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INTRODUCTION 
 

Gestational diabetes mellitus (GDM) is a metabolic 

disease diagnosed when glucose intolerance is observed 

with onset or first occurrence during pregnancy. The 

global incidence of GDM is around 7 % [1]. However,  

 

in recent years, the incidence of GDM has been rising in 

China, with prevalence as high as 17.5 % in some areas 

[2]. Women who have GDM are also at an increased 

risk of developing other pregnancy complications 

including gestational hypertension, premature delivery, 

macrosomia, and neonatal respiratory distress syndrome 
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ABSTRACT 
 

Background: Gestational diabetes mellitus (GDM) is a metabolic disease that can have long-term adverse 
effects on the cognitive function of mothers. In our study, we explored the changes in metabolic health and 
cognitive function in mice of middle- and old- age after exposure to GDM, and whether metformin therapy 
during pregnancy provided long-term benefits. 
Results: Mice with GDM demonstrated significant cognitive impairment in old age, which was associated with 
insulin resistance. Gestational metformin therapy was shown to increase insulin sensitivity and improve 
cognition. The ovarian aging rate was also accelerated in mice exposed to GDM during pregnancy, which may 
be related to fatty acid metabolism in the ovaries.  
Conclusion: Treatment with metformin during pregnancy was shown to improve fatty acid metabolism in 
ovarian tissues. 
Method: During pregnancy, mice were fed with a high-fat diet (GDM group) or a low-fat diet (Control group), 
and a third group received metformin while receiving a high-fat diet (Treatment group). At 12 months old, the 
mice completed an oral glucose tolerance test, insulin tolerance test, Morris water maze test, female sex 
hormones were measured, and metabolite profiles of tissue from the ovaries, hypothalamus, and pituitary 
glands were analysed using gas chromatography-mass spectrometry.  
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[3–5]. Despite most GDM patients postpartum blood 

glucose levels returning to normal, these women are at a 

significantly higher risk of developing type 2 diabetes 

mellitus (T2DM) post-delivery. In women who have 

experienced GDM during their pregnancy, the incidence 

of developing diabetes was 3.7% at 9 months 

postpartum, 4.9 % at 15 months postpartum, 13.1 % at 

5.2 years postpartum, and 18.9 % at 9 years postpartum, 

while the incidence of diabetes remained at 2.0 % in 

women without a history of GDM [6].  

 

Women who develop GDM experience metabolic 

disturbances similar to that of T2DM and there seem to 

be equivalent pathophysiological mechanisms 

contributing to the complications of both medical 

conditions. One such complication is later life cognitive 

dysfunction [7–9]. It is generally accepted that 

persistent hyperglycemia and insulin resistance lead to 

brain degeneration and dysfunction, and subsequently 

impaired cognition. Mouse models of diabetes 

established by genetic modifications or fed with a high-

fat diet (HFD), perform poorly on various learning and 

memory behavioural tests [10, 11]. Other factors 

contributing to cognitive dysfunction are sex-steroid 

hormones and aging. The main regulatory loop of the 

female sex hormones includes the hypothalamus, 

pituitary gland, and ovary (HPO axis). The 

hypothalamus receives information from the central 

nervous system and secretes a gonadotropin-releasing 

hormone (GnRH), which in turn stimulates the secretion 

of gonadotropic hormones in the pituitary gland and 

ultimately affects ovarian function. Hypofunction of the 

HPO axis is one of the important signs of female aging. 

Studies have found that levels of estrogen and 

progesterone begin to reduce as ovarian function 

declines [12]. Growing evidence suggests that large 

declines in female sex hormones that occur with 

menopause and aging render females more prone to 

diabetes, neurodegeneration, cognitive impairment, and 

memory disorders [13–15]. Moreover, low levels of sex 

steroid hormones are considered a risk factor for 

neurodegenerative diseases (e.g. Alzheimer’s Disease), 

whilst therapeutic interventions using estrogen and 

progesterone have been shown to be neuroprotective 

[15–17]. However, there is no research investigating 

how these risk factors will influence the long-term 

cognitive health of women with a history of GDM. 

 

In this study, we aimed to investigate the associations of 

diabetic risk factors including hyperglycemia, insulin 

resistance, hormonal changes, and age, together with 

GDM, on the cognitive function of postpartum women 

during middle-old age. A GDM mouse model was 

established using a high-fat diet. Blood glucose levels, 

insulin resistance, sex hormones, and metabolic profiles 

of the HPO axis were measured in mice at 12 months of 

age. In addition, we investigated whether metformin 

administration during pregnancy could provide long-

term protection against GDM-associated cognitive 

dysfunction. 

