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Berry phase theory of planar Hall 
effect in topological insulators
S. Nandy1, A. Taraphder1,2,3 & Sumanta Tewari1,4

The appearance of negative longitudinal magnetoresistance (LMR) in topological semimetals such 
as Weyl and Dirac semimetals is understood as an effect of chiral anomaly, whereas such an anomaly 
is not well-defined in topological insulators. Nevertheless, it has been shown recently in both theory 
and experiments that nontrivial Berry phase effects can give rise to negative LMR in topological 
insulators even in the absence of chiral anomaly. In this paper, we present a quasi-classical theory of 
another intriguing phenomenon in topological insulators – also ascribed to chiral anomaly in Weyl and 
Dirac semimetals– the so-called planar Hall effect (PHE). PHE implies the appearance of a transverse 
voltage in the plane of applied non-parallel electric and magnetic fields, in a configuration in which 
the conventional Hall effect vanishes. Starting from Boltzmann transport equations we derive the 
expressions for PHE and LMR in topological insulators in the bulk conduction limit, and show the 
important role played by orbital magnetic moment. Our theoretical results for magnetoconductance 
with non-parallel electric and magnetic fields predict detailed experimental signatures in topological 
insulators – specifically of planar Hall effect – that can be observed in experiments.

Three-dimensional (3D) topological insulators (TI) as a new class of quantum matter have recently drawn much 
attention in condensed matter physics and materials science1,2. In TIs, a finite energy gap is present in the bulk, 
which is crossed by two gapless surface state branches with nontrivial spin textures protected from backscat-
tering by time reversal symmetry. In these systems, owing to strong spin-orbit coupling, electron spins in the 
surface state branches are aligned perpendicular to their momenta contributing an overall Berry phase of π to the 
fermion wave functions. In addition to the fundamental scientific interest, TIs evince a wide variety of intrigu-
ing transport properties which make them potential candidates for technological applications. For instance, the 
topological protection of the surface states and the nontrivial spin textures can be of interest for spintronic and 
quantum computation applications1.

Several transport studies on TIs have revealed various anomalous quantum phenomena associated with 
the topological surface states, such as the Aharonov-Bohm oscillations in Bi2Se3 nanoribbons3, the weak 
anti-localization in Bi2Se3 and Bi2Te3 thin films4–6, and the two-dimensional SdH oscillations in Bi2Te3

7. Very 
recently, another intriguing phenomenon, negative longitudinal magnetoresistance (LMR) (and conversely, pos-
itive longitudinal magnetoconductivity (LMC)) in the presence of parallel electric and magnetic fields, has been 
discovered from the bulk conduction contribution in 3D topological insulators8–12. The observation of this effect 
in TIs is quite puzzling because the negative LMR in topological semimetals such as Weyl semimetals is widely 
believed to be due to non-conservation of separate electron numbers of opposite chirality for relativistic massless 
fermions, an effect known as the chiral or Adler-Bell-Jackiw anomaly13–23. Several experimental groups have suc-
cessfully observed the chiral anomaly induced negative LMR in Dirac and Weyl materials24–29. But this picture of 
chiral anomaly induced negative longitudinal magnetoresistance does not work in topological insulators because 
chiral anomaly itself is not well defined in these systems. In recent theoretical work, the negative longitudinal 
magnetoresistance in topological insulators has been discussed in terms of non-trivial Berry phase effects in the 
absence of chiral anomaly30.

It was suggested earlier that a positive LMC is not the only effect of chiral anomaly in a topological Weyl sem-
imetal31,32. A second effect of chiral anomaly is the so-called planar Hall effect, i.e., appearance of an in-plane 
transverse voltage when the co-planar electric and magnetic fields are not perfectly aligned to each other, pre-
cisely in a configuration in which the Lorentz force induced conventional Hall effect vanishes. The planar Hall 
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conductivity (PHC) is defined as the transverse conductivity measured along ŷ, in a direction perpendicular to 
the applied electric field and current along x̂, in the presence of a magnetic field in the x − y plane making an angle 
θ with the x axis. This effect is known to occur in ferromagnetic systems33–37 where its origin is non-trivial spin 
topology. Interestingly, it has also been observed recently in the surface states of a topological insulator where it 
has been linked to magnetic field induced anisotropic lifting of the protection of the surface states from backscat-
tering38. The main objective of our work is to suggest the existence of planar Hall effect, from the bulk states of 3D 
topological insulators, in systems exhibiting negative longitudinal magnetoresistance8–12. We use a semi-classical 
Boltzmann transport theory incorporating topological Berry phase effects to show this. In a complete theory we 
also derive the associated expressions for longitudinal magnetoconductivity in topological insulators in the bulk 
conduction limit as discussed previously30. We predict specific magnitudes and direction dependence of PHC and 
LMC on the applied fields that can be tested in experiments.

