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Abstract

Summary: The accurate reconstruction of gene regulatory networks from large scale molecular

profile datasets represents one of the grand challenges of Systems Biology. The Algorithm for the

Reconstruction of Accurate Cellular Networks (ARACNe) represents one of the most effective tools

to accomplish this goal. However, the initial Fixed Bandwidth (FB) implementation is both ineffi-

cient and unable to deal with sample sets providing largely uneven coverage of the probability

density space. Here, we present a completely new implementation of the algorithm, based on an

Adaptive Partitioning strategy (AP) for estimating the Mutual Information. The new AP implementa-

tion (ARACNe-AP) achieves a dramatic improvement in computational performance (200� on aver-

age) over the previous methodology, while preserving the Mutual Information estimator and the

Network inference accuracy of the original algorithm. Given that the previous version of ARACNe

is extremely demanding, the new version of the algorithm will allow even researchers with modest

computational resources to build complex regulatory networks from hundreds of gene expression

profiles.

Availability and Implementation: A JAVA cross-platform command line executable of ARACNe, to-

gether with all source code and a detailed usage guide are freely available on Sourceforge (http://

sourceforge.net/projects/aracne-ap). JAVA version 8 or higher is required.

Contact: califano@c2b2.columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

We and others have shown that the accurate and systematic dissec-

tion of tissue gene regulatory networks (reverse engineering) repre-

sents a crucial step in the elucidation of drivers and mechanisms

presiding over both physiologic and pathologic phenotypes. Many

computational approaches have been proposed for the reverse engin-

eering of gene regulatory networks from large-scale gene expression

profile data. Most of these require estimating pairwise gene func-

tions, such as Pearson/Spearman correlation (Mutwil et al., 2011),

Mutual Information (MI, Steuer et al., 2002) and linear/LASSO

regression (Licausi et al., 2011) amongst others. ARACNe

(Margolin et al., 2006) represents one of the most widely used re-

verse engineering algorithms by the scientific community and has

been extensively experimentally validated. ARACNe uses an infor-

mation theoretic framework, based on the data processing inequal-

ity theorem, to infer direct regulatory relationships between

transcriptional regulator proteins and target genes. ARACNe has

been shown to be useful in the reconstruction of context-specific

transcriptional networks in multiple tissue types (Lefebvre et al.,

2010). Several additional algorithms have emerged, which rely on
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the interrogation of ARACNe networks to successfully predict novel

driver genes and mechanisms (Aytes et al., 2014; Della Gatta et al.,

2012), as well as drug mechanism of action (Woo et al., 2015).

Thanks to the Next-Generation Sequencing revolution, however,

ever expanding RNASeq datasets create the need for algorithm im-

provements to support more computationally efficient inference of

genome-wide gene-regulatory networks. We introduce a complete

redesign of ARACNe to leverage efficient Adaptive Partitioning

(AP) Mutual Information estimators (Liang and Wang, 2008). We

benchmark the performance improvements of the new algorithm im-

plementation on the analysis of a large breast carcinoma dataset

(TCGA, 2012), compared to the previous version of ARACNe,

based on the Fixed Bandwidth (FB) algorithm (Margolin et al.,

2006).

2 Methods

2.1 The ARACNe pipeline
We replaced the core FB MI-estimator with a new AP-based version

and wrote an optimized implementation through a series of cached

binning operations and the use of 16-bit short integers to store rank-

transformed gene expression data. All performance sensitive parts of

the algorithm, including the Data Processing Inequality (DPI) imple-

mentation, now support multi-threading, thus taking advantage of

available computer architectures.

Additionally, while the original ARACNe implementation relied

on a multiple Matlab scripts for pre and post processing while the

core algorithm was implemented in Cþþ. The new version is

streamlined and entirely implemented in a single JAVA executable

removing the need for proprietary software and allowing for plat-

form-independent use. ARACNe requires Gene Expression Profile

(GEP) data and a predefined list of gene regulators (e.g.

Transcription Factors – TFs) as input. Running ARACNe involves

three key steps.

1. MI threshold estimation. This preprocessing step identifies a sig-

nificance threshold of MI values from the GEPs provided. The

threshold depends on the number of samples provided in the

input.

2. Bootstrapping/MI network reconstruction. In this phase MI net-

works are reconstructed for randomly sampled GEP. For N such

bootstraps of the data N MI networks are generated. The calcu-

lation of the networks involves three steps: (a) Compute MI for

every TF/Target pair after rank-transformation of the GEPs. (b)

Removal of non-statistically significant connections using the

MI threshold. (c) Removal of indirect interactions by applying a

Data Processing Inequality tolerance filter (DPI, Margolin et al.,

2006).

3. Building consensus network. A consensus network is computed

by estimating the statistical significance of the number of times a

specific edge is detected across all bootstrap runs, based on a

Poisson distribution. Only significant pairs are kept (P<0.05,

Bonferroni corrected).

2.2 Adaptive partitioning
The Mutual Information between two variables is probabilistic

measure of their statistical dependence (Steuer et al., 2002).

Computing the MI from gene expression profiles usually requires

estimating joint and marginal gene expression probability densities.

In the original ARACNe implementation (FB), this was achieved by

dividing the gene expression space into discrete bins of fixed size.

