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Abstract

Population structure is known to cause false-positive detection in association studies. We compared the power, precision,
and type-l error rates of various association models in analyses of a simulated dataset with structure at the population
(admixture from two populations; P) and family (K) levels. We also compared type-I error rates among models in analyses of
publicly available human and dog datasets. The models corrected for none, one, or both structure levels. Correction for K
was performed with linear mixed models incorporating familial relationships estimated from pedigrees or genetic markers.
Linear models that ignored K were also tested. Correction for P was performed using principal component or structured
association analysis. In analyses of simulated and real data, linear mixed models that corrected for K were able to control for
type-l error, regardless of whether they also corrected for P. In contrast, correction for P alone in linear models was
insufficient. The power and precision of linear mixed models with and without correction for P were similar. Furthermore,
power, precision, and type-l error rate were comparable in linear mixed models incorporating pedigree and genomic
relationships. In summary, in association studies using samples with both P and K, ancestries estimated using principal
components or structured assignment were not sufficient to correct type-l errors. In such cases type-l errors may be
controlled by use of linear mixed models with relationships derived from either pedigree or from genetic markers.
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Introduction Genetic association studies aim to correlate differences in trait
level with differences in genotypes at a tested marker. This

The power of an association study depends on the phenotypic correlation is assumed to arise from the co-occurrence of the

variance explained by the causal variant, the extent of linkage marker with the quantitative trait locus (QTL), ie., LD. The
disequilibrium (LD) between the causal variant and the markers, presence of LD is usually equated with physical linkage. However,
and, not least, the size of the study sample. Several recent in a stratified population with differences at the trait level, markers

association studies have thus foc.used on Collectu?g large'sa@ples to with different frequencies across populations will also correlate
obtain higher powers of detection [1,2] but this practice is often

associated with population stratification problems. Among the
factors thought to cause lack of reproducibility in association
studies reviewed [3], population stratification has probably been
the most cited reason [4].

Population stratification refers to the inclusion of individuals
from isolated subpopulations in the population of interest. In such
a population, individuals from a subpopulation are, on average,
more closely related to each other than to other individuals in the
population as a whole. Population structure is common in nature.
It manifests in the form of herds, colonies, and ethnic groups, and
as a consequence of geographic isolation and natural or artificial
selection [5]. A subtle form of stratification can also occur at the
family level, especially in livestock when animals are bred in full-
sib or half-sib families [6].

with trait levels. Thus the use of a structured population in an
association study may vyield false associations due to differences in
allele frequencies among subpopulations [7].

Examination of an unstratified sample is thus optimal in an
association study [5]. However, combining samples from multiple
populations is often necessary to increase the power of detection.
In some cases, study of a structured population may be
advantageous. Markers tightly linked to causal variants achieve
similar significance in tests of association, making it difficult to
distinguish them from the causal variant. In such cases, the use of a
structured sample may enable precise localization of the causal
variant, as a marker in strong LD with the causal variant in one
population may not be in strong LD in the other [8]. Thus, the use
of statistical methods that correct for stratification at the
population and family level, especially in livestock are important
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for the present and future association studies that aim to genotype
large samples.

Several methods, such as structured analysis (SA) [9], principal
component analysis (PCA) [10] and the use of linear mixed models
(LMM) [5], have been reported to be useful in correcting for
stratification in genome-wide association (GWA) samples. It has
been noted that correcting for stratification is more challenging
when family structure is present along with population stratifica-
tion [11]. In this study, we simulated an admixed population
(variable ancestry from two populations) with familial relatedness
as generally observed in commercial cattle populations and
compared the power, precision and false-positive detection rates
of analyses using the SA, PCA, and LMM approaches. We also
applied these methods to two publicly available real datasets and
compared the incidence of false-positive associations.

Materials and Methods

The study uses a simulated dataset and 2 publicly available
datasets, so no ethical approval was required.