In this paper we have chosen Bi2Se3 as a reference 3D strong topological insulator and study the PHC and 
LMC expected from its bulk states. This material has been clearly identified as a 3D strong topological insulator 
with a bulk band gap of 0.3 eV, with a single spin-helical Dirac cone on each surface, which has been confirmed 
in angle-resolved photoemission spectroscopy measurement39. Our work on planar Hall effect in this system, 
together with positive longitudinal magnetoconductance30, completes the quasi-classical description of Berry 
curvature induced anomalous magneto-transport phenomena in three dimensional topological insulators in the 
bulk conduction limit.

The rest of the paper is organized as follows. First, we introduce the effective Hamiltonian for the bulk states 
of a 3D strong topological insulator Bi2Se3. Next we derive the analytical expressions of LMC and PHC using 
semiclassical Boltzmann transport equations. Then we show our numerical results on LMC and PHC establishing 
the anomalous features in the transport properties. We also make comparison of our results with existing exper-
imental data. Finally we discuss the experimental aspects of the phenomena observed in our study and end with 
a brief conclusion.

Results
Model Hamiltonian.  The low-energy long-wavelength properties of a 3D topological insulator in the pres-
ence of time reversal and space inversion symmetries can be described by the effective k ⋅ p Hamiltonian. In the 
basis of (ψv↑, ψv↓, ψc↑, ψc↓), where v and c denotes the valence and conduction band, the effective Hamiltonian can 
be written as

 ε τ σ τ σ τ σ τ σ= + + − −×I M V k k V kk( ) ( ) (1)z x y x x x y n y zk k0 4 4 0 0

where ε = + +C C C kk z zk 0
2 2, = + +M M M M kk z zk 0

2 2, and = +k k kx y
2 2 2 with Ci, Mi, and Vi as model 

parameters. σ, τ are the Pauli matrices in spin and orbital space, respectively. In the present work we have taken 
C0 = 0.048 eV, = .C 13 9 eV- Å 2, Cz = 1.409 eV-Å 2, M0 = −0.169 eV, = .M 29 36 eV- Å 2, Mz = 3.351 eV-Å 2, 
Vn = 1.853 eV-Å , and = .V 2 512 eV-Å  to represent the Bi2Se3 topological insulator as suggested by the ab-initio 
bandstructure calculations40,41. The Hamiltonian described by the Eq. (1) includes uniaxial anisotropy along the 
z-direction and k-dependent mass terms. <M M 00  and <M M 0z0  implies that this model belongs to a 3D 
strong topological insulator42. The 3D dispersion of the four bulk bands near the Γ point, two degenerate conduc-
tion bands and valencebands each, is depicted in Fig. 1(a). To compute the longitudinal conductivity and planar 
Hall conductivity in the bulk conduction limit we have assumed that the Fermi level crosses the conduction 
bands.

In addition to the band energy, the Berry curvature Ω(k) of the Bloch bands is required for a complete descrip-
tion of the electron dynamics in topological systems. The general form of the Berry curvature can be obtained via 
symmetry analysis. Under time reversal symmetry, the Berry curvature satisfies Ω(−k) = −Ω(k). On the other 
hand, if the system has spatial inversion symmetry, then Ω(−k) = Ω(k). Therefore, for 3D topological insualtors 
like Bi2Se3 with simultaneous time reversal and spatial inversion symmetries, the Berry curvature vanishes iden-
tically throughout the Brillouin zone for both bulk conduction and surface bands43. However, in the presence of a 
magnetic field, the Zeeman splitting breaks the time reversal symmetry and generates non-trivial Berry curvature 
for these bands. Therefore, for discussing magneto-transport phenomena, which by defination are in the presence 
of magnetic field, the effect due to non-zero Berry curvature of the bulk band should be important for the electron 
dynamics.

