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ABSTRACT Erythrocyte ghosts were loaded with pancreatic DNase I and fused with Y-1 
adrenal tumor cells to test the possibility that this enzyme might inhibit the steroidogenic 
responses of the cells to ACTH and cyclic AMP. Fusion of erythrocyte ghosts loaded with 
DNase I, but not those containing albumin, ovalbumin, boiled DNase I, or DNase I with 
excess G-actin, inhibited the increase in production of 20a-dihydroprogesterone produced 
by ACTH and dibutyryl cyclic AMP; inhibition was concentration-dependent with 50% 
inhibition by 3 x 107 molecules of DNase I per cell. It was found that inhibition by DNase I 
was exerted at the step in the steroidogenic pathway at which cholesterol is transported to 
mitochondria where steroidogenesis begins. This was shown by measuring transport of 
cholesterol into the inner mitochondrial membrane, by measuring the production of pregnen- 
olone by isolated mitochondria and by demonstrating that DNase I was without effect on the 
conversion of pregnenolone to 20a-dihydroprogesterone (an end-product of steroid synthesis). 
The actin content of Y-1 cells was measured by two methods based upon inhibition of DNase 
I and by SDS gels following centrifugation. The cells were found to contain 2-3 x 107 
molecules of actin per cell of which two-thirds is present as G-actin. Since DNase I is known 
to bind to G-actin to give a one to one complex, these and other findings suggest that at least 
some of the G-actin in the cells may be necessary for the steroidogenic responses to ACTH 
and cyclic AMP. 

The process of steroid biosynthesis involves the mobilization 
of stored cholesterol that is transported from the cytoplasm 
to the inner mitochondrial membrane, where the steroid binds 
to a cytochrome P-450 that converts it to pregnenolone (9, 
24); this conversion is referred to as side-chain cleavage. 
Pregnenolone is converted to the final secreted steroid hor- 
mones by a series of enzymatic reactions most of which are 
extramitochondrial (9, 24). 

For many investigations of steroid synthesis, an adrenal 
tumor cell called Y-1 (American Type Culture, Rockville, 
MD) has proved extremely useful (10-12, 15). These cells 
produce a number of steroids of which 20~-dihydroprogester- 
one can be taken as representative. It is possible to measure 
the transport of cholesterol to mitochondria (l 7), or into the 
inner mitochondrial membrane (10, I l) in adrenal ceils, by 
inhibiting side-chain cleavage with aminoglutethimidehany 
cholesterol transported to the inner membrane accumulates 
there because it cannot enter the steroidogenic pathway in the 
presence of the inhibitor. MoFeover, when the aminogluteth- 
imide is removed, the production of pregnenolone can be 

measured by incubating isolated mitochondria; the conver- 
sion of the cholesterol to pregnenolone demonstrates that the 
accumulated cholesterol is used for steroid synthesis in the 
mitochondrial membrane (10, 11). 

Considerable interest has been shown in the mechanism of 
intracellular transport of cholesterol because it is stimulated 
by ACTH and cyclic AMP (4, 5, 10, 22). Moreover, since this 
stimulation was shown to be inhibited by cytochalasin B (4, 
5, 10, 21), it was proposed that microfilaments may be in- 
volved. This idea received strong support when it was reported 
that monospecific antibodies to actin, when injected into Y- 
1 cells via liposomes, inhibited the stimulation of cholesterol 
transport by ACTH and dibutyryl cyclic AMP (l 0). The major 
limitation of the liposome procedure lies in the fact that 
adherent liposomes containing the substance to be injected, 
remain attached to the cells so that it is difficult to determine 
how much of the substance in question has actually been 
delivered to the interior of the cell. The use of erythrocyte 
ghosts provides a possible solution to this problem since 
injection is efficient (e.g., references 3, 14), and the erythro- 
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cytes can be destroyed by lysis after injecting their contents, 
with the result that uninjected material is removed (14). It 
was decided to determine whether DNase I, injected via 
erythrocyte ghosts into Y- 1 cells, is capable of inhibiting the 
steroidogenic responses of these cells to ACTH and dibutyryl 
cyclic AMP, Since pancreatic DNase I is known to bind to 
G-actin in a quantitative manner (34) and thereby to prevent 
polymerization ofactin, this approach has enabled us to study 
the role of actin in the responses to the two stimulating agents 
in greater detail. 

MATERIALS AND METHODS 

Cell Culture 
Y-1 adrenal tumor cells were cultured in medium containing horse serum 

and fetal calf serum in plastic dishes as described elsewhere (10, 11). Each 
experiment was performed with cells from the same subculture, that is, all 
plates used in any one experiment were prepared from one batch of ceils by 
subculture at one time. In preparation for an experiment medium was removed 
and cells were washed twice with phosphate-buffered saline. Experiments were 
performed in minimal Eagle's medium. In some studies, Y-1 cells were removed 
from plastic dishes by incubation with EDTA (0.5 mM) in phosphate-buffered 
saline at 37"C for 5 min. The cells were readily removed by scraping with a 
rubber policeman. The plates were washed with serum-containing medium and 
the cells were collected from the pooled washings by centrifugation. 