 

RESULTS 
 

Body weight, oral glucose tolerance test (OGTT), 

and insulin tolerance test (ITT) results of mice 

during pregnancy and immediately after delivery 
 

As depicted in Figure 1, the body weight of maternal 

mice was significantly lower in the low-fat diet group 

(LFD+vehicle) compared to the high-fat diet group 

(HFD+vehicle) and metformin treatment group 

(HFD+metformin) during the peripartum period. At day 

16.5 of pregnancy, the OGTT and ITT results exhibited 

a similar trend; levels at 30 min and 60 min were 

significantly higher in the HFD group compared to the 

LFD and metformin treatment groups, as were the 

AUCs (Figure 2A and 2D). After delivery, the HFD 

group had significantly higher 90 min OGTT results and 

both 15 min and 30 min ITT results, compared to the 

LFD and metformin treatment groups (Figure 2E).  

 

OGTT and IIT results of mice at 12 months of age 

 

As shown in Figure 2C, the blood glucose 

concentrations and area under the curve (AUC) values 

for the OGTT were not significantly different between 

the three groups (F=1.624, p-value=0.230). In contrast, 

the blood glucose concentrations at 30 and 60 min for 

the ITT were significantly lower in the LFD group 

compared to the HFD and metformin treatment groups 

(Figure 2F). There was also a decreased trend in blood 

glucose AUC values for the ITT when comparing the 

LFD group to the HFD group (Figure 2F).  

 

 
 

Figure 1. The body weight of maternal mice before, 
during, and after pregnancy. ***p-value<0.001. 
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Follicle-stimulating hormone (FSH), estrogen (E2), 

and progesterone (P) levels of mice at 12 months 

 

There were no significant differences in serum levels of 

FSH or E2 across the three experimental groups (Figure 

3A and 3B). However, the serum P level was significantly 

higher in the LFD group compared to both the HFD and 

metformin treatment groups (Figure 3C). These results 

showed that serum P levels were significantly lower in 

12-month-old mice exposed to a HFD (GDM mouse 

model) during pregnancy and that this lower hormone 

level was not improved by metformin. 

 

 
 

Figure 2. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) results during pregnancy (16.5 days), after 
delivery, and at 12 months of age. OGTT curves for the three groups of mice and comparison of areas under the curve (AUC) during 
pregnancy (A), after delivery (B), and at 12 months of age (C). ITT curves for the three groups of mice and comparison of AUC during 
pregnancy (D), after delivery (E), and at 12 months of age (F). *p-value<0.05 versus HFD+vehicle. **p-value<0.01 versus HFD+vehicle. 
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Morris water maze performance 
 

To evaluate cognitive function of the mice at 12 months 

of age, we conducted the Morris water maze 

experiment. The results of the training day during the 

first five days are displayed in Figure 4. There was a 

significantly longer latency to escape onto the hidden 

platform in the HFD group when compared to both the 

LFD and metformin treatment groups at day 3 (p-value 

<0.05) and day 4 (p-value <0.05) of the training period. 

However, 2-way ANOVA showed that there was no 

statistical significance of the interaction between 

training days and escape latency (p-value>0.05). On 

experimental day one (sixth day) when the swim times 

and distance covered to reach the removed platform 

were measured (Supplementary Figure 4), the mice fed 

with a HFD during pregnancy exhibited a longer swim 

time and swimming distance (Supplementary Table 1). 

The HFD group also spent more time on the quadrant 

where the platform was previously located, as well as a 

greater number of times crossing the platform 

(Supplementary Figure 4). These findings indicate that 

GDM mice expressed poor spatial learning and memory 

capability in later life and metformin administration 

during pregnancy could reverse this neurocognitive 

deficiency. 