Simulation Study

An admixed population (Fig. 1) was simulated using the
OMSim software package [12]. First, an historic population
(HP) was simulated to generate the initial linkage disequilibrium
(LD) and to allow for mutation (2.5x10~*/locus/generation) and
drift. The HP consisted of 5,000 individuals that were randomly
mated for 1,000 generations. The genome was assumed to have 20
chromosomes of 100 cM each with 40,000 evenly distributed bi-
allelic SNP markers with equal frequencies (0.5) for the two alleles
in the base population. Only two QTLs with two equally frequent
alleles were simulated, both located on chromosome 1 at 20 cM
and 80 ¢M. The QTL mutation rate was 2.5x10~°/generation.
The number of recombination per Morgan (per chromosome) was
sampled from a Poisson distribution of mean=1 and the cross-
overs were randomly placed on the chromosomes. QTL effects
were introduced in the last generation of the HP for a trait
(mean =0, variance =1) with a heritability of 0.3. The allelic
effects were sampled from a gamma distribution with a shape
parameter of 0.4 as implemented in QMSim [12], so that the two
QTLs together explained 10% of phenotypic variance. The
remaining genetic variance was simulated as a polygenic effect.
After 1,000 generations, the population size was reduced to 2,500
individuals (2,000 females, 500 males).

Next, two populations were generated from the HP by mating
two separate parent groups in isolation. The parent groups (1,000
females, 50 males each) were randomly selected from the last
generation of the HP. Each sire was mated to 20 dams, with each
mating producing one offspring. This procedure yielded a total of
1,000 offspring with an equal sex ratio (500 males, 500 females)
from each parent group. Fifty randomly selected male offspring
from each group were used as sires for the next generation,
whereas all female offspring along with 500 randomly selected
dams from the previous generation were used as dams for the next
generation. This mating scheme was continued for 30 generations.

After 30 generations, the average genetic distance between
populations in 100 replicates, estimated as mean F,, from all
40,000 SNP  markers, was 0.025 [standard deviation
(SD)=10.0006]. The allele frequencies of the markers (Fig. 2) and
mean phenotype levels (Fig. 3) differed between populations.

In the next step of the simulation, individuals from two isolated
populations were mated to yield an admixed population. Twenty-
five males and 500 females were selected from each population to
serve as parents. These individuals were randomly mated for four
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Figure 1. Schematic representation of the simulation.
doi:10.1371/journal.pone.0088926.g001
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Figure 2. Absolute differences in allele frequencies of single-
nucleotide polymorphism (SNP) markers between populations
(100 replicates).

doi:10.1371/journal.pone.0088926.9002

generations to yield an admixed population of 1,000 individuals
(500 males, 500 females), following the mating scheme described
above. After admixture, QT'Ls in the last generation explained 0—
13% of the total phenotypic variance. The individuals’ ancestries,
calculated as average genetic contributions from one parent
population to individuals in the admixed population over four
generations, are presented in Figure 4. Data on phenotypes for
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Figure 3. Differences in mean phenotypes of two populations
after separation for 30 generations (100 replicates).
doi:10.1371/journal.pone.0088926.9g003

these 1,000 samples, along with their genotypes for 40,000 SNP
markers, were used in our association analyses.

Chromosome 1, which contained two simulated QTLs, was
used to assess the power and precision of the models and five
chromosomes (chromosomes 2-6) without simulated QTLs (null
chromosomes) were used to assess the false-positive rate (type-I
error). A total of 100 replications were used to compare the
models.

Publicly Available Real Data

In addition to the simulated datasets, the models for GWA
studies were applied to the following two publicly available
datasets to assess their ability to control type-I error.

Human GOLDN Dataset. This human stature dataset was
collected from 1,315 European American individuals genotyped
for 637 genetic markers as part of the Genetics of Lipid Lowering
Drugs and Diet Network (GOLDN) study [13,14]. Individuals’
height, sex, and age were recorded. Previous studies have found no
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Figure 4. Distribution of individuals’ ancestries after admixture
(100 replicates).
doi:10.1371/journal.pone.0088926.9004
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significant population structure in this sample and no significant
association between height and any of these genotyped markers.

Dog Data on Hip Dysplasia. This dataset contains hip
dysplasia data from 292 dogs of two breeds (Labrador retriever
and greyhound) and their crosses (Fy, Fo, and backcrosses). The
samples were genotyped for 23,500 SNPs and hip dysplasia was
measured using the Norberg angle [15]. The relationship matrix
was estimated from pedigree. The ancestors of each dog were
traced back as far as possible. We used 1,000 randomly chosen
markers assumed to be unlinked to the variants controlling hip
dysplasia [14].

Association Models

The allele substitution effect (4) of an SNP was estimated by
successively fitting the marker in the following models. The
simulated data contained two confounding factors: admixture (P)
and familial relatedness (£). The models compared corrected for
none, one, or both factors.

The significance of estimated b was then tested against the null
hypothesis (h=0) using a #test with Bonferroni correction for
multiple testing, at a significance level of o=0.05. All analyses
were carried out with the DMU software package [16].