To study the Berry curvature-induced magneto-transport phenomena, in the presence of an in-plane mag-
netic field, we add the Zeeman magnetic term z to Eq. (1), where


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Here μB is Bohr magneton and gpv, gpc are the Landé g factors for valence and conduction bands in the x − y 
plane respectively. The 2D dispersions of the valence and conduction bands of the topological insulator along kx, 
ky, and kz in the presence of an in-plane magnetic field of strength 5 T applied along x axis are shown in Fig. 1(b–
d) respectively. It is clear from the figure that the dispersions of the four bands along kx and ky are identical. The 
Zeeman splitting of conduction bands is maximum (~28 meV) at the Γ point.



www.nature.com/scientificreports/

3SCIeNTIfIC ReporTS |  (2018) 8:14983  | DOI:10.1038/s41598-018-33258-5

Boltzmann Equation Approach For Planar Hall effect.  In this section, we derive the semiclassical for-
mulae for the planar Hall conductivity and longitudinal electrical conductivity (LEC) in the low field regime start-
ing from the quasi-classical Boltzmann transport equation. For completeness we include the effects of the orbital 
magnetic moment m, which is the angular momentum of the semi-classical wave packet and also of geometrical 
origin, modifying the expressions for LEC and PHC significantly. The complete theory produces the magnetic 
field and direction dependence of longitudinal magnetoconductivity and planar Hall conductivity in topological 
insulators that can be verified in experiments.

In the presence of an electric field (E) and temperature gradiant (∇T), the charge current (J) and the thermal 
current (Q) flowing through the system can be described by the linear response equations,

σ α
α









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=
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
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ˆ ˆ
ˆ l̂

J
Q
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T (3)

where σ̂, α̂, and l̂  are different conductivity tensors. The tensors α̂ and α̂ are related to each other by Onsager’s 
relation α α=ˆ ˆT . In the linear response theory, we can write J and Q as

σ α= + −∇J E T( ) (4)a ab b ab b

α= + −∇Q T E l T( ) (5)a ab b ab b

The phenomenological Boltzmann transport equation in the presence of impurity scattering can be written 
as44

∂ + ⋅ ∇ + ⋅ ∇ =


 f C fr k( ) { } (6)t t tr k k r k r, , , ,

where on the right side C{ fk,r,t} is the collision integral which incorporates electron correlations and impurity 
scattering effects and fk,r,t is the electron distribution function. Using relaxation time approximation, the collision 
integral takes the form =

τ

−
C f{ }

f f

k k( )
eq k , where τ(k) is the relaxation time and feq is the equilibrium Fermi-Dirac 

distribution function in the absence of any external fields. In this paper we have ignored momentum dependence 
of τ and assume the parameter to be a constant in the semiclassical limit for simplifying the calculation45. 
Dropping the r dependence of fk,r,t, valid for spatially uniform fields, and assuming steady state the Boltzmann 
equation described by Eq. (6) takes the following form

δ
τ

⋅ ∇ + ⋅ ∇ = −


f f fr k
k( ) (7)k kr k

Figure 1.  (a) 3D band dispersion of the four bands (kz is suppressed) of 3D topological insulator (Bi2Se3) near 
Γ point obtained by diagonalizing Hamiltonian described in Eq. (1). The doubly degenerate valence bands are 
separated from the doubly degenerate conduction bands by an energy equal to 0.3 eV. (b–d) depict the 2D band 
dispersions of the same four bands as mentioned above along kx, ky, and kz axis respectively in the presence of a 
Zeeman field of strength 5 T applied along the x direction. The Landé g-factors used here are gpv = gpc = 2060.
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In the presence of electric field and magnetic field, transport properties get substantially modified due to pres-
ence of non-trivial Berry curvature which acts as a fictitious magnetic field in the momentum space43. The Berry 
curvature of the nth band for a Bloch Hamiltonian H(k), defined as the Berry phase per unit area in the k space, is 
given by Ω = ∇ × 〈 | ∇ | 〉u i un n n

k k k k k .
The wave packet of a Bloch electron also carries an orbital magnetic moment in addition to its spin moment 

due to the self rotation around its center of mass. The orbital magnetic moment associated with nth Bloch band 
can be defined as46

ε= − 〈∇ | × − |∇ 〉m e Im u H uk
2

[ ( ( ) ) ] (8)
n n n
k k k k k k0,

It is clear from the above equation that the orbital magnetic moment does not depend on the actual shape and size 
of the wave packet but only depends on the Bloch functions. The orbital moment has exactly the same symmetry 
properties as the Berry curvature, namely, m(−k) = −m(k) and m(−k) = m(k) under time reversal and inversion 
symmetries, respectively. Therefore m(k) vanishes in the simultaneous presence of both these symmetries. In 
the present case, the orbital moment is non-zero because of broken time reversal symmetry due to the in-plane 
magnetic field.