Erythrocyte Loading and Fusion 
Blood was taken from rabbits via the ear vein into a heparinized syringe. 

The procedure for loading and fusion was that described by Schlegel and Reich- 
steiner (25). Briefly, the erythrocytes were washed, swollen in hypotonic buffer 
containing the substance to be loaded, and then restored to their previous shape 
(sealed) by addition of one-tenth volume of 10-fold concentrated buffer. The 
erythrocyte suspension was added to Y-I cells in minimal Eagle's medium 
containing bacterial phytohemagglutinin (50 #g/ml) to promote adhesion. 
Fusion was achieved by addition of polyethylene glycol 6000 (44% wt/vol). 
The polyethylene glycol was prepared as described in reference 25. After l min, 
the polyethylene glycol was diluted with a threefold excess of Hunk's solution. 
After 30 rain at room temperature, the medium was removed, cells were washed 
with phosphate-buffered saline, which was followed by addition of minimal 
Eagle's medium. The cells were then ready for use in an experiment. The 
loaded erythrocytes were fused with Y-1 cells either immediately after prepa- 
ration or 12 h later. In a few studies, the loaded erythrocytes were kept for as 
long as 3 d before fusion without any discernible change in efficiency of loading. 
Unless otherwise stated, Y-1 cells were examined for steroidogenic responses 
and for efficiency of loading 12 h after fusion. Cells were examined at other 
times in studies not reported here. Our conclusions were not changed by these 
additional studies. If cells fused with erythrocytes containing buffer or control 
proteins, such as serum albumin, were incubated in the usual medium contain- 
ing serum and incubated under our usual conditions, instead of being used in 
these experiments, the cells continued to divide and to secrete steroids at a 
normal rate during a period of at least 7 d. Such cells could be subcultured to 
produce viable cells that appeared normal by light microscopy. 

When Y- 1 cells were fused with erythrocytes loaded with fluorescent albumin 
or DNase I, 300 cells were counted per plate by phase-contrast microscopy and 
the percentage showing fluorescence was determined by fluorescence micros- 
copy. In some studies, DNase I labeled with fluorescein isothiocyanate (FITC), 
was injected into Y-1 cells via erythrocyte ghosts. The cells were also incubated 
in medium containing the specific mitochoodrial marker 3,3'-diethyloxacar- 
bocyanine iodide, commonly abbreviated DiOC2(3). The dye was dissolved in 
l0 ~l of ethanol and added to the medium at a final concentration of 20 ~g/ 
ml. The cells were examined by means ofa Leitz diavert microscope using two 
filters in succession to determine the distribution of the injected fluorescent 
DNase I in relation to the fluorescently labeled mitochondria. The FITC label 
is detected by a Leitz N-2.1 filter, while DiOC2(3) is observed with a Leitz I-2 
filter. The properties of DiOC2(3) as a specific mitochondrial marker are 
described in reference 27. 

method (18). Measurement of this substance provides a reliable index of total 
steroid production by Y-I cells. Duplicate determinations on one sample of 
medium show differences of less than 5% of the mean. 

T R A N S P O R T  OF  C H O L E S T E R O L  T O  M I T O C H O N D R I A :  T O  measure 
transport of endogenous cholesterol from stores in the cytoplasm to the inner 
mitochondrial membrane, we inhibited the conversion of cholesterol to preg- 
nenolone in that membrane by incubating Y-1 ceils in a medium containing 
aminoglutethimide (0.76 mM). Cholesterol transported to the membrane ac- 
cumulates because it cannot enter the steroidogenic pathway. Subtraction of 
the cholesterol content of the membrane at zero time gives an accurate measure 
of cholesterol transport. The method has been described elsewhere (12). The 
inner mitochondrial membrane was prepared by the method of Yago et al. 
(37). 

P R O D U C T I O N  O F  P R E G N E N O L O N E  BY I S O L A T E D  M I T O C H O N -  

D R IA: Not all the cholesterol in adrenal mitochondria is available for con- 
version to pregnenolone. The steroidogenic pool of cholesterol can be studied 
by incubating the cells with aminoglutethimide (0.76 raM) and after incubation, 
cells are homogenized and mitochondria are prepared. The mitochondria are 
washed to remove aminoglutethimide and incubated at 30"C. The production 
of pregnenolone is measured. The method has been described elsewhere (12). 