 

Metabolite profiles of the hypothalamus, pituitary 

gland, and ovarian tissues 

 

A total of 125 compounds were identified in the 

hypothalamus, pituitary gland and ovary. The PCA 

demonstrated no obvious separation of the 

hypothalamus and pituitary gland tissue between the 

LFD, HFD, and metformin treatment groups (Figure 5A 

and 5B). The metformin treatment group and LFD 

group were clustered together and separated away from 

the HFD group in the ovary metabolite profile (PC1 and 

PC2 explained 62.5% and 13.3% of variance, 

respectively; Figure 5C). We then utilised OPLS-DA 

and S-plot to screen for statistically important 

metabolites leading the discrimination of each of the 

LFD and metformin treatment groups from the HFD 

group. As demonstrated in Figure 6, both OPLS-DA 

models (First model, LFD+vehicle vs HFD+vehicle; 

Second model, HFD+metformin vs HFD+ vehicle) 

yielded good class separation and statistical validation 

(R2 = 0.89, Q2 = 0.87; R2 = 0.82, Q2 = 0.78, 

 

 
 

Figure 3. The serum level of follicle-stimulating hormone (A), estrogen (B), and progesterone (C) at 12 months of age. *p-value <0.05. 
 

 
 

Figure 4. Escape latency in the Morris water maze across five training days. *p-value<0.05 versus HFD+vehicle. 
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respectively). By combining VIP scores of the OPLS-

DA (VIP > 1), Student’s-T test (p-value >0.05), and 

covariance of the S-plot (p (corr)| > 0.5), a shortlist of 

significant metabolites was generated. A list of 25 and 

15 metabolites passed the selection criteria for the 

LFD+vehicle vs HFD+vehicle and HFD+metformin vs 

HFD+vehicle, respectively (Figure 6A and 6B). Finally, 

a SUS-plot was constructed to identify the significant 

metabolites that were shared and unique in the two 

OPLS-DA models (Figure 7A). Four metabolites: 4-oxo 

pentanoic acid, 9-cis-hexadecenoic acid, isobutyl 

methyl phthalate, and 5,8,11,14,1,7-cis-

eicosapentaenoic acid were significant in both models. 

The heatmap in Figure 7B shows that all of the

 

 
 

Figure 5. Principal component analysis of the hypothalamus (A), pituitary gland (B), and ovary (C) collected from maternal mice at 12 
months of age. The color legends of experimental mice groups are listed as follows; Red color indicates maternal mice fed with a high-fat diet 
and metformin during pregnancy (HFD+metformin); Green color indicates maternal mice fed with a low-fat diet during pregnancy (LFD); Blue 
color indicates maternal mice fed with a high-fat diet during pregnancy (HFD). 

 

 
 

Figure 6. Identification of significant metabolites in the ovary. (A) OPLS-DA and S-plot were used to detect metabolites that 
discriminated between HFD+vehicle (red) and LFD+vehicle (green). (B) OPLS-DA and S-plot were used to detect metabolites that 
discriminated between HFD+vehicle (red) and HFD+metformin (green). In S-plot, the blue circles indicate significant metabolites with a VIP of 
> 1, p-value <0.05, and P(corr) >0.5. 
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 shortlisted metabolites were in lower concentrations in 

the HFD group compared to the LFD and metformin 

treatment groups. The changes in these metabolites 

between the HFD group and the metformin treatment 

group may represent the effect of metformin treatment 

on the ovaries of 12 month old mice exposed to GDM 

during pregnancy. 

 

DISCUSSION 
 

In this study, we investigated how risk factors such as 

hyperglycemia, insulin resistance, aging, and abnormal 

levels of female sex hormones contribute to the 

acceleration of cognitive decline in mice of middle-old 

age who had previously had GDM. Results of the Morris 

water maze test showed that compared to the control 

group, the cognitive function of mice in the GDM group 

was significantly reduced after entering middle-old age. 

We also observed impaired insulin tolerance and greater 

metabolic changes downstream of the HPO axis at 12 

months of age. Treatment with metformin during 

pregnancy significantly improved the long-term cognitive 

function of mice exposed to GDM during pregnancy.  

We have successfully established a mouse model that 

resembles the pathophysiological state of GDM; 

including having a higher body weight and confirmed 

hyperglycemia (Figures 1 and 2). No difference in 

glucose tolerance was observed between GDM and 

control mice at 12 months (Figure 2C). Hyperglycemia 

in GDM only occurred temporarily during gestation and 

blood glucose levels gradually returned to normal post-

delivery. Thus, hyperglycemia in later life did not seem 

to be responsible for the GDM-related cognitive 

impairment. Moreover, of the hormones analysed, only 

progesterone levels were significantly reduced in the 

GDM and metformin treatment groups at 12 months 

(Figure 3). Progesterone typically declines earlier than 

estrogen in the first stages of perimenopause. Studies 

have suggested that cognitive impairment related to the 

perimenopausal period is related to the reduction of 

estrogen [18, 19]. Estrogen is thought to be involved in 

maintaining higher cognitive functions by inducing 

spinogenesis and synaptogenesis in the prefrontal cortex 

and hippocampus, via estrogen receptors [19]. A 

plethora of evidence has been presented which shows 

that estrogen loss resulting from menopause or the

 