As the orbital moment couples to the magnetic field (B) through a Zeeman-like term −m(k) ⋅ B, the unper-
turbed band energy ε0,k is modified as εk = ε0,k − m(k) ⋅ B. In the presence of m(k) the group velocity of Bloch 
electrons is also modified as 


= − ∇ ⋅v v m B( )k k

1 . Incorporating the effects due to Berry curvature and orbital 
magnetic moment, the semi-classical equation of motion for an electron takes the following form46

ε= ∇ − × Ω


r k k1 ( ) (9)k

 = − − ×


e ek E r B (10)

where the second term of the Eq. (9) implies the anomalous velocity originating from the non-trivial Berry cur-
vature. The coupled equations for r and k described in Eq. (9) and Eq. (10) can be solved together to obtain47

 
= Ω + × Ω + ⋅ Ω
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Here the prefactor 


Ω = + ⋅ Ω −D B B k( , ) (1 ( ( )))e
k

1, modifying the invariant phase space volume according to 
dkdx → D(B, Ωk)dkdx, gives rise to a noncommutative mechanical model, because the Poisson brackets of 
co-ordinates is nonzero48. For ease of notation we will simply denote D(B, Ωk) by D for rest of the paper.

The second term of the Eq. (11) gives rise to the anomalous transport induced by the Berry curvature. The 
third term in the same equation gives rise to chiral magnetic effect modified by the orbital magnetic moment. The 
chiral magnetic effect, an interesting signature of transport phenomena in Weyl semimetals, appears in equilib-
rium i.e. E = 049–52. This term implies an electric current ∝B to flow along the direction of the magnetic field in 
Weyl semimetals without any electric field in the presence of finite chiral chemical potential (μ+ − μ−) where μ+ 
and μ− are the chemical potentials of two Weyl nodes53. There has been some controversy regarding the existence 
of the equilibrium chiral magnetic effect in condensed matter systems because the effect described above violates 
the Maxwell’s equations51,54–56. It has been discussed that in the dc limit i.e. when frequency is set to zero first, 
the system is in equilibrium and the chiral magnetic effect vanishes51. The second term in Eq. (12) implies the 
usual Lorentz force modified by m(k) whereas the last term proportional to E ⋅ B in Eq. (12) is the semi-classical 
manifestation of the topological effect known as chiral anomaly in the context of topological semimetals. The 
chiral anomaly in topological Weyl semimetals implies the non-conservation of a chiral current i.e. violation of 
the separate number conservation law of Weyl Fermions of a given chirality in the presence of parallel electric and 
magnetic fields. It is important to note that chiral anomaly is a purely quantum mechanical effect, and while the 
third term in Eq. (12) has been interpreted in the literature as the semi-classical manifestation of chiral anomaly 
in topological semimetals, the term itself may be non-zero in the presence of non-trivial Berry curvature even in 
systems that do not support chiral anomaly in the quantum limit.

To calculate planar Hall conductivity, we apply an electric field (E) along the x− axis and a magnetic field (B) 
in the x − y plane at a finite angle θ from the x − axis, i.e. θ θ= +ˆ ˆB x B yB cos sin , = ˆExE . Here, θ is the angle 
between E and B as shown in Fig. 2. After substituting r and k into the Boltzmann equation Eq. (7), it then takes 
the form,
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where feq is equilibrium Fermi-Dirac distribution with the energy dispersion ε ε= − ⋅m Bk k0,  modified due to 
the orbital magnetic moment.

