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Abstract: Most legumes can engage in symbiosis with N-fixing bacteria called rhizobia. This symbiosis,
called nodulation, evolved from the more widespread symbiosis that most land plants form with
arbuscular mycorrhiza, which is reflected in a common requirement of certain genes for both these
symbioses. One key nodulation gene, Nodule Inception (NIN), has been intensively studied. Mutants in
NIN are unable to form nodules, which has made it difficult to identify downstream genes under the
control of NIN. The analysis of data from our recent transcriptomics study revealed that some genes
with an altered expression of nin during nodulation are upregulated in mycorrhizal roots. In addition,
another study reported the decreased colonization of nin roots by arbuscular mycorrhiza. We therefore
investigated a role for NIN in mycorrhiza formation. Our time course study, using two nin alleles with
differing genetic backgrounds, suggests that that loss of NIN does not affect colonization of Medicago
truncatula roots, either in the presence or absence of rhizobia. This, and recent phylogenetic analyses
showing that the loss of NIN is correlated with loss of nodulation in the FaFaCuRo clade, but not
with the ability to form mycorrhiza, argue against NIN being required for arbuscular mycorrhization
in legumes.
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1. Introduction

Arbuscular mycorrhization is a beneficial symbiosis formed between arbuscular mycorrhizal
(AM) fungi and many terrestrial plants. It is believed to be older than 400 million years old, and its
retention in over 70% of land plants suggests it provides a strong selective advantage to its hosts [1].
This symbiosis promotes the uptake of phosphates and other nutrients by the plant host at the expense
of host carbon, supplied to the fungal endosymbiont. It entails the constant exchange of signals
between the host and symbiont, which ultimately leads to the formation of nutrient exchange and
fungus-accommodation structures called arbuscules within root cortical cells [2]. This process requires
the differential activation of hundreds of genes which have been studied at the evolutionary and
functional genetic levels using genomic approaches [3].

A second widespread symbiosis, called nodulation, can be formed by most species belonging
to the third largest plant family, the legumes (Fabaceae) with gram-negative soil bacteria collectively
called rhizobia [4]. The nodulation of most legume plants involves the intracellular infection of root
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hairs by rhizobia followed by the colonization of the cortical layers of the root [5]. This symbiosis
leads to the formation of special root outgrowths called nodules. Nodules are comprised mainly
of cells filled with nitrogen-fixing rhizobia contained within membrane-bound structures called
symbiosomes [6]. Like mycorrhization, nodulation requires ongoing signal-exchange with the rhizobia.
Plant-released flavonoids trigger the production of a counter-signal by the rhizobia, a mixture of
lipo-chito oligosaccharide signal molecules called Nod factors [7? ]. Nod factors are perceived by
host Nod factor receptors which trigger the increased expression of several transcription factors,
including Nodule Inception (NIN), ERF Required for Nodulation1 (ERN1), NFYA1, and the GRAS
transcription factors Nodulation Signalling Pathway1 (NSP1) and NSP2 [8–17]. The activation of these,
and other transcription factors, results in extensive transcriptional changes that lead to the formation
of nitrogen fixing nodules.

Since its discovery, Nodule Inception (NIN) has been extensively studied for its role in
nodulation [8]. Mutants lacking NIN respond to rhizobia by root hair deformation, but do not
initiate the formation of infection threads, nor do they form nodules [8,9,18]. NIN is the founding
member of a small family of transcription factors, called NIN-like proteins (NLPs), that are present in
all plants and have homologs in algae [19]. NLPs in Arabidopsis have demonstrated roles in nitrate
sensing, uptake and assimilation [20]. In legumes, two NLPs have been implicated in the nitrate
suppression of nodulation [21,22], suggesting that NIN’s function in positively controlling infection by
rhizobia is unique within the NLP family. Interestingly, almost all members of the Fabales, Fagales,
Cucurbitales and Rosales (FaFaCuRo) clade that have lost the ability to nodulate have also lost NIN,
along with many other nodulation-specific genes [23,24].