 
 

Figure 7. Significant ovary metabolites common to the LFD and metformin treatment groups. (A) SUS-plot. The red circles 
represent the metabolites common to both OPLS-DA models (LFD vs HFD and HFD+metformin vs HFD). The blue circles represent metabolites 
in at least one of the two OPLS-DA models. (B) The heatmap illustrates the levels of the final shortlisted metabolites in each group. The 
relative concentrations of metabolites were log2 transformed and Pareto scaled. Red color indicates a higher level, while green color indicates 
a lower level. 
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surgical removal of an ovary/ovaries, can accelerate 

age-related cognitive decline. Estrogen replacement 

therapy has been shown to improve the cognitive 

function of these women [20]. Reductions in 

progesterone without reductions in estrogen merely 

represent early-stage functional decline of the ovaries, 

as part of the natural process of early perimenopause. 

Therefore, our results suggest that hyperglycemia, 

female sex hormones, and aging may not be the key 

factors leading to the cognitive impairments observed in 

the GDM group in later life. 

 

Although hyperglycemia observed during GDM 

resolves postpartum, insulin resistance persists [21, 22]. 

Insulin resistance appears to be the most likely mediator 

of the cognitive impairment observed in later life, after 

exposure to GDM during pregnancy. Our results 

indicate that the GDM group had significantly reduced 

insulin sensitivity at 12 months of age (Figure 2F). 

Therefore, a mother who develops GDM manifests 

similar metabolic disturbances to T2DM, which is 

characterized by insulin resistance and insulin signalling 

deficiency [23, 24]. Many animal studies have 

emphasized the direct association between insulin 

resistance and cognitive dysfunction [25, 26]. Studies 

using mouse models of T2DM have revealed that 

hippocampal insulin resistance leads to neuroplasticity 

impairment [27–29]. HFD-induced models of diabetes 

have observed a reduction in cell proliferation and 

neurogenesis in the dentate gyrus of the hippocampus 

[30]. Furthermore, peripheral insulin resistance can 

directly contribute to brain insulin resistance by 

compromising transport of insulin into the central 

nervous system [31]. The restoration of insulin 

signalling activities in the hippocampus has been shown 

to alleviate the cognitive decrements observed in a 

T2DM mouse model [32]. These studies show that 

insulin resistance causes structural and functional 

abnormalities in the brain. Therefore, persistent insulin 

resistance appears to be an important factor in the long-

term reduction in cognitive function observed following 

GDM. In addition, recent studies have shown aberrant 

gut microbiota can result in the development of 

cognitive dysfunction and T2DM in diabetic mouse 

models [33, 34]. The findings from these studies 

suggest that the gut microbiota could also influence host 

insulin sensitivity and cognitive function.  

 

Despite the sex hormones remaining at a normal 

physiological level in the GDM group at 12 months of 

age, a sex hormone regulation and feedback system 

“HPO axis” was investigated to see whether it was 

adversely affected by exposure to GDM.  A cascade 

amplification effect on the downstream regulation of 

HPO was observed in the early perimenopausal period. 

In particular, substantial metabolic changes were 

detected in ovarian tissues of both normal and treatment 

groups when compared to GDM groups (Figure 5). 