Miscellaneous 
Cells were counted in a Coulter counter (Coulter Electronics Inc., Hialeah, 

FL) or in a hemocytometer, lodination of DNase I was performed by the 
method of Bolton and Hunter (2). The specific activity of each preparation 
used was determined by adding a known amount of unlabeled DNase I to the 
iodinated preparation followed by determination of t2sI in the mixture. The 
mass of the [125I]DNase I before dilution was negligible in relation to the 
amount of added DNase I. Cholesterol was measured by a fluorometric proce- 
dure using cholesterol oxidase (7). Methods for measuring pregnenolone and 
20a-dihydroprogesterone by radioimmunoassay have been published (4, 20). 
The methods involved in measuring the conversion of [7a-3H]pregnenolone to 
20a-[3H]dihydroprogesterone have been given elsewhere (10, 11). Rhodamine 
and FITC derivatives of proteins were prepared by a standard procedure (8). 
To measure the amount of injected [~25I]-labeled protein, one must remove 
bound erythrocytes after fusion with Y-I cells. Lysis of erythrocytes after fusion 
was performed by adding a solution of 0.83% ammonium chloride in water 
(wt/vol) for 10 min. The solution was removed and the procedure was repeated 
twice more. The cells were then washed twice with phosphate-buffered saline 
and then examined (14). The procedure removes virtually all erythrocytes from 
the preparation without removing or detectably altering the Y- 1 ceils. In some 
studies, Y-I cells, treated with NI-hC1 in this manner, were incubated in 
complete (serum-containing) medium. Basal steroid synthesis and the response 
to ACTH were not significantly different from values observed with cells 
similarly treated with normal saline instead of ammonium chloride. The Y-1 
cells are then dissolved in 1.0 ml of 2 N sodium hydroxide to measure ~251. 
Because commercial pancreatic DNase I shows a number of trace contaminants 
on SDS gels, highly purified DNase 1 was prepared by subjecting the commercial 
preparation to column chromatography as described by Wang and Moore (28). 
The purified enzyme shows a single band on SDS gels correspnding to a 
molecular weight of -32,000. This DNase I was also used for iodination. 

Protein biosynthesis was measured by incubating Y-1 cells with 3H-leucine 
(0.5 #C; 0.5 #mol/ml) followed by precipitation with trichloroacetic acid (29). 
Synthesis of DNA was measured by incubating ceils with 3H-thymidine (1.0 
#C; 0.5 nmol/ml) followed by measurement of [3H]DNA (30). Oxygen con- 
sumption of mitochondria was measured by means of a Clark electrode (31). 
Adrenal cell actin was prepared as described previously (13). 

Materials 
DNase I from pancreas, bovine serum albumin, ovalbumin, and the reagents 

necessary for preparing fluorescent derivatives of proteins were obtained from 
Sigma Chemical Co. (St. Louis, MO). Radioactively labeled steroids and the 
BoRon Hunter reagents were obtained from New England Nuclear (Boston, 
MA). Aminoglutethimide was a generous gift from Ciba-Geigy Corp., (Phar- 
maceuticals Div., Summit, NJ). DiOC2(3) was purchased from Molecular 
Probes (Junction City, OR). Other materials were obtained as previously 
described (10, 11, 20, 21). Polyethylene glycol was obtained from Sigma 
Chemical Co. 

Steroid Synthesis 
Three methods were used in these studies to measure cellular functions 

related to steroid production by Y- I cells: 
P R O D U C T I O N  O F  2 0 o t - D I H Y D R O P R O G E S T E R O N E :  Samples of the 

incubation medium were subjected to radioimmunoassay by an established 

RESULTS 

Injection of Fluorescent Proteins 
When erythrocyte ghosts were loaded with albumin labeled 

with rhodamine or FITC, >95% of the cells showed fluores- 
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FIGURE 1 Loading of Y-1 cells with fluorescent albumin by erythrocyte ghosts. Y-1 cells were grown in plastic culture dishes. 
Cells were washed and fused with erythrocyte ghosts loaded with fluorescent albumin (rhodamine labeled). After loading, 
erythrocytes were subjected to lysis with ammonium chloride (see Materials and Methods) and then examined with an Olympus 
microscope. Phase-content (left) and fluorescence microscopy (right) are shown with the same field, x210. 

cence. When these erythrocytes were fused with Y-1 cells, 73- 
89% of the cells (81 ___ 8% means and ranges for four deter- 
minations), showed intracellular fluorescence (Fig. 1). At- 
tached fluorescent erythrocytes were clearly visible. Entry of 
fluorescent protein began within a few minutes of fusion and 
reached maximal intensity within 5 min as judged by fluores- 
cence microscopy. On careful focusing, no fluorescence was 
seen in the nucleus. Moreover when DiCO2(3) was used to 
label mitochondria, double fluorescence labeling showed no 
FlTC-labeled DNase I associated with the fluorescence mito- 
chondria. 