Despite NIN’s importance, the identification of the genes downstream of NIN was impeded by the
complete lack of nodules on nin mutants. However, in recent years, direct targets of NIN were identified
using chromatin immunoprecipitation in Lotus japonicus and the NIN regulon was characterized using
a root-hair transcript profiling approach [25]. Amongst NIN’s targets are Nodulation Pectate Lyase 1
(NPL1) [26] which is required for rhizobial infection and at least two CCAAT-box transcription factors
that are associated with nodule organogenesis [15–17,27]. Indeed, NIN’s regulon was estimated to
include at least 120 genes [25]. Our analysis of nin’s root hair infectome found many genes with
deregulated expression in nin, relative to wild type controls, that are also upregulated in roots colonized
by AM fungi. Furthermore, a recent paper found decreased mycorrhizal colonization in M. truncataula
nin-1 [28]. Based on this, we investigated a potential role for NIN in nodulated and non-nodulated
roots of M. truncatula.

2. Results

2.1. nin Mutants Have No Obvious Mycorrhizal Phenotype

A comparison of genes that were differentially expressed in root hairs of rhizobia-inoculated
seedlings (nin-1 vs wild type) to those genes induced by Rhizophagus irregularis revealed some overlap
(Supplemental S1). About 40 genes were found with decreased expression in nin and increased
expression during AM colonization, and about 50 others were upregulated in both nin and mycorrhizal
roots. To determine whether this could influence colonization by arbuscular mycorrhiza, either with or
without nodulation, an experiment was set up using nin-1 and nin-2, that are from the M. truncatula cv
Jemalong A17 and M. truncatula ssp. tricycla R108 backgrounds, respectively. Both nin alleles were
scored over a time course of 2, 3, 4 and 5 weeks post inoculation (wpi) with R. irregularis DAOM197198
(10% chive inoculum). Half the plants were inoculated with Sinorhizobium meliloti Rm1021. Ten plants
were grown for each genotype/time point/experimental condition and root samples were harvested.
Nodules were completely absent from both nin mutants in all conditions, and non-inoculated wild
type plants. Rhizobia-inoculated wild type plants nodulated normally. The root samples were then
stained and scored for arbuscules (Figure 1). Although some reductions in AM colonization were
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observed in certain treatments (Figure 1b), overall the results showed no consistent difference in AM
colonization between WT and either nin mutant, with or without nodulation.
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Figure 1. AM phenotype of nin mutants with and without addition of rhizobia. (a) M. truncatula plants 
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irregularis only. The percentage of arbuscules in plants was determined at 2, 3, 4, and 5 weeks post 
inoculation (wpi). A17 is the WT background for nin-1, and nin-2 is in the R108 background. Bars 
represent the standard error of the mean. Asterisk indicates a significant difference between the 
indicated means (Student’s t-test, * p < 0.05). 

2.2. NIN Expression during Mycorrhization 

During nodulation, the NIN transcript levels are strongly increased, especially in the root hairs 
of rhizobia infected plants and nodules [30,31]. To determine if NIN is transcriptionally induced 
during mycorrhization, we compiled data from several RNA-seq and microarray transcriptome 
studies. The data were downloaded from the M. truncatula and the Lotus japonicus Gene Expression 
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uncolonized cortical cells of M. truncatula, collected using laser capture microdissection (LCM) 3 
weeks after inoculation with R. irregularis [34] (Figure 2a). A second dataset indicated that NIN 
expression was unchanged in 6-week-old uninoculated vs R. irregularis inoculated M. truncatula roots 
[35] (Figure 2a). To broaden our analysis, NIN expression was examined using data from a similar 
experiment carried out with another model legume, L. japonicus [36]. Similar to our findings in M. 
truncatula, no significant difference in NIN expression was detected between uninoculated and 
Gigaspora margarita inoculated roots at either of the two time points studied (Figure 2a). Finally, we 
used RNAseq data normalized across two different experiments to compare NIN expression in 
nodulated and mycorrhized roots, using the mycorrhiza-induced transcription factor RAM1 as a 
reference [37,38]. As expected, an increase in NIN expression of two orders in magnitude was 
observed in nodules relative to control roots (Figure 2b). In mycorrhizal roots, RAM1 was highly 
induced, but NIN expression was similar to baseline levels, and as before no induction of NIN in 
mycorrhizal roots relative to mock-inoculated controls was observed. 