1) Linear Model (LM). A linear model (LM) ignoring A and P
was used to estimate the allele substitution effect:

y=ul+bg+e

where y was a vector of phenotypes, it was an overall mean, /
was a vector of ones, b was the allele substitution effect of the
SNP, g was a vector of additively coded (0, 1 and 2) SNP
genotypes and e was a vector of random residuals with normal
distribution N (0,1 0'5), where of is the error variance and I is
the identity matrix.

2) Linear Mixed Model Including Pedigree-Based Re-
lationship (LMMped). An LMM accounting only for A
was used to test the associations of single SNPs with the

phenotype:

y=ul+bg+u+e

The terms in the model are similar to those in the LM, with
the addition of random polygenic effects (#). K was included
in the model as the variance-covariance structure (A4) of u,
estimated from the pedigree relationships. # was assumed to
be multivariate normally distributed u~N(0,0'§,A), where 0'5,
is the genetic variance and A4 is the additive genetic
relationship matrix derived from pedigree records for the last
three generations.

3) Linear Mixed Model Including Genomic Relation-
ship (LMMgmat). This LMM was similar to the LMMped
accounting for K, differing only in the estimation of the
variance-covariance matrix of #. Instead of a pedigree-based
relationship matrix (4), genome-wide SNP markers were used
to estimate the genomic relationship matrix (G) [17]. u was
assumed to be multivariate normally distributed

u~N(0,5;G).

4) Structured Association. A model based on the clustering
method of the STRUCTURE software package [9] was used
to correct for P. One thousand markers evenly distributed
over the genome were selected and individuals were assigned
to two clusters (k=2) in a structure linkage model [18].
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Admixture was assumed and partial membership to a cluster
was allowed. The membership of an individual in a cluster (s,
varying continuously between 0 and 1) was used as a covariate
in the following models to correct for P.

1) 4a) Linear Model with STRUCTURE (LMstr). This
model was similar to the LM, with additional fixed
regression (¢) of the phenotype on s to account only for P
while ignoring K:

y=pl+bg+cs+e

2) 4b) Linear Mixed Model with STRUCTURE
(LMMSstr). This model was similar to LMMped, with
the addition of fixed regression of the phenotype on s to
correct for K and P:

y=ul+bg+u+cs+e

5) Principal Component Analysis (PCA). PCA was per-
formed to correct for P in the sample. Principal components
(PCs) for the covariance matrix, estimated from all 40,000
SNP markers, were calculated. SNP genotypes and pheno-
types were corrected for the first two PCs, as described
elsewhere [10].

5) In the simulated datasets on an average the top two PCs
explained 2.23% of the total variance in the range of 2.05 to
2.62. Although the fraction of the total variance explained was
low, in most cases one of the first two PCs for the simulated
datasets (Fig. S1) or the first PC for the dog dataset (Fig. S2)
showed the strongest correlations with known ancestries and
separated samples on ancestries. We also found that in most of
the cases the correlation between PCs and known ancestries
decayed rapidly beyond the first two PCs (Fig. S3). Thus, the
first two PCs were used to correct for P. Although PCs did not
separate the human samples, two PCs were used to correct the
genotypes and phenotypes for comparison. The corrected
genotypes (g*) and phenotypes (y*) were fitted in the following
models to correct for P,

1) 5a) Principal Component Analysis in a Linear
Model (LMpca). Here, y* and g* were fitted in the LM
to account only for P while ignoring A

y'=ul+bg+e

2) 5b) Principal Component Analysis in a Linear
Mixed Model (LMMpca). Here, y* and g* were fitted
in LMMped to correct for Kand P:

y=ul+bg+ute
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Comparison of the Models

Type-I Error. Simulated Data. SNPs on five null chromosomes
(with no simulated QTL) were used to assess the type-I error rates
of all described models. A total of 1,000,000 SNPs over 100
replicates were fitted into the models to estimate 4. The
distribution of —log;o p-values of the ttest was plotted against
the null (uniform) distribution in a quantile-quantile (QQ) plot.
Deviation from the null distribution was used to assess the type-I
error rate. In addition, the number of observed significant SNPs
on null chromosomes was compared with the expected number at
different significance levels.