Injection of [1251]DNase I 

The amount of [J25I]DNase I injected into Y-1 cells from 
erythrocyte ghosts was measured by subjecting the erythro- 
cytes to lysis after fusion with Y-1 cells. The Y-1 cells were 
then dissolved in NaOH and ~25I was determined by gamma 
counting. The amount of DNase I injected increased linearly 
with the number of loaded erythrocytes added until saturation 
was approached (Fig. 2A). Values shown on the ordinate 
represent the number of molecules of DNase I per cell; many 
of the cells added do not fuse with the Y-1 cells. The number 
of Y-I cells present per plate was 1.48 x 10 6 __+ 0.2 x 106 
(mean and ranges for the l0 plates used in the experiment 
shown in Fig. 2A). At 2.5 x l 0  7 erythrocytes the ratio of 
erythrocytes added to Y-1 cells was approximately 17. The 
values for DNase I per cell on the ordinate of Fig. 2 were 
calculated from the specific radioactivity of DNase I (106 
cpm/mg) and the molecular weight of DNase I (31,500). The 
values for injected DNase I shown in Fig. 2, A and B, were 
determined 12 h after injection. 

It should be pointed out that if only 80% of the cells were 
loaded, the loaded cells would contain more DNase I than 
that calculated on the basis of uniform distribution of the 
injected protein. However, the cells that did not appear to be 
loaded with fluorescence may have received some of the 
fluorescent protein that could escape detection. 

When the concentration of [~25I]DNase I in the loading 
solution was varied and the number of erythrocytes and Y-1 
cells remained constant, the amount of DNase I loaded per 
cell showed a linear relationship to the concentration of 
DNase I (Fig. 2 B). 

To determine whether DNase I released by erythrocyte lysis 
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FIGURE 2 Loading of Y-1 cells with DNase I from erythrocyte 
ghosts. (A) erythrocyte ghosts were loaded with [1251]DNase I (106 
cpm/mg protein). Erythrocytes, in the numbers shown on the ab- 
scissa, were fused with Y-1 cells at ~80% confluence (i.e., 80% of 
the number of cells per dish at confluence: 2 × 106 for a 35-mm 
dish). After fusion, erythrocytes were subjected to Iysis by ammo- 
nium chloride. Y-1 cells were washed and removed from the plates 
by incubation with EDTA. An aliquot of the cells was counted in a 
hemocytometer. The remaining cells were collected by centrifuga- 
tion and dissolved in NaOH. The content of 1251 was determined in 
the NaOH solution. The values shown are means and ranges for 
duplicate determinations. (B) Studies performed in which concen- 
tration of [1251]DNase I in the solution used to load the ghosts was 
varied. The number of ghosts added to the Y-1 cells was constant 
(2.5 x 107 per plate). The ordinate shows the number of molecules 
of DNase I per cell as before. Specific activity of [1251]DNase I was 
106 cpm/mg. Molecular weight of DNase I is 31,500. 

bound to the surface of Y-1 cells, we added erythrocytes 
loaded with [J25I]DNase I to Y-1 cells and subjected the ghosts 
to lysis with ammonium chloride without fusion to the cells. 
The cells were washed as described in Materials and Methods, 
dissolved in NaOH and the solution was subjected to gamma 
counting to determine the amount of bound 12~I. Values were 
<1% of the radioactivity injected into the cells. Such low 
surface adsorption of [125I]DNase I would not significantly 
alter the above calculation. 

Influence of DNase I on the Steroidogenic 
Response to ACTH and Cyclic AMP 

P R O D U C T I O N  OF 2 0 a - D I H Y D R O P R O G E S T E R O N E "  
Fig. 3 shows that ACTH and cyclic AMP stimulate the 
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FIGURE 3 Influence of DNase I on steroidogenesis by Y-1 cells. Y- 
1 cells were fused with erythrocyte ghosts containing bovine serum 
albumin (BSA) or DNase I. 12 h after fusion, cells were washed, 
fresh medium was added, and the product ion of 20a-dihydropro- 
gesterone was measured at the times shown. Values are means and 
ranges of duplicate determinations. In each such case, the range 
was <8% of the mean value shown. The concentrations of ACTH 
and dibutyryl cyclic AMP used were 86 mU/ml and 1 mM (final 
concentration), respectively. The loading solutions were prepared 
with albumin or DNase I at a concentration of 2 mg/ml. The cyclic 
AMP used was the dibutyryl ester. 

production of 20a-dihydroprogesterone by Y-1 cells after 
fusion with erythrocyte ghosts containing albumin. In these 
cells the response to dibutyryl cyclic AMP is usually somewhat 
greater than that to ACTH and sodium butyrate is without 
effect on steroid synthesis by these cells (unpublished). Vari- 
ation in the duration of linear production of 20a-dihydropro- 
gesterone is seen from one subculture of Y- 1 cells to another, 
but within one subculture little variation is seen from one 
dish to another. It can also be seen from Fig. 3 that the 
responses to ACTH and cyclic AMP are inhibited by fusion 
with erythrocyte ghosts containing pancreatic DNase I. For 
example, at 60 rain the response to ACTH is inhibited by 
-60% and that to dibutyryl cyclic AMP by >70%. Since not 
all cells are loaded with detectable amounts of the injected 
material (in this case DNase I), greater inhibition could have 
resulted with higher efficiency of injection. Numerous other 
studies have shown that fusion of erythrocytes containing 
phosphate-buffered saline is without effect on steroid produc- 
tion by the cells, e.g., control 0.11 _+ 0.03; ACTH 0.82 _+ 0.03; 
ACTH plus erythrocyte fusion 0.84 _ 0.06 nmol/106 cells 
incubated for 60 min (means and ranges for duplicate deter- 
minations). The effect of DNase I on the response to ACTH, 
when the number of added erythrocyte ghosts was varied, is 
shown in Fig. 4. The response is dose-dependent; 50% inhi- 
bition of the response corresponds to fusion with 2 x 107 
erythrocytes per plate. From Fig. 2, it can be seen that this 
represents ~3.0 × 107 molecules of DNase I per cell. 