Figure 1. AM phenotype of nin mutants with and without addition of rhizobia. (a) M. truncatula
plants were inoculated with R. irregularis (10% chive root inoculum) and S. meliloti Rm1021 or (b) with
R. irregularis only. The percentage of arbuscules in plants was determined at 2, 3, 4, and 5 weeks
post inoculation (wpi). A17 is the WT background for nin-1, and nin-2 is in the R108 background.
Bars represent the standard error of the mean. Asterisk indicates a significant difference between the
indicated means (Student’s t-test, * p < 0.05).

2.2. NIN Expression during Mycorrhization

During nodulation, the NIN transcript levels are strongly increased, especially in the root hairs
of rhizobia infected plants and nodules [29,30]. To determine if NIN is transcriptionally induced
during mycorrhization, we compiled data from several RNA-seq and microarray transcriptome studies.
The data were downloaded from the M. truncatula and the Lotus japonicus Gene Expression Atlas [31,32].
No difference was found in NIN expression in arbuscule cells vs adjacent cells or uncolonized cortical
cells of M. truncatula, collected using laser capture microdissection (LCM) 3 weeks after inoculation
with R. irregularis [33] (Figure 2a). A second dataset indicated that NIN expression was unchanged in
6-week-old uninoculated vs R. irregularis inoculated M. truncatula roots [34] (Figure 2a). To broaden
our analysis, NIN expression was examined using data from a similar experiment carried out with
another model legume, L. japonicus [35]. Similar to our findings in M. truncatula, no significant
difference in NIN expression was detected between uninoculated and Gigaspora margarita inoculated
roots at either of the two time points studied (Figure 2a). Finally, we used RNAseq data normalized
across two different experiments to compare NIN expression in nodulated and mycorrhized roots,
using the mycorrhiza-induced transcription factor RAM1 as a reference [36,37]. As expected, an
increase in NIN expression of two orders in magnitude was observed in nodules relative to control
roots (Figure 2b). In mycorrhizal roots, RAM1 was highly induced, but NIN expression was similar to
baseline levels, and as before no induction of NIN in mycorrhizal roots relative to mock-inoculated
controls was observed.
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of NIN expression (a) using publicly available transcriptome data (microarray). Raw data were 
retrieved from the Medicago truncatula Gene Expression Atlas [32] and the Lotus japonicus Gene 
Expression Atlas [33]. Data from three independent experiments are shown. The chart on the left 
shows NIN expression in different cell types of M. truncatula, collected using laser capture 
microdissection (LCM) 3 weeks after inoculation with R. irregularis. Data are from Gaude et al. [34]. 
In Gomez et al. [35] chart, NIN expression in 6-week-old M. truncatula uninoculated and R. irregularis 
inoculated roots is shown. Guether et al. [36] data represent NIN expression in uninoculated and 
Gigaspora margarita inoculated roots of Lotus japonicus at two different time points 4- and 28-days post 
inoculation (dpi). COR-cortical cells of non-mycorrhizal roots, ARB-arbuscule-containing cells and 
NAC-non-colonized cortical cells of mycorrhizal roots. Error bars represent standard error of the 
mean; (b) Quantification of NIN expression using publicly available transcriptome data (RNAseq). 
Raw data were retrieved from M. truncatula Small Secreted Peptide Database [39]. The expression of 
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biosynthesis genes [26], which act together to limit infection. 

While our conclusion regarding the absence of an AM phenotype is consistent with earlier 
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inoculum, while the inoculum used for this study was a fresh inoculum containing spores, mycelia 
and colonized root fragments which presumably more closely resembles what plants encounter in 
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infection, particularly at early stages which are characteristically asynchronous. Another major 
difference was that the previous study evaluated colonization at 9 weeks post infection, a time point 