The original ARACNe algorithm was based on the FB MI-esti-

mator, which generated equisized bins (Margolin et al., 2006). The

number of bins selected for the analysis depended on the number of

samples and had to be chosen in a preprocessing step. To address

these limitations, we introduced an alternative AP-estimator. The

two dimensional space are still divided into discrete bins but, in con-

trast to the FB algorithm, there is not a preset data-driven partition

size. Rather, the space is divided in an adaptive fashion following

the local data distribution. The space is split recursively into quad-

rants at the means (Fig. 1A). The stopping condition for the recur-

sive procedure is met when a uniform distribution (assessed by v2

test) between the newly created quadrants is reached or fewer than

three data points fall into the quadrant to be split.

2.3 Datasets/hardware
In order to test the performance of ARACNEe-AP in terms of speed

and qualitative MI assessment, we ran multiple benchmarks. We

compared computational speed and tested the impact of the AP esti-

mation of the joint density distribution compared to FB using 533

TCGA Breast invasive carcinoma samples (TCGA, 2012). The tran-

script raw counts were RPKM transformed and filtered for genes

with zero counts leaving 13 812 genes. As regulators we used 1331

genes annotated as ‘regulators of transcription’ and ‘DNA-binding’

in Gene Ontology (GO, 2013). We calculate all pairwise MIs be-

tween 20 318 genes and express the speed as MIs per second. All the

tests shown were performed on a multi-core Intel Xeon E5-2630

CPU.

3 Results and discussion

We ran ARACNe-AP on the TCGA Breast invasive carcinoma data-

set, obtaining a network with 1331 regulators, 13 546 targets and

100 580 interactions. ARACNe-AP maintains the capability to iden-

tify regulator-target relationships that would be otherwise missed by

simple correlation techniques or other linear similarity measures

(Supplementary Fig. S1), e.g. that between E2F1 and CCND1

(Cyclin D1) (Fig. 1A), a ChIP-Seq validated interaction (Lachmann

et al., 2010) that controls cell cycle progression (Sherr, 1994). The

example of E2F1 regulating CCND1 highlights the advantage of

non-linear measures such as MI to identify complex gene inter-

actions. Indeed, Pearson correlation between E2F1 and CCND1 is

close to 0 and not statistically significant (P¼0.4) while the MI is

highly significant (P¼10� 8). The data shows two sets of statistic-

ally independent relationships between these two genes. A subset of

the samples supports a positive correlation recapitulating that E2F1

Fig. 1. (A) Expression values of E2F1 and CCND1 in the TCGA breast carcin-

oma dataset. Shown are the binning steps of the Adaptive Partitioning to infer

pairwise Mutual Information. (B) Comparison between FB-inferred (x-axis)

and AP-inferred (y-axis) MI values for all TF/gene pairs in the breast cancer

dataset
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can promote its transcription indirectly, through Ras pathway acti-

vation (Berkovich et al., 2003), which in turn up-regulates Cyclin

D1 mRNA synthesis (Croft and Olson, 2006). The negatively corre-

lated samples support the fact that E2F1 can directly inhibit the

transcription of Cyclin D1 (Watanabe et al., 1998).

Both the FB and the AP estimators achieve similar accuracy in the

estimation of gene pairs MI. While the absolute MI values of the two

methods are not directly comparable, the AP algorithm ranks gene

pairs (based on their MI) similarly to the FB algorithm (Fig. 1B).

Networks obtained with ARACNe-AP can be used to calculate regu-

lator activity on a sample-by-sample basis using the ssMARINA algo-

rithm (Aytes et al., 2014). The networks obtained via the FB and AP

methods produce nearly identical inferences of regulatory protein ac-

tivity, based on the differential expression of their regulons

(Supplementary Fig. S4). However, the AP version of ARACNe pro-

vides a 200� gain in computational efficiency, thus greatly reducing

execution time. Specifically, the optimized AP implementation

(ARACNe-AP) can process an average of 31 610 MI/s, compared to

only 160 with the original ARACNe implementation (ARACNe-FB)

(Supplementary Fig. S2). Furthermore, ARACNe-AP is fully multi-

threaded, yielding an additional speed increase on typical CPUs pro-

portional to the number of available cores. A mainstream multi-

threaded CPU can process almost 200 000 gene-pair MI/s

(Supplementary Fig. S5). ARACNe-AP is also more efficient (2� on

average) in terms of memory usage, compared to ARACNe-FB,

due to optimization and use of 16-bit short integers to store rank-

transformed gene expression values, allowing the processing of data-

sets up to 65 536 samples (Supplementary Fig. S3). In conclusion,

ARACNe-AP is more than two orders of magnitude faster than the

previous ARACNe-FB implementation, while requiring only 50% of

the memory. Among others, the ARACNe-AP implementation has

been successfully applied to reverse engineering a T-ALL context spe-

cific transcriptional network which has resulted in elucidating

RUNX1 as a tumor suppressor gene in this cancer (Della Gatta et al.,

2012), and to reverse engineering a prostate cancer specific network

leading to identification of FOXM1 and CENPF as synergistic

Master Regulators of aggressive disease (Aytes et al., 2014).

Networks inferred by the improved algorithm are virtually iden-

tical to those inferred by the original one, both in terms of pairwise

MI inference and overall network topology. Yet, the improvements

provided by the new implementation have critical repercussions in

the field of gene network analyses, as they allow the reconstruction

of gene networks from datasets with up to 500 samples in less than

one hour. Thus, a 100-bootstrap ARACNe analysis can be run on a

standard desktop computer without the need for specialized super-

computers. In contrast, a 100-bootstrap run of ARACNe-FB would

require a minimum of 100 supercomputing cores to be completed in

a comparable amount of time, thus requiring expensive computa-

tional infrastructure not available to the majority of researchers.

Finally, removal of proprietary Matlab code and consolidation of

the algorithm into a single, platform-independent Java executable

significantly increases ease of use and deployment
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