Real Data. The human data were analyzed with LM,
LMMped, LMMpca (first two PCs), and LMMstr (k=2), with
the inclusion of sex, age, and squared age as covariates [14].
Previous studies have reported no significant association between
the SNPs and height. The deviation of —log; p-values of the #test
from the expected uniform distribution in a QQ plot was used to
assess the type-I error rate.

The data on hip dysplasia in dogs were fitted to the LM,
LMMped, LMMpca (first two PGCs), LMMstr (k=2), and
LMMpedB, a model similar to LMMped but with the addition
of breed (as proportion of Labrador retriever) as a fixed regression.
The 1,000 randomly chosen markers were assumed to be
unassociated with the causal variants for hip dysplasia. The
distribution of —logjgp-values of the test of association was
compared with the expected distribution under the assumption of
no association in a QQ plot. Deviation from the expected
distribution was used to assess the type-I error rate.

Power and Precision. The power of the models to detect the
QTL was assessed from chromosome 1, with 2 simulated QTL,
i.e., for 199 QTLs over 100 replicates (one QTL fixed for an allele
was left out of the analysis). A QTL was considered detected when
an SNP within 1 ¢cM of the simulated QTL showed significance
after Bonferroni correction (for 12,000 SNPs tested on six
chromosomes) at o=0.05. The absolute distance between the
detected and simulated QTL positions was calculated to ascertain
the precision of the methods in locating the QTL. Power and
precision were estimated separately for small effect (explaining
<5% of GZ) and large effect QTL (explaining >5% of O';).

Results

Results from the simulation study

Type-I Error. The distributions of —log)y p-valuesfor the
SNPs on the five null chromosomes were compared with expected
uniform distributions (Fig. 5). In general, type-I error rates were
lower in LMMs, where familial relationship (K) was used to model
the covariance structure of the random individual effect than in
LMs (which did not account for A). Among LMMs, LMMpca
closely followed the expected type-I error rate, whereas LMMgmat
was the most conservative, showing a lower than expected type-I
error rate.

The average number of significant SNPs on the null chromo-
somes is compared with expected numbers under the null
hypothesis at different significance levels in Table 1. At a
Bonferroni-corrected significance level, o=0.05 (corrected for
10,000 SNPs tested on five chromosomes) LMs that did not
account for K (LM, LMstr, and LMpca) showed significantly
higher false-positive results than expected (p<<0.01), whereas
LMMs that corrected for A (LMMped, LMMstr, LMMpca, and
LMMgmat) showed better control of false-positive results.

Power. The power of the models to detect two simulated
QTLs on chromosome 1 using 100 replicates with 199 QTLs is
summarized in Figure 6. Power was compared only among LMMs
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because the LMs had very high false-positive detection rates
(Fig. 5). No LMM had the power to detect small-effect (<5% of
O'g) QTLs. The power was ~5%, at the level expected with
o =10.05. In contrast, all models tested showed 53-60% power to
detect large-effect (explaining >5% of az) QTLs. LMMped and
LMMstr had the highest powers (59.6%), followed by LMMpca
(57.6%) and LMMgmat (53.5%), although this difference was not
significant [¥2 (3, n=99)=0.9925; p=0.8031]. Overall, LMMped
had the highest power, detecting 32% of simulated QTLs,
followed by LMMstr (31.7%), LMMpca (30.7%), and LMMgmat
(28.1%); however, this difference was also not significant [y (3,
n=199)=0.8983; p=0.8258].

Out of the total 199 simulated QTLs, 53 were detected by all
the four models, the majority (50) of which being large effect QTL
(mean genetic variance =0.087, SD =0.02). On the other hand

SNPs) without simulated quantitative trait loci.

Comparison of GWAS Methods in Admixed Populations

133 QTLs were not detected by any of the models, majority (95) of
them being small effect QTL (mean genetic variance=0.031,
SD =0.032).

Precision. The precision of the models, measured as the
absolute distance (cM) between the positions of simulated and
detected QTLs, is described in Figure 6 and Table 2. All four
methods compared showed greater precision for the localization of
large-effect compared with small-effect QTLs. On average, large-
effect QTLs were localized within 0.36-0.39 cM of the simulated
QTL positions, whereas small-effect QTLs were localized within
0.62-0.66 cM. LMMped was most precise (£0.62 ¢cM) for small-
effect QTLs, and LMMgmat was most precise (£0.36 cM) for
large-effect QTLs.