Keeping only linear order dependence on the applied field E and B, we now assume following ansatz for the 
distribution function, fk, which is a solution to the steady-state Boltzmann equation Eq. (7), can be written as


τ θ Ω= + + ⋅ ∂ε 

  



f f eDE v eB fv k( cos ( ( )))( ) (14)eq x eqk k

Now, in the absence of any thermal gradient, we write the charge density (ρ) and current density (J) as47,

∫ρ = − −
e d D fk[ ] (15)k

1

∫= − + ∇ ×−


e d D m fJ k r[ ]( ) (16)r k k
1

where =
π

dk[ ] d k
(2 )

3

3  and the factor D arises from a field-induced change in the volume of the phase space. The 
second term of Eq. (16) is a contribution of magnetization current. As we are working with spatially uniform 
fields, in the present work the expression for the current density takes the following form,

 ∫= − + × Ω + ⋅ Ω 

e d e e fJ k v E k v k B[ ][ ( ( )) ( ( )) ] (17)k k k

Plugging fk into the above equation and comparing it with Eq. (4), we now arrive at the semiclassical formula for 
the longitudinal electrical conductivity including the effects due to Berry curvature and orbital magnetic moment,

∫σ
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In the above equation the anomalous velocity factor 


⋅ Ωθ
v k( ( ))eB

k
cos  appears due to the topological term 

(E ⋅ B) and the orbital magnetic moment. This term is the origin of finite B-dependent longitudinal electrical 
conductivity which is independent of B for a regular Fermi liquid. When θ = 0, we recover the formula for LEC 
for parallel E and B fields as derived in earlier works53,57–59.

Now we will derive the expression of PHC. Inserting fk in Eq. (17) and comparing it with Eq. (4), we write the 
following expression for the planar Hall conductivity,
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Here we have neglected terms in the solution which are orders of magnitude smaller than the right hand side of 
Eq. (19)32. It is clear from Eq. (19) that in the absence of Berry curvature and the orbital magnetic moment (i.e. in 
the absence of magnetic field) the Berry curvature (Ω(k)) dependent terms vanish and → v v v vx y x y which is B 
independent. Since the remaining momentum space integral of Eq. (19) vanishes, the PHC (σxy

ph) identically van-
ishes in the absence of magnetic field.

Planar Hall conductivity in topological insulators.  In this section we show the B-dependence and 
angular dependence of longitudinal magnetoconductivity and planar Hall conductivity computed using Eqs (18) 

Figure 2.  Illustration for the planar Hall effect measurement geometry. The electric field (E) is applied along 
the x− axis and a magnetic field (B) in the x − y plane makes a finite angle θ with the E. The planar Hall effect is 
measured as an in-plane voltage (Vxy) transverse to the direction of current in the x − y plane.
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and (19). Negative longitudinal magnetoresistance has recently been observed in several topological insulators in 
the presence of bulk conduction8–12. Although the planar Hall conductivity has recently been observed from the 
surface states of a 3D topological insulator38, it is not observed from bulk states till date. In the present work we 
consider only bulk states and neglect the contribution to conductivity from the surface states.

In the inset of Fig. 3(a) we have plotted the LMC as a function of the applied magnetic field at T = 24 K in the 
presence and absence of m where we have defined LMC as

σ
σ

σ σ
σ

∆
=

− =
=

B B
B

( ) ( 0)
( 0) (20)

xx xx

xx

The LMC increases monotonically with the magnetic field in both cases and follows the B2-dependence. The 
orbital moment, first-order correction to the classical equations of motion, increases the Zeeman splitting 
between two conduction bands and enhances the LMC significantly. Therefore it is essential to take into account 
the effect of m in computing magnetoconductivity for topological insulators. Our results indicates the remarkable 
fact that the non trivial Berry curvature and orbital magnetic moment can produce an anisotropy in the magneto-
conductivity even without the chiral anomaly effect. The LMC also follows cos2θ dependence at B = 5 T in both 
cases (presence and absence of m) as depicted in Fig. 3(b), leading to the anisotropic magnetoresistance (AMR).