TRANSPORT OF CHOLESTEROL TO INNER MITO- 
CHONDRIAL MEMBRANE: Numerous studies already re- 
ported (10, 1 l) show that, under the conditions described in 
Fig. 5, there is no net transport of cholesterol to mitochondria 
within 30-min incubation of Y- 1 cells in the absence of ACTH 
and cyclic AMP. Fig. 5 shows that fusion of Y-1 cells with 
erythrocyte ghosts containing pancreatic DNase I inhibits the 
stimulation of cholesterol transport produced by ACTH. In- 
hibition at 30 rain is -60%. 

PRODUCTION OF PREGNENOLONE BY ISOLATED MI- 
TOCHONDRIA: Using the method described in Materials 
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and Methods, it is possible to show that the stimulation of Y- 
1 cells by ACTH results in increased production of pregnen- 
olone by isolated mitochondria (10, I 1). It can be seen from 
Fig. 6, that this stimulation is inhibited by fusion of Y-l cells 
with erythrocyte ghosts containing DNase I before addition 
of ACTH. In the experiment shown in Fig. 6, inhibition was 
~75% at 30 min. 

Numerous studies have shown that fusion of Y- l cells with 
erythrocyte ghosts containing buffer or bovine serum albumin 
is without demonstrable effect on either of these last two 
responses to ACTH, i.e., transport of cholesterol to the inner 
mitochondrial membrane or production of pregnenolone by 
isolated mitochondria (data not shown). 

DNase I and the Conversion of Pregnenolone to 
20a-Dihydroprogesterone 

The later steps in the steroidogenic pathway can be studied 
by incubating Y- l cells with [3H]pregnenolone and measuring 
the production of [3H]-20a-dihydroprogesterone (12). When 
Y-I cells are incubated with [7a-3H]pregnenolone (10 s cpm; 
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FIGURE 4 Influence of concentration of DNase I on the steroido- 
genic response to ACTH. Y-1 cells were fused with erythrocyte 
ghosts containing bovine serum albumin (BSA) or DNase I. Numbers 
in parentheses refer to the number of erythrocytes added to one 
plate of Y-1 cells. 12 h later cells were washed, fresh medium was 
added, and steroid product ion was measured after a 60-min incu- 
bation. Bars represent means and ranges for duplicate determina- 
tions. The concentration of ACTH used was 86 mU/ml and the 
loading solution contained DNase I at a concentration of 2 mg/ml. 
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FIGURE 5 The effect of DNase I on the stimulation of cholesterol 
transport in Y-1 cells by ACTH. Large dishes of Y-1 cells (4 x 108 
cells per dish) were fused with erythrocytes containing bovine 
serum albumin (BSA) or DNase I. 12 h later, cells were washed and 
incubated with medium containing aminoglutethimide (final con- 
centration 0.76 mM) for the times shown. Thereafter inner mito- 
chondrial membrane was prepared and the cholesterol content was 
determined. 
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FIGURE 6 The effect of DNase I on production of pregnenolone 
by adrenal cell mitochondria. Y-1 cells were either fused with 
erythrocytes ghosts containing BSA (0) of DNase I (O) or were not 
fused with erythrocytes at all (A). 12 h later, cells were washed and 
incubated with medium containing aminoglutethimide (final con- 
centration 0.76 raM) with (O, 0) and without (A) ACTH (86 mU/ml) 
for 30 min. Thereafter mitochondria were prepared and incubated 
for the times shown. Pregnenolone production was measured by 
extracting the medium and mitochondria (Materials and Methods). 

150 nmol) for 30 min after fusion with ghosts containing 
albumin or DNase I, the [3H]20a-dihydroprogesterone can be 
isolated by thin layer chromatography ( 10, 11), and measured 
by liquid scintillation spectrometry. In one experiment, the 
following values were found: erythrocyte ghosts containing 
albumin, 34,000 __. 4,000 cpm; erythrocyte ghosts containing 
DNase I, 35,000 _+ 3,200 cpm (means and ranges for triplicate 
determinations). 