Figure 2. Expression of Nodule Inception (NIN) during AM symbiosis and nodulation. Quantification of
NIN expression (a) using publicly available transcriptome data (microarray). Raw data were retrieved
from the Medicago truncatula Gene Expression Atlas [31] and the Lotus japonicus Gene Expression
Atlas [32]. Data from three independent experiments are shown. The chart on the left shows NIN
expression in different cell types of M. truncatula, collected using laser capture microdissection (LCM) 3
weeks after inoculation with R. irregularis. Data are from Gaude et al. [33]. In Gomez et al. [34] chart,
NIN expression in 6-week-old M. truncatula uninoculated and R. irregularis inoculated roots is shown.
Guether et al. [35] data represent NIN expression in uninoculated and Gigaspora margarita inoculated
roots of Lotus japonicus at two different time points 4- and 28-days post inoculation (dpi). COR-cortical
cells of non-mycorrhizal roots, ARB-arbuscule-containing cells and NAC-non-colonized cortical cells of
mycorrhizal roots. Error bars represent standard error of the mean; (b) Quantification of NIN expression
using publicly available transcriptome data (RNAseq). Raw data were retrieved from M. truncatula
Small Secreted Peptide Database [38]. The expression of NIN and RAM1 at different time points post
inoculation with R. irregularis along with their respective mock inoculated controls was compared;
data are from Luginbuehl et al. [37]. The expression of NIN and RAM1 at varying developmental
stages of nodulation was compared; data are from de Bang et al. [36]. Error bars represent standard
error of the mean.

3. Discussion

We investigated nin for a potential mycorrhizal colonization phenotype, but no consistent effect,
either increased or decreased, was found. This suggests that NIN doesn’t play a direct or indirect
role in mycorrhization. The enhancement of certain mycorrhiza-induced genes in the root hairs of
rhizobia-inoculated nin seedlings may be a consequence of a loss of negative feedback, leading to the
increased activation of NIN-independent infection gene expression, which includes several common
symbiotic genes induced both by mycorrhizal and rhizobia. NIN controls at least two negative
regulators of infection in root hairs, CLE12/CLE-RS2 [39,40] directly, and several gibberellic acid
biosynthesis genes [25], which act together to limit infection.

While our conclusion regarding the absence of an AM phenotype is consistent with earlier reports
on nin in L. japonicus [18,41,42], it contradicts an earlier study that found that M. truncataula nin-1
had strongly reduced AM colonization at nine weeks post inoculation, and had a mild decrease in
penetration events at two weeks post inoculation [28]. The differences could be accounted for by the use
of different types of inoculum used. The previous study used a fixed quantity of spores as inoculum,
while the inoculum used for this study was a fresh inoculum containing spores, mycelia and colonized
root fragments which presumably more closely resembles what plants encounter in their natural setting.
Use of spore-only inoculum typically results in a relatively slow progression of infection compared to
inoculum containing active mycelia, which can enhance stochasticity of the infection, particularly at
early stages which are characteristically asynchronous. Another major difference was that the previous
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study evaluated colonization at 9 weeks post infection, a time point at which colonization levels are
often in decline. Factors such as the nature/efficacy of the inoculum and the plant growth conditions
can greatly influence the infection dynamic and the level of biological variation—concerns that can
be addressed through a time course analysis. Our conclusions are based on two mutant alleles in
two different mutant backgrounds, each tested at four different timepoints ranging over a one-month
period during which colonization was still increasing, reaching near maximal levels (~70% arbuscule
occurrence), or had stabilized. A review of transcriptomic data from several different studies failed to
support a role for NIN in mycorrhization, as no significant difference was found in NIN expression
among infected and non-infected cells and between inoculated and non-inoculated cells at different
time points. Furthermore, NIN has very low transcript levels in non-symbiotic roots and responds to
compatible rhizobia with a large and rapid increase in expression, contrasting with its lack of response
to mycorrhizal fungi. This non-responsiveness is consistent with an earlier report from L. japonicus that
monitored NIN expression using qPCR over a four-point time course spanning 4 days to 4 weeks after
inoculation with R. irregularis [43]. In the Guillotin et al. study, which reported a small increase in
NIN expression in mycorrhizal roots [28], high nitrogen treatment was used to suppress nodulation,
a measure which can be expected to reduce but not eliminate nodulation. Finally, Guillotin et al. [28]
presented data for the induction of NIN by ‘Myc-LCOs’, an equimolar mixture of LCOs produced
in bacteria [44] whose biological relevance is still being debated. Indeed, considering the evidence
presented here and studies cited herein, the relevance of ‘Myc-LCOs’ to mycorrhiza is questionable.
On this point, it is worth noting that the mixture used contains sulfated LCOs that are structurally very
similar to S. meliloti Nod factors.

