337 amino-group is pulled out

of the nucleotide pocket by 1.0 Å, probably sufficient to

significantly de-tune the enzyme [9].

Is there signaling also in the opposite direction, from the active

sites of the ATPase dimer to the core of the enzyme? This could

then synchronize ATP hydrolysis with the other catalytic steps.

Here, we have shown by detailed structural studies that prior to

phosphate release a well-defined, obligatory state is attained and

that this post-hydrolysis state is characterized by a significantly

increased distance between the distal transducer ends of the

GyrB43 fragment. We propose that this ATP hydrolysis induced

movement initiates a series of events starting with G-segment

cleavage that would be followed by DNA-gate opening and T-

segment passage. The refined mechanistic scheme for the

enzymatic cycle of full-length gyrase based on the current two-

gate model [2] is shown in Fig. 8. It has been suggested that part of

the free energy generated by ATP hydrolysis may be used to

actively push the T-segment through the DNA gate [3]. This

would indeed be consistent with the observed rigid-body

rearrangement.

Figure 7. Surface representation of GyrB43 demonstrating the deeply buried nucleotide (stick model). View along the narrow tunnel
leading to nucleotide. (a) GyrB43?AMPPNP complex, (b) GyrB43?ADP?Pi complex. The insets show close-ups of the nucleotide sites with the ATP lid
loop (residues 99–120) and the adjacent subunit of the dimer in surface representation (same colour codes as Fig. 2). Note, that upon ATP hydrolysis
glutamine 335 cannot escape "downwards" to relieve a clash with the Pi moiety due to the presence of the ATP lid. Instead the entire transducer
domain moves to the side.
doi:10.1371/journal.pone.0107289.g007
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Supporting Information

Figure S1 Comparison of various GyrB structures in
complex with AMPPNP. (a) Superimposition of the E. coli
GyrB43?AMPPNP structure determined by Wigley et al. (un-

released, personal communication, note that AMPPNP had been

modeled as ATP) [6] in brown onto our reference structure E. coli
GyrB43?AMPPNP determined by Brino et al. (PDB code: 1EI1)

[13] in yellow. (b) Superimposition of M. tuberculosis Gyr-

B?AMPPNP in blue-green onto our reference structure E. coli
GyrB43?AMPPNP (PDB code: 1EI1) [13] in yellow. Structure of

the ligand binding site of (c) E. coli GyrB?AMPPNP determined by

Wigley et al. and (d) M. tuberculosis GyrB?AMPPNP (PDB code:

3ZKB). Hydrogen bonds are depicted as grey dashed lines. (e)

Close-up stereoview of the active sites of the two structures shown

in (a). (f) Close-up stereoview of the active sites of the two

structures shown in (b).

(TIF)

Figure S2 Details of the binding sites of GyrB43 in
complex (a) with ADP?BeF3 and (b) ADP. H-bonds are

depicted by dashed grey lines. The Fo-Fc omit electron density

maps are shown at a contouring level of 3.0 sigma.

(TIF)

Figure S3 Stereoviews of the details of the binding sites
of GyrB43 in complex with (a) AMPPNP, (b) ADP?Pi, (c)
ADP?BeF3 and (d) ADP. H-bonds are depicted by dashed grey

lines. The Fo-Fc omit electron density maps are shown at a

contouring level of 3.0 sigma.

(TIF)

Figure S4 (a) Superimposition of the human topoII in complex

with AMPPNP (PDB entry 1ZXM, dark blue) and in complex

with ADP (light blue) [12]. (b) Active site details of htopoII in

complex with AMPPNP (left) or ADP?SO4 (right), with the Fo-Fc

omit electron density map for ADP, SO4 and Mg2+ shown at a

contouring level of 3.0 sigma. (c) Stereoview of the structures

shown in (b) after superposition on their ATPase domain. The

exclamation mark indicates the steric clash that would occur

between Q376 in the AMPPNP complex conformation (dark blue)

with the SO4 moiety of the post-hydrolysis mimic state (light blue).

(TIF)

Figure S5 Sequence alignment of the region encom-
passing the QTK loop from representative species of
bacteria, eukaryotes and archaea. The QTK loop is strictly

conserved in topoIIA but absent from topoIIB.

(TIF)

Figure 8. Refined mechanistic scheme of DNA gyrase activity, based on reference [2], representation as in Fig. 1. The N-gate of the
GyrA2GyrB2 heterotetramer with bound G-segment at the central DNA-gate (top) closes upon ATP binding thereby trapping a T-segment in the
upper chamber (step a). Hydrolysis of the two ATP molecules causes a 12u rotation of the respective transducer domains relative to the ATPase
domain (step b). We propose that this conformational change is coupled to DNA gate opening and T-segment translocation. Subsequent Pi release
would be coordinated with G-segment re-ligation and DNA-gate closure (step c). Finally, ADP release results in dissociation of the ATPase domains
and a reset of the enzyme (step d).
doi:10.1371/journal.pone.0107289.g008
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Movie S1 Morphing between the GyrB43?AMPPNP
complex (PDB entry 1EI1 [13]) and the post-hydrolysis
complex GyrB43?ADP?Pi, shown in cartoon representa-
tion with semi-transparent molecular surface overlaid
with the same colors as in Fig. 2 (AMPPNP state in
yellow and ADP?Pi state in magenta). The molecular two-

fold axis is shown as a black line. Views perpendicular (left) and

along (right) the molecular dyad.

(MOV)
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