Content of Actin in Y- l Cells 

The content of G- and F-actin in Y-1 cells was determined 
by three methods, namely, (a) an assay based on inhibition 
of DNase I (1), (b) an assay based upon immunoprecipitation 
of the complex formed between G-actin and DNase I (26), 
and (c) an assay based upon SDS gels following homogeniza- 
tion and centrifugation of the cells (23). The table shows that 
values from the three methods are in reasonable agreement. 
The lower values seen with the third assay may reflect limi- 
tations inherent in the method, e.g., limited proteolysis of 
actin and difficulties associated with densitometric determi- 
nation of actin bands on SDS gels. It appears that two-thirds 
of the total actin is present in the monomeric form. 

Examination of Mitochondria 

After injection of [~2SI]DNase I from erythrocyte ghosts, 
subcellular fractionation showed that <5% of the injected 
DNase I was associated with mitochondria. In other studies, 
oxygen consumption of isolated mitochondria was measured 
and found not to be altered significantly by injection of DNase 
I. For example, values (nanomoles Oz per minute per milli- 
gram mitochondrial protein) were as follows with saturating 
levels of succinate: 94 __. 8 and 96 _+ 4 (means and ranges for 
four determinations), for mitochondria injected with albumin 
and DNase I, respectively. Similarly values with malate and 
isocitrate were unaltered by DNase I (not shown). 

Cellular Functions after Injection of DNase I 

Fig. 7 shows that incorporation of [3H]thymidine into DNA 
by Y-1 cells was not altered after injection of DNase I when 

compared with ceils injected with albumin. When cell num- 
bers were measured 2 d after injection of DNase I or albumin 
no difference was observed, e.g., values for four plates were 
as follows: 1.81 _ 0.2 x 106 for DNase I and 1.75 _ 0.3 x 
10 6 for albumin (means and ranges for triplicate determina- 
tions). Incorporation of [3H]leucine into protein was not 
affected by injection of DNase I, e.g., after 15-min incubation, 
incorporation was 61 __. 4 pmol of leucine/mg protein and 60 
_ 5 pmol for DNase I and albumin, respectively (means and 
ranges of triplicate determinations). 

It can be seen from Fig. 8 that DNase I treated with excess 
G-actin before injection into Y- 1 cells was without significant 
effect on the response to ACTH when compared with injec- 
tion of albumin, whereas injection of DNase I without actin 
produced the usual inhibition for this response. In previous 
studies we observed, by viscometry, that the loading solution 
does not cause polymerization of G-actin (13). In some stud- 
ies, the time of onset of inhibition by injected DNase I was 
studied by interrupting the process of injection at various 
times after fusion to examine the response to ACTH. Signif- 
icant inhibition was apparent within 10 min, e.g., control 
0.13 _.+ 0.06; ACTH (albumin injection) 0.41 ___ 0.08; ACTH 
(DNase injection) 0.23 _ 0.07 nmol 20a-dihydroprogesterone 
per 106 cells. In these studies steroid production was measured 
immediately after the process of injection was interrupted by 
treatment with ammonium chloride. Two dishes of Y-1 cells 
injected with [125I]DNase I were used to demonstrate that - 2  
x 107 molecules of DNase I were injected per cell at the end 
of 10 min. 

D I S C U S S I O N  

The studies reported here demonstrate that injection of pan- 
creatic DNase I into Y-1 adrenal tumor cells via erythrocyte 
ghosts, inhibits the increase in production of 20a-dihydropro- 
gesterone that is produced by addition of either ACTH or 
dibutyryl cyclic AMP to these cells. Since various other pro- 
teins, including boiled DNase I, did not cause such inhibition, 
this effect appears to be specific for DNase I. Moreover, a 
highly purified DNase I prepared by the method of Wang and 
Moore (28) was also effective in producing inhibition (Re- 
sults). This preparation shows a single band on SDS gels and 
has been used by these investigators for detailed structural 
studies of the enzyme. Evidently inhibition of DNase I cannot 
be attributed to the presence of trace contaminants seen in 
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FIGURE 7 Incorporation of 
[3H]thymidine in DNA by Y-I 
cells injected with DNase I or 
bovine serum albumin. Incor- 
poration of [3H]thymidine was 
measured as described else- 
where (29). Y-I cells were in- 
cubated with [3H]thymidine 
(1.5 nmol; 3.0 #Ci) per dish in 
2 ml of minimal Eagle's me- 
dium. Incubation was contin- 
ued for 2 h. After incubation 
the specific activity of DNA 
was measured. Values repre- 
sent means and ranges of du- 
plicate determinations. The Y- 
1 cells were injected with 
DNase I 12 h before incuba- 
tion with [3H]thymidine. 
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commercial preparations. The procedure of fusing erythrocyte 
ghosts with Y- 1 cells does not itself affect steroid production 
or the response to ACTH (Results), and in any case the present 
studies were accompanied by control dishes in which the cells 
were fused with ghosts containing albumin or some other 
suitable protein, e.g., ovalbumin, boiled DNase I, or buffer. 