Pentanoic acid, 9-cis-hexadecenoic acid, and isobutyl 

methyl phthalate were significantly lower in ovarian 

tissue from the GDM group (Figure 7). 9-cis-

hexadecenoic acid (palmitoleic acid) is a common 

unsaturated fatty acid in the ovary that regulates 

gonadotropin-stimulated progesterone biosynthesis in 

granulosa cells [35]. 9-cis-hexadecenoic acid can also 

synergistically stimulate cell proliferation via IGF-1 

[36]. Liu et al (2001) [37] has previously reported that 

pentanoic acid has a potent effect on stimulating protein 

synthesis without accelerating cell apoptosis in a rodent 

ovarian cell culture. Since these fatty acids are involved 

in protein biosynthesis, anti-apoptosis, hormone 

production, and cell proliferation, lower levels of these 

metabolites may accelerate the aging process in the 

ovaries of women with a history of GDM. The process 

of female reproductive aging is believed to be 

predominated by the age-associated decline in ovarian 

function. The number of follicles in the ovary are 

diminished and oocyte quality declines as chronological 

age increases. This leads to a reduction in ovarian 

hormones and subsequently compromises the negative 

feedback from the ovarian sex-steroids to the 

hypothalamic-pituitary axis [38]. Because maternal 

mice in our study were sampled at the premenopausal 

stage, the ovarian feedback status had not diminished 

enough to dysregulate the upstream components of the 

HPO axis. Based on these findings, we postulate that 

GDM manifestation results in a negative metabolic 

influence on the downstream aspects of the HPO axis 

and thereby accelerates postpartum ovarian aging. 

 

To investigate the therapeutic effect of metformin, a 

drug known to increase peripheral target cell insulin 

sensitivity, mice with GDM were administrated 

metformin during pregnancy. Our results demonstrated 

that insulin sensitivity was returned to a normal level in 

the metformin treatment group, as shown in Figure 4C. 

Metformin has been reported to reduce insulin 

resistance by activating AMPK and SIRT1 to inhibit 

hepatic gluconeogenesis, suppress lipid biosynthesis, 

and enhance glucose metabolism, thus decreasing 

circulating glucose and lipid levels [39–41]. Metformin 

can also reduce insulin resistance by downregulating 

chemerin and suppressing endoplasmic reticulum stress 

in adipose tissue and liver cells [39, 42]. A recent 

human gut metagenomic study indicated that metformin 

treatment can improve insulin sensitivity by favouring 

gut Escherichia species. In doing so, the authors 

observed an increase in microbial short-chain fatty acid 

production, attenuation of intestinal lipid absorption, 

and reduced lipopolysaccharide (LPS)-induced 

inflammation [43]. Importantly, we also found that 

GDM mice administrated metformin during pregnancy 
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had spatial learning and memory capability scores 

equivalent to normal mice at 12 months of age (Figure 

4). Although clinical studies have shown that the 

administration of metformin during pregnancy can 

effectively control blood glucose and improve insulin 

sensitivity in GDM [44–46], our findings highlight the 

long-term protective effects of metformin 

administration on cognitive health. Evidence strongly 

supports the role of insulin resistance in cognitive 

decline and it has been suggested that an insulin 

sensitizer may prevent against cognitive decline in pre-

diabetic and diabetic patients [10, 47–48]. Metformin’s 

proposed mechanisms of action on neurons and 

microglia include AMPK-associated neural 

proliferation, differentiation, self-renewal, autophagy, 

and energy homeostasis [10, 49–57]. Metformin inhibits 

inflammation by suppressing NF-κB [58] as well as 

promoting glucose consumption, lactate production, and 

reducing oxidative phosphorylation, thereby favoring 

glycolytic metabolism in astrocytes and microglia [59–

61]. Based on these findings, we speculate that 

metformin therapy during GDM pregnancy may reverse 

the long-term maternal cognitive impairments in 

middle-old age by attenuating persistent postpartum 

insulin resistance. Despite metformin treatment during 

pregnancy not raising progesterone levels in the GDM 

group, treatment with metformin seemed to protect the 

downstream aspects of the HPO axis, including ovarian 

tissue metabolism. These findings could be explained 

by metformin’s ability to reduce blood glucose levels by 

minimizing the absorption of glucose in the intestine 

and inhibiting gluconeogenesis in the liver, without 

stimulating the secretion of insulin [62–64].  

 

The results of our study demonstrated that despite 

postpartum weight, diet, and blood glucose returning to a 

normal status after GDM, insulin resistance persisted. We 

propose that prolonged insulin resistance is likely 

responsible for the adverse effects on long-term endocrine 

and cognitive functions (Figure 8). The potential clinical 

translation of this finding is that medical professionals 

should monitor women with a history of GDM, even if 

their weight and blood glucose return to normal after 

delivery. In particular, their insulin tolerance should be 

regularly monitored. If insulin resistance remains 

persistent, it should be corrected in order to protect the 

endocrine and neurocognitive functions of women. More 

importantly, persistent postpartum insulin resistance may 

be minimized or avoided in GDM mothers by 

administrating metformin during pregnancy. Future 

research should include mechanistic studies such as gene 

knockout and cell models to test whether persistent 

postpartum insulin resistance is the primary cause of 

cognitive impairment and ovarian aging. Additional 

studies are also needed to test whether a higher dose of 

metformin supplementation during pregnancy or 

extending its treatment time to the postpartum period 

could improve maternal hormonal levels.  