Results from the Published Data

Human GOLDN Dataset. For the Human GOLDN dataset,
type-I error was compared among the LM, LMMped, LMMstr,
and LMMpca. The distribution of test statistic is given in a QQ
plot (Figure 7). The LM without correction for Aand P showed the
highest false-positive rate. The three LMMs (LMMped, LMMstr,
and LMMpca), showed similar distributions of —logl0 p-values,
which were slightly higher than expected.

Dog Data on Hip Dysplasia. The dog data were analyzed
using the LM, LMMped, LMMpedB, LMMstr, and LMMpca.
The type-I error rates for these methods are compared in a QQ
plot in Figure 8. The LM showed the highest rate of type-I errors,
and this rate was comparable among LMMs, with LMMpedB and
LMMstr showing the lowest type-I error rates.

Discussion

We compared the power, precision and false-positive association
rates of several GWA models in analyses of simulated admixed
data with familial relationships. LMs that did not model £ (LM,
LMstr, and LMpca) showed higher rates of false-positive
associations than did LMMs accounting for A (Fig. 5, Table 1).
Regardless of whether they corrected for population stratification,
LMMs controlled for false-positive results at the nominal level.
This is probably due to the capture of the ancestry of individuals
by the variance-covariance structure modeled into the random

Table 1. Average number of significant single-nucleotide polymorphisms (SNPs; 100 replicates) in five chromosomes (10,000

Expected false-positive associations 500

Model Significance level

Correction for 0.05 0.005 0.0005 0.000005
LMMped K 514.73* (7.83) 53* (1.7) 5.5 (0.4) 0.02 (0.014)
LMMstr P+K 511.88 (7.9) 51.97 (1.6) 5.64* (0.4) 0.02 (0.014)
LMMpca P+K 520.89** (7.6) 53.92** (1.6) 5.88** (0.4) 0.02 (0.014)
LMMgmat K 472.15 (5.7) 4492 (1.2) 4.45 (0.3) 0.01 (0.01)
LM - 1014.51** (18.9) 190.2** (6.8) 36.93** (2.0) 1.43** (0.17)
LMstr P 998.22** (17.8) 184.33** (6.4) 34.78** (1.8) 1.34** (0.16)
LMpca 968.01** (18.7) 175.27** (6.5) 32.01** (1.7) 1.17** (0.16)

50 5 0.05

Bonferroni correction for 10000 tests.

Analysis in a Linear Model, P=admixture, K= Familial relationships.
doi:10.1371/journal.pone.0088926.t001
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Standard errors are given in parentheses. The average number of significant SNPs (S,,s) in 100 replicates was compared with the expected number (Sc,p) at different
significance levels using t-tests. (Ho: Sobs = Sexps H1: Sobs™Sexp; *p<0.05, **p<<0.01). Significance level of 0.000005 corresponds to a nominal significance level of 0.05 after

LMMped = Linear Mixed Model Including Pedigree-Based Relationship, LMMstr = Linear Mixed Model with STRUCTURE, LMMpca = Principal Component Analysis in a Linear
Mixed Model, LMMgmat = Linear Mixed Model Including Genomic Relationship, LM = Linear Model, LMstr = Linear Model with STRUCTURE, LMpca = Principal Component
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polygenic effect, as previously shown [5]. The results of analyses of
publicly available human and dog data also show that LMMped
was comparable to LMMstr and LMMpca in controlling for type-I
errors (Figs. 7 and 8). Thus, in a sample with structure at the
family and population levels, correction for A alone might be
sufficient to control for false-positive associations arising from
population structure.

In contrast, correction for P alone in the LMpca and LMstr was
msufficient to control for false-positive associations. This is
probably because STRUCTURE [9] and PCA [10] corrected
for P, but subtle admixture at the family level was not captured by
STRUCTURE (k=2) and LMpca (two PCs). Thus our findings
indicate that correction for structure at the population level alone
is not sufficient in samples with structure at the population and
family levels. In such samples, LMMs can be effectively used to
control for false-positive results.

Among LMMs, LMMgmat was the most conservative and
consequently suffered a slight loss of power. In this model, the

Table 2. Absolute error (cM) in quantitative trait loci
localization.

Small effect Large effect All
LMMped 0.62 0.38 0.40
LMMstr 0.66 0.39 0.41
LMMpca 0.66 0.38 0.40
LMMgmat 0.66 0.37 0.38

Precision is given as the absolute genetic distance between simulated and
detected quantitative trait loci (=1 cM).