In view of the well-known effect of DNase I in binding 
monomeric or G-actin (1), it would be reasonable to suggest 
that this property may be responsible for the inhibitory effects 
of this enzyme observed in our experiments, especially since 
the inhibitory effect of DNase I was overcome by addition of 
G-actin to the enzyme before injection (Fig. 8). This possibil- 
ity is made more likely by previous reports from this labora- 
tory showing that the actions of ACTH and dibutyryl cyclic 
AMP, on steroid production by Y-1 cells, are inhibited by 
antiactin antibodies (10). These findings are also consistent 
with evidence from studies in which cytochalasin B was found 
to inhibit the responses of Y-1 cells to the two stimulating 
agents (20, 21). In addition, inhibition by various members 
of the cytochalasin family was found to correlate closely with 
the binding affinity of these different cytochalasins to Y-1 cell 
actin (13). Other investigators have confirmed these findings 
in normal adrenal cells (5). Furthermore, antiactin antibodies 
have been shown to inhibit the steroidogenic responses of 
ovarian (32) and testicular cells (11) to luteinizing hormone. 

The probability that these three substances (DNase I, an- 
tiactin, and cytochalasin) all act by inhibiting the normal 
functions of actin in these cells, is greatly increased by the 
fact that all three agents inhibit the same step in the steroi- 
dogenic pathway, namely the transport of cholesterol into 
mitochondria (Results and references 4, 10). It is now clear 
that increased transport of cholesterol from cytoplasm to 
mitochondria, is at least one cellular activity involved in 
steroid synthesis that is stimulated by ACTH and cyclic AMP 
and is likely to be important in increasing the synthesis of 
steroids (4, 10, 11, 20). Unfortunately little is known concern- 
ing the molecular basis of the transport process. The choles- 
terol must be moved from depots in the cytoplasm to the 
mitochondria and must then move to the inner mitochondrial 
membrane so that at least two steps are involved in this 
process (to the mitochondria and within the mitochondria). 
Since FITC-labeled DNase I was not seen in structures that 
showed fluorescence with DiOC2(3) and since mitochondria 
showed little ~25I after injection of [~zSI]DNase I (Results), it 
would seem most likely that the enzyme acts outside these 
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FtGURE 8 The influence of actin on the inhibitory action of DNase 
I. Y-1 cells were injected from erythrocyte ghosts, with the proteins 
shown (DNase I and bovine serum albumin), before incubation for 
20 rain with and wi thout  ACTH to determine production of 20a- 
dihydroprogesterone. The loading solution of DNase I contained 2 
m 8 of this protein per milliliter. In one pair of flasks, DNase I was 
mixed with excess G-actin before Ioadin 8 into erythrocytes. Values 
are means and ranges of duplicate determinations. 
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organelles and hence that inhibition by DNase I takes place 
at the step(s) in which the cholesterol is moved through the 
cytoplasm. Moreover, there is at present no clear evidence 
that mitochondria contain actin (33). In the outer mitochon- 
drial membrane, there is too much cholesterol, most of which 
is presumably not concerned with steroidogenesis, to make 
accurate measurements of the small amount of additional 
cholesterol transported to the membrane for steroid synthesis. 
The cholesterol content of the inner membrane is lower and 
the difference due to the steroidogenic cholesterol can be 
accurately measured (10, 11). Therefore, our earlier studies 
with cytochalasin (13, 21) and antiactin (10, 11) failed to 
distinguish between transport to, as opposed to transport 
within, the mitochondrion. The present experiments, how- 
ever, provide some evidence in favor of involvement of actin 
(and hence ACTH) in transport of cholesterol through the 
cytoplasm as opposed to that within the mitochondrion al- 
though they do not exclude an additional effect produced by 
ACTH by some other mechanism. 

In this connection, the specificity of the action of DNase I 
requires consideration to exclude possible effects on cellular 
components other than actin--especially DNA. In the first 
place, fluorescence microscopy suggested that the enzyme is 
excluded from the two principal sites of location of cellular 
DNA, namely, the nucleus and mitochondria (Results). Sec- 
ondly, a variety of cell functions, including incorporation of 
[3H]thymidine into DNA (nuclear function) and oxygen con- 
sumption by mitochondria, were unaffected by injection of 
DNase I. It seems clear that the action of DNase I reported 
here is not the result of a nonspecific effect on other cellular 
activities. 