 

 
 

Figure 8. Summary of the proposed mechanism explaining how gestational diabetes mellitus (GDM) may lead to cognitive 
impairment and ovarian aging later in maternal life. Our high-fat diet (HFD) mouse model exhibited the pathophysiological phenotype 
that resembles GDM, including hyperglycemia, being overweight, and experiencing insulin resistance during pregnancy. After delivery, all 
mice were reverted back to a standard diet. In the postpartum period, the blood glucose level and body weight returned to normal, but 
insulin resistance persisted and reduced cognitive function was observed at 12 months of age. A reduced progesterone level was also 
observed; an early indication of perimenopause. Through metabolome profiling of the hypothalamus, pituitary gland, and ovarian (HPO) axis, 
a downstream dysregulation of the HPO axis was revealed. In particular, ovarian fatty acid levels were reduced. All these adverse outcomes 
were prevented when insulin resistance during pregnancy was treated with metformin. These phenotypes were not directly associated with 
hyperglycemia or high-fat diet during gestation, nor differences in bodyweight after pregnancy. Based on these observations, we hypothesize 
that persistent insulin resistance postpartum is the primary cause of GDM-related cognitive impairment and accelerated ovarian decline.  
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In conclusion, the cognitive function of mice exposed to 

GDM was significantly impaired compared to controls 

after entering middle- old age. Our findings suggest that 

the cognitive impairments were mainly related to 

persistent insulin resistance after delivery. Treatment of 

GDM with metformin during pregnancy significantly 

improved postpartum insulin resistance and was 

protective of long-term cognitive health. In addition, 

GDM altered the long-term metabolism of the ovary 

and thus accelerated the chronological aging process. 

Although metformin treatment of GDM during 

pregnancy improved the metabolite pattern of the HPO 

axis, whether it can further affect the function of the 

HPO axis remains to be investigated. 

 

MATERIALS AND METHODS 
 

Overall experimental design 
 

Eighteen C57BL/6 mice were randomly divided into 

three groups: control (low-fat diet (LFD) + vehicle, 

n=6), GDM (high-fat diet (HFD) + vehicle, n=6) and 

metformin treatment (HFD+metformin, n=6). There 

was no metformin treatment for the LFD group because 

our pilot study showed that metformin treatment did not 

change the blood glucose level or insulin resistance in 

the mice fed with a LFD during pregnancy 

(Supplementary Figure 1). The control mice were fed a 

low-fat diet (Research Diets AIN-93G, consisting of 

20.3 % protein, 63.9 % carbohydrate, and 15.8 % fat) 

for one week prior to mating and throughout pregnancy 

(18.5 days), while both GDM and treatment groups 

were fed a high-fat diet (Research Diets D12451, 

consisting of 20% protein, 35 % carbohydrate, and 45 

% fat). All mice were given free access to 100 grams of 

fresh diet and 250 ml of fresh water daily per cage (Five 

mice per cage). From 11.5 to 17.5 days of pregnancy, 

the treatment group received a 300 mg dose of 

metformin solution each day via oral gavage, whilst the 

control and GDM group received the same dose of a 

vehicle (phosphate buffer solution). After delivery, all 

maternal mice were reversed back to normal chow 

(Research Diet 1022, consisting of 18% protein, 78% 

carbohydrate, and 4 % fat) until the age of 12 months. 

At 12 months of age, the mice performed the Morris 

water maze experiment, and underwent an oral glucose 

tolerance test (OGTT) and insulin tolerance test (ITT). 

In addition, the body weight of the mice was measured 

prepartum, peripartum and postpartum. After the mice 

were sacrificed, 200 μl blood was collected by cardiac 

puncture. The blood was centrifuged at 1300 g for 10 

min at 4 °C in order to obtain serum for hormone 

measurements such as follicle-stimulating hormone 

(FSH), estrogen, and progesterone. Furthermore, the 

ovaries, hypothalamus and pituitary gland were 

collected and stored in a -80 °C freezer until gas 

chromatography-mass spectrometry (GC-MS) based 

metabolomics was performed (Figure 9). The handling 

of animals in this research was in accordance with the 

guidelines approved by the ethics committee of the First 

Affiliated Hospital of Chongqing Medical University 

(Ethics number 2016-41). All efforts were taken to 

minimize the number of mice sacrificed and any 

potential suffering. 