In addition to the data presented here, recent phylogenetic studies also contradict a role for NIN
in mycorrhization [23,45]. The weight of phylogenetic research suggests a single phylogenetic origin
of nodulation with subsequent losses. This was evidenced by the loss of several nodulation-specific
genes, including NIN, in almost all the non-nodulating plant species tested, despite the fact that the
majority of these are able to form symbiosis with AM fungi [23,24]. This suggests that NIN’s role in
nodulation is highly specific and refutes a direct role in mycorrhization.

4. Materials and Methods

4.1. Plant Material

M. truncatula Jemalong A17 [46] and M. truncatula ssp. tricycla R108 seedlings [47] were used in
this study. The nin-1 allele is the result of EMS mutagenesis in the WT A17 background and has an
11bp deletion starting at position 1850. The nin-2 allele is a Tnt1 transposon insertion line in the R108
WT background with the insertion lying 20bp upstream of the ATG [9].

4.2. Seedling Germination

Seed pods were collected from mature dried M. truncatula plants. These were dried for 3–7
days in a 37 ◦C incubator. The seeds were extracted by crushing the pods with wooden blocks
covered in corrugated rubber. The scarification and sterilisation of seeds were performed as described
previously [29]. The seeds were then plated on Distilled Water Agar (DWA) plates and inverted to
allow for downward root growth. Seeds were put in the dark at 4 ◦C for stratification for 7 days before
transplanting to a soil substrate.

4.3. Production of Mycorrhizal Inoculum

To produce an inoculum free from contaminating microbes, particularly rhizobia, all working
surfaces, trays, instruments etc. are washed down with 70% ethanol and ethanol sterilized gloves were
worn. Terragreen (Oil-Dri Ltd., Wisbech Cambs, UK), sharp sand and Levington’s F1 low nutrient
compost (Scotts, Suffolk, UK) at a ratio of 2:2:1 was autoclaved. The seed trays were filled with this soil
substrate and approximately 300 chive seeds were evenly distributed on the surface and then lightly
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covered with soil. This was watered well with dH2O and a plastic transparent lid was applied to
prevent cross-contamination by rhizobia in the growth rooms. One week after sowing, each germinated
plant was inoculated at the base of the stem with 200 sterile Rhizophagus irregularis spores DAOM
197198 purchased from Symplanta (Darmstadt, Germany). The plants were grown for eight weeks in
the same conditions as the M. truncatula plants, being watered to prevent the soil substrate from drying
out. After eight weeks, the chive shoots were removed, and the soil substrate/chive root mixture left
was then mixed by hand to create a homogenous mixture. To reduce the risk of rhizobial contamination,
the inoculum was then transferred into sealed plastic bags. To increase the inoculum in a sterile manner
the previously made chive inoculum was evenly spread on the bottom of a seed tray, ensuring an even
distribution of chive roots, using 20% of the volume of the tray. A 1:1 mixture of Terra green and sharp
sand was added on top (80% of total soil volume) and chive seeds were sown with growth conditions
as before. The inoculum was then harvested eight weeks after planting as described above and stored
in the dark at 4 ◦C in sealed plastic bags.

4.4. Nodulation

For nodulation, Sinorhizobium meliloti Rm1021 strains were grown overnight at 28 ◦C with shaking.
The seedlings were inoculated with 1 mL of rhizobia at a final absorbance of 0.02 at OD600 diluted in
water one day after transplanting.

4.5. Mycorrhization

To compare the differences in arbuscule formation by the fungus R. irregularis, the seedlings were
germinated as described. The seedlings were then transferred to 1:1 terragreen:sharp sand low nutrient
growth medium mixed with 20% chive inoculum containing roots of chive plants infected with spores
of R. irregularis. The plants were covered with a lid for the first week only to maintain humidity
and then were allowed to grow for 2 to 4 weeks before harvesting the root tissue. The roots were
washed and approximately one inch of each sample from around two thirds of the total root length was
collected for analysis. The fungus was visualized using an ink staining protocol [48]. The arbuscule
frequency was then scored using the gridline intersect method [49] under a Nikon Eclipse E800 light
microscope with a Pixera Pro 600ES camera.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/1/71/s1,
Supplemental S1: Genes deregulated in nin that are upregulated in mycorrhizal roots.
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