One advantage of erythrocyte ghosts as opposed to lipo- 
somes, as agents for the delivery of various compounds into 
cells, lies in the ease with which erythrocytes can be removed 
by lysis after they have delivered the entrapped material to 
the fused cells. This allows the investigator to measure the 
amount of a radioactive compound injected into the cells 
without the complication of bound but uninjected material. 
It was found that >5 x 107 molecules of DNase I can be 
injected per cell. Unfortunately, we have not been able to 
measure the amount injected in the same cells as those used 
to measure the steroidogenic responses to ACTH and cyclic 
AMP. However, the accompanying data show that the pro- 
cedure is reproducible, so that values for amounts injected 
determined on separate dishes provide a reasonable approxi- 
mation for other dishes treated in the same way. It was found 
that 3 × 107 molecules of DNase I per cell caused a 50% 
inhibition of the steroidogenic response to ACTH (Fig. 4). 
Fluorescence studies show that -80% of cells are loaded, so 
that as much as 3.6 x 107 molecules per cell may be present 
in the loaded cells. This should be considered an upper limit 
because some cells may have received some fluorescent pro- 
tein without this being detectable under the microscope. In 
that event, the cells containing greater concentrations of 
DNase I may have been more severely inhibited than those 
containing smaller amounts. It is interesting to notice that the 
number of molecules ofDNase I at 50% inhibition (3.0 × 107 
per cell) is of the same order of magnitude as the total content 
of actin in these cells (2-3 x 107 molecules per cell). Of this 
actin about two-thirds is monomeric of G-actin (Table I). 
DNase I acts by binding G-actin in a 1:1 complex (1). More- 
over, Y-1 cells show large numbers of stress fibers, presumably 



TABLE I 

Content of Actin (G and F) in Y-1 Adrenal Tumor Cells 

Act in molecules/cel l  x 107* 

Me thod  (reference) Total G F 

DNase I (1) 2.0 _ 0.5 1.5 _ 0.3 0.5 + 0.1 
Ant i -DNase I (26) 1.9 _ 0.4 1.3 _+ 0.2 0.6 _+ 0.1 
SDS gels (26) 1.2 0.8 0.4 

* Means and ranges for duplicate determinations. 

composed largely of F-actin which does not bind readily to 
DNase I (1). These considerations suggest that DNase I inhib- 
its the response to ACTH by inhibiting the normal function 
of a limited pool of Y-1 cell actin. Presumably the injected 
DNase I does not distribute at a uniform concentration 
throughout the cell. We (unpublished) and other workers (19) 
have noticed that stress fibers disperse under the influence of 
ACTH as seen on thin section electron microscopy. One 
possibility might be that DNase I prevents G-actin, newly 
released from the dispersing stress fibers, from discharging 
some function related to the intracellular transport of choles- 
terol, although there is, at present, no direct evidence for such 
a suggestion. 

The best-known action of DNase I on actin involves the 
formation of a I: 1 complex between G-actin and the enzyme. 
This association is of high affinity (34-36) and would be 
expected to divert those molecules of G-actin that bind to 
DNase I from their normal functional activities. It is also 
known that DNase I binds F-actin and that this leads to 
depolymerization (34, 35). The binding to F-actin is charac- 
terized by two important differences from binding to G-actin. 
Firstly, binding to F-actin occurs with an affinity that is four 
orders of magnitude lower than that to G-actin (34-36), and 
secondly, binding is slower--1 h as opposed to 10 min to go 
to completion (35). If we assume uniform distribution of 
DNase I injected into Y-1 cells (approximate volume 2 x 10 -6 

ml), the calculated concentration of the enzyme in the cell 
would be ~2 x 10 -7 M. Since the dissociation constants for 
G- and F-actin are, respectively, 10 -8 and 10 -4 M (34, 36), 
unless conditions within the cell (e.g., the influence of actin- 
binding proteins) greatly alter these affinities, it is clear that 
G-actin would be the major target for the injected DNase I. 
It was pointed out in Results that the onset of inhibition by 
the injected DNase is rapid, which also argues for an effect 
on G- as opposed to F-actin. In either case, however, the net 
effect of DNase I would be to shift the equilibrium between 
G- and F- in favor of G-actin either by binding G-actin or by 
depolymerization of F-actin. Moreover, at least some of the 
G-actin released from depolymerization would presumably 
be bound by DNase I so that the overall effect would be that 
of immobilizing G-actin and perhaps some loss of F-actin. 

The three agents that inhibit the response to ACTH affect 
intracellular actin in different ways, so that a common factor 
capable of explaining inhibition of the response to ACTH, is 
not immediately obvious. Cytochalasin inhibits polymeriza- 
tion of G-actin (6) and inhibits association of F-actin into 
complex bundles (16). Antiactin antibodies could presumably 
affect actin and microfilaments in a variety of ways. The only 
available clue is that DNase I appears to act by binding to G- 
actin. This would presumably promote depolymerization of 
microfllaments by turnover. Since a major effect of cytochal- 
asin is to prevent polymerization of G-actin and, since a 

similar effect could reasonably result from combination of 
antiactin with G-actin, the evidence favors inhibition of some 
function requiring G-actin as the basis of inhibition by DNase 
I and perhaps by cytochalasins. This, in turn, would suggest 
that at least some of the G actin in Y-1 cells must be free to 
polymerize if ACTH and cyclic AMP are to stimulate steroid 
synthesis. However, other possibilities cannot be excluded. 
Studies are planned to examine the changes in microfilaments 
seen after injection of DNase I using ultrastructural ap- 
proaches. 
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