 

Oral glucose tolerance test (OGTT) and insulin 

tolerance test (ITT) 
 

An OGTT and ITT were performed during pregnancy at 

16.5 days, immediately after delivery, and at 12 months

 

 
 

Figure 9. Overall experimental design. 
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of age. OGTT was performed by first fasting mice for 

six hours then administering glucose (2g/kg body 

weight) via gavage. Blood samples were collected at 0, 

30, 60, 90, and 120 minutes from the tail vein, and 

blood glucose concentration was measured using a 

glucometer (Nova StatStrip Xpress; Nova Biomedical, 

Waltham, UK). To perform ITT, the mice were fasted 

for 6 hours and then insulin (2.5 U/kg body weight) was 

administered via an intraperitoneal injection. Blood 

samples were collected at 0, 15, 30, 60, and 120 minutes 

from the tail vein, and blood glucose concentration was 

measured using a glucometer. 

 

Morris water maze experiment 
 

The Morris water maze experiment was conducted in a 

constant room temperature swimming pool with a white 

inner wall which had a diameter of 120 cm, a height of 

60 cm, and a data collection and analysis system. The 

entire pool was divided into four quadrants by four 

equally spaced points (indicated by different patterns). 

The hidden platform (10 cm in diameter and 24 cm in 

height) was placed 0.5 cm below the water surface. The 

animals had five continuous days of maze training 

where they were placed in the middle of each quadrant 

of the maze. During the training days, the mice were 

guided to the hidden platform if they failed to locate the 

platform within one minute and stayed on the hidden 

platform for 10 s. During the experiment day (sixth 

day), the hidden platform was eliminated, and mice 

were swimming in the maze for 60 s. This experiment 

was repeated four times a day. 

 

Measurement of serum follicle-stimulating hormone 

(FSH), estrogen (E2), and progesterone (P)  

 

Serum levels of FSH, E2, and P were analysed using 

ELISA kits (cat. no. CSB_E06871m; CSB_E05109m; 

CSB_E05104m). All analyses were performed in strict 

accordance with the manufacturer's protocols.  

 

Metabolite extraction and derivatization 
 

An approximately 10 mg sample of the ovary, 

hypothalamus, and pituitary gland from each animal 

were weighed at 4 °C. Metabolites were extracted from 

the samples using 2 mL of methanol/toluene 4:1 v/v 

solution containing two internal standards: 

nonadecanoic acid (20 μg/mL) and tridecanoic acid (20 

μg/mL). 200 μL of acetyl chloride (Adamas Reagent 

Co.) was added to each sample, followed by a 1 min 

vortex. The tubes were then incubated at 100 °C for 1 h. 

After cooling in tap water, 5 mL of an aqueous solution 

of 6% potassium carbonate (Adamas Reagent Co.) was 

added into each tube. After vortexing for 10 s and 

centrifuging at 2000 rpm for 10 min at room 

temperature, the upper toluene phase was extracted for 

GC-MS analysis. Negative controls and quality control 

(QC) samples were prepared by replicating the sample 

preparation using empty tubes and a pooled biological 

sample respectively. 

 

Gas chromatography-mass spectrometry (GCMS) 

analysis 
 

The derivatized biospecimens were analysed using an 

Agilent 7890B Gas Chromatograph linked to an Agilent 

5977A Mass Spectrometer. A RESTEK Rtx®-2330 

column (90% biscyanopropyl/10% phenylcyano 

propylpolysiloxane, 100 m, 0.25 mm ID, 0.2 um df) was 

installed to separate derivatised metabolites. The sample 

injection, inlet mode, oven temperature, and mass 

spectrometry parameters were operated according to Han 

et al. (2012) and Smart et al. (2010). The GC-MS 

chromatographic peaks were extracted, deconvoluted and 

identified using AMDIS and Agilent ChemStation. The 

peaks were identified based on two criteria; >85% match 

to the fatty acid library spectra and within a 30-second 

window of the library chromatographic retention time 

using the in-house lipid library and NIST library 

(https://www.nist.gov/nist-research-library). The relative 

concentrations of metabolites were quantified via our in-

house R based script (MassOmics) that uses the most 

abundant ion fragments within an appropriate retention 

time.  