In Fig. 3(a and c) we have shown the amplitude and angular dependence of planar Hall conductivity in for the 
bulk states conduction in Bi2Se3. The amplitude of the PHC is finite at all field directions except at θ = 0 and 
θ = π/2 and follows a quadratic dependence on B which is similar to what has been observed in experiments on 
PHC on the surface states of Bi2Se3. The amplitude is enhanced significantly due to the presence of m leading to 
the fact that orbital moment plays a very important role in PHC. The planar Hall conductivity σxy

ph does not satisfy 
the familiar anti-symmetry relation (σxy = −σyx) in the spatial indices and this property can be used to identify 
PHC in experiments. Within the regime of applicability of quasi-classical formalism, we have found that the PHC 
follows cosθ sinθ dependence for B = 5 T as depicted in Fig. 3(c). This is also similar what has been observed in 
experiments on PHC due to surface states of Bi2Se3

38.
In the presence of orbital magnetic moment, the LMC and PHC as a function of Fermi energy (EF) for B = 5 T 

and T = 24 K are shown in Fig. 4(a). In experiment, the Fermi level can be tuned by gate voltage. It is clear from 
the figure that the LMC is enhanced as the Fermi level approaches the band bottom whereas the amplitude of 
PHC decreases. The temperature dependence of the LMC and PHC at B = 5 T in the presence of orbital magnetic 
moment is depicted in Fig. 4(b). It is clear from the figure that both LMC and PHC decrease with increasing 
temperature.

Conclusions
In this work we present a quasiclassical theory of planar Hall conductivity due to bulk conduction in 3D strong 
topological insulators such as Bi2Se3 using the phenomenological Boltzmann transport theory. In the presence of 
bulk conduction, negative longitudinal magnetoresistance has recently been found in these systems8–12. Negative 
longitudinal magnetoresistance in topological semimetals such as Dirac and Weyl semimetals is typically associ-
ated with chiral or Adler-Bell-Jackiw anomaly13–22. It has recently been shown that this effect can occur also in 3D 
topological insulators in the presence of bulk conduction even in the absence of chiral anomaly30. In this paper we 

Figure 3.  (a) Shows the dependence of amplitude of PHC (normalized by the maximum value of PHC in the 
presence of m) as a function of in-plane magnetic field at θ = π/4 and temperature T = 24 K. (Inset depicts the 
LMC in the presence as well as absence of orbital magnetic moment (m) as a function of in-plane magnetic 
field at θ = 0°. The other parameters are same as above). (b,c) Show the angular dependence of LMC and PHC 
(normalized) at T = 24 K in the presence and absence of m for B = 5 T. Here we have normalized the y axis of (c) 
by the value of PHC at θ = π/4 in the presence of m. Curves in yellow indicate the presence of m whereas blue 
lines are for m = 0. In all cases we consider the Fermi level situated at 27 meV from the bottom of the lowest 
conduction band.



www.nature.com/scientificreports/

7SCIeNTIfIC ReporTS |  (2018) 8:14983  | DOI:10.1038/s41598-018-33258-5

predict that TI systems supporting negative LMR in the presence of bulk conduction will also exhibit planar Hall 
effect when the electric and magnetic fields are not perfectly aligned with each other. Note that, a similar effect has 
recently been predicted also in Weyl semimetals from effects associated with chiral anomaly31,32. In the present 
work we show that such an effect exists also in 3D topological insulators due to Berry curvature of the conduction 
band even in the absence of chiral anomaly.

In the presence of in-plane electric and magnetic fields not perfectly aligned with each other, we find the 
non-zero planar Hall response in 3D strong TIs which is very different in nature from the usual Lorentz force 
mediated Hall response and even the Berry phase mediated anomalous Hall response, both of which are anti-
symmetric in spatial indices. We find that both longitudinal magnetoconductivity and planar Hall conductivity 
follow a quadratic dependence on B. Moreover, for a specific value of the magnetic field, the LMC follows cos2 θ 
dependence whereas the PHC goes as B2cos θ sin θ, where θ is the angle between the applied E and B fields. Since 
in PHC, σyx ~ cos θ sin θ where B makes an angle θ with the electric field E, which is taken parallel to the x axis, it 
follows that PHC is symmetric in the spatial indices, σyx = σxy. We find that, in the definition for LMC, Eq. (20), 
the numerator increases with increasing Fermi Energy EF, but the rate of increase of the Drude conductivity in 
the denominator is larger. Consequently LMC has defined in Eq. (20), decreases with EF while PHC increases with 
EF (Fig. 4a). We have derived an analytical expression for planar Hall conductivity taking into account the orbital 
magnetic moment along with the non trivial Berry curvature of the conduction band. It is clear from our results 
that orbital magnetic moment enhances the magnitude of both LMC and PHC and is important for their theoret-
ical description. Our numerical results predict experimental observations of PHC together with LMC from the 
bulk states of 3D strong topological insulators which can be tested in experiments.
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