 

Data normalization and statistical analysis 

 

Metabolite levels were first normalized either by the 

nonadecanoic acid or tridecanoic acid internal standard, 

determined based on their correlation with metabolites 

in the QC samples. Subsequently, median centering was 

performed using nine QC samples to correct for batch 

variation. Then, correction was applied using blank 

samples to remove contaminants and any carryover 

from identified metabolites. The tissue weights were 

accounted for, to eliminate the volume difference 

among samples. Prior to multivariate statistical analysis, 

the metabolite profiles of the HPO axis were log 

transformed and Pareto scaled since this combined 

scaling strategy resulted in a normal distribution of our 

dataset. Principal component analysis (PCA), 

orthogonal partial least squares discriminant analysis 

(OPLS-DA), variable importance projection (VIP) 

scores, one-way ANOVA, Turkey HSD, S-plots, and 

SUS-plots were performed using Metaboanalyst 

(https://www.metaboanalyst.ca/) and our in-house R 

scripts. A power analysis for the two-sample t-test was 

performed using the “pwr.t.test” command available in 

the R package “pwr2” [65]. The power analysis was 

performed based on the result of Zhu et al (2018), 

which utilized a HFD to establish a GDM mouse model, 

https://www.nist.gov/nist-research-library
https://www.metaboanalyst.ca/
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to evaluate the effect of maternal obesity on cognitive 

development of the offspring. Our power calculation 

showed that a minimum sample size of six mice per 

group provided 80% power with an alpha value less 

than 0.05 in order to have 95% confidence of a true 

difference between HFD and LFD groups for both ITT 

and OGTT (Supplementary Figures 2 and 3). 
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SUPPLEMENTARYMATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Oral glucose tolerance test (OGTT) and homeostasis model assessment of insulin resistance (HOMA-
IR) during pregnancy. OGTT curves between the LFD+vehicle and LFD+metformin treatment groups (A) and comparison of areas under the 
curve (AUC) at 16.5 gestational days (B). HOMA-IR results between the LFD+vehicle and LFD+metformin treatment groups at 18.5 gestational 
days (C). 

 

 

 
 

Supplementary Figure 2. Power analysis of ITT between HFD and LFD mice at peripartum, based on data from Zhu et al 
(2018). The curve displays the relationship between changes of power (y-axis) along with changes in sample size (x-axis). The blue vertical 
line indicates sample size required to have 80% power with an alpha value less than 0.05 for a given mean difference between two groups 
using a two-sided Student’s T test. n= number. AUC = area under the curve. 
  



 

www.aging-us.com 14035 AGING 

 
 

Supplementary Figure 3. Power analysis of OGTT between HFD and LFD mice at peripartum, based on data from Zhu et al 
(2018). The curve displays the relationship between changes of power (y-axis) along with changes in sample size (x-axis). The blue vertical 
line indicates sample size required to have 80% power with an alpha value less than 0.05 for a given mean difference between two groups 
using a two-sided Student’s T test. n= number. AUC = area under the curve. 

 

 
 

Supplementary Figure 4. Representative swimming tracks in the Morris water maze. Swimming tracks of mice in the control group 
(A–C). Swimming tracks of mice in the GDM group (D–F). Swimming tracks of mice in the treatment group (G–I). The circle represents the 
area of the water maze, divided into four quadrants, the green circle represents the location of the original platform, and the red line 
represents the swimming route of the mouse. 
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Supplementary Table 
 

Supplementary Table 1. Morris water maze results. 

 
Control (n=7) GDM (n=6) Treatment (n=6) F p-value 

Time (s) 4.0±1.1* 1.3±1.5 2.3±0.8 7.903 0.005 
Time (s in %) 54.0±7.3* 35.3±14.7 54.1±8.7* 6.100 0.012 
Distance (cm in %) 51.2±8.3** 34.8±13.3 51.3±8.2** 5.209 0.019 

Time (s in %) is calculated as swimming time in the quadrant of the original platform/total swimming time*100. Distance (cm 
in %) is calculated as swimming distance in the quadrant of the original platform/total swimming distance*100. F represents 
the statistic of one-way Anova, *p-value<0.05 versus HFD+Vehicle, **p-value<0.01 versus HFD+Vehicle  
 

 

 