LMMped = Linear Mixed Model Including Pedigree-Based Relationship,

LMMpca = Principal Component Analysis in a Linear Mixed Model, LMMstr = Linear
Mixed Model with STRUCTURE, LMMgmat = Linear Mixed Model Including Genomic
Relationship.

doi:10.1371/journal.pone.0088926.t002

PLOS ONE | www.plosone.org

relationship matrix (G) was estimated from the whole genome,
including markers linked to the simulated Q'T'L. This probably led
to correction of part of the QTL effects in the data, thereby
reducing the model’s power to detect QTLs.

The compared models had powers of ~60% in detecting large-
effect QTLs. In our simulation, the same set of QTLs were
segregating in the two ancestral populations, which might not
accurately reflect the situation in real populations, where
subpopulations may have different causal variants affecting the
same trait, thereby reducing the power to detect such QT'Ls. Thus,
our power results likely reflect the upper boundary of detection
power in structured populations for QTLs with similar effects
using the same sample size. In our study, none of the tested
methods had the power to detect small-effect QTLs in the
simulated dataset. This finding might be explained by a lower
average LD (2 =0.07) between adjacent markers and a similar LD
between markers and the QTL. Increasing the marker density and
sample size might increase the power to detect small-effect Q'T'Ls
in such a dataset.

It should also be noted that the LD levels in the dataset is
defined by the specific parameters (mutation rate, recombination
rate and type of mating) used in the simulation. The mutation rate
for markers assumed in this study was higher than what is observed
in real life (e.g. 10~ ® per base per generation in human, The 1000
Genomes Project Consortium. 2010 [21]). However, we had only
2000 marker per chromosome (100 cM~100 MB). Therefore, the
mutation rate considered in the study reflects the chance of having
a mutation for a genomic region the SNP represents. Altering the
genetic parameters may change the LD structure; however we do
not expect a change in the relative ranking of the methods in the
power of QTL detection; the same is true for the type-I error rate.
Moreover, we use chromosomes devoid of the simulated QTL to
assess the type-I error rate; hence the false associations arise only
due to stratification and not because of the LD between markers
and the QTL. Our study focuses on quantitative trait, but the
findings can be generalized to case-control data as reported by
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Figure 7. Quantile-quantile plot of —log,op-values for association tests of the human GOLDN dataset using different models.
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Figure 8. Quantile-quantile plot of —log,op-values for association tests of the dog hip dysplasia dataset using different models.
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Kang et al., 2010 [19]; who found variance components based
method to be effective in correcting for stratification.

The models showed comparable precision in Q'TL localization.
Large-effect Q'T'Ls were localized with higher precision than were
small-effect QTLs. This result contrasts with that of MacLeod et
al. [20], who found that small-effect QTLs were mapped more
precisely than large-effect QTLs. This difference is probably due
to sampling bias, as the models in our study had no/very low
power to detect small-effect QTLs, but ~60% power for large-
effect QTLs; this situation allowed comparison of only a few
observations.

In our simulation, we found that in most cases (86) the first
principal component captures the genetic variation due to
population stratification (correlation of 0.77 with ancestry; see
Fig. S1). However, in nine cases the second PC, in three cases the
third PC and in two cases the fourth PC had showed the highest
correlation with the ancestries (0.67, 0.58, and 0.52, respectively).
These observations suggest that in a dataset with structure at both
population and family level, the latter may account for more
genetic variation than the former. Therefore correction for only
the first two PCs might not always be sufficient to correct for
population stratification. It may thus be important to find out
which PCs explain the cryptic relationship better in each dataset
and include those to correct population stratification.

Our findings show that LMM approaches accounting for A are
able to correct for structure at the family and population levels.
We also found that the power and type-I error rate of LMMgmat
with G were comparable to those of LMMped with A. Thus,
LMMs may be used to correct for structure at the family and
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Supporting Information

Figure S1 Top two axes of variation in the simulated
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are color coded with the individual ancestry (IA).Replicates 1 and
111 show separation along the first axis whereas replicates ii and iv
show separation along the second axis. Over 100 replicates, in 86
cases the first PC had the highest correlation (mean of 0.77) with
the ancestries, in 9 cases with the second PC (0.67), in 3 cases with
third PC (0.58) and in 2 cases with the fourth PC (0.52).

(EPS)

Figure $2 Top two axes of variation in the Dog hip
dysplasia datashows separation of Dog breeds, Labra-
dor (L), Greyhound (G), and crosses along the top 2 PCs.
The first PC had a correlation of 0.91 with the breed proportions.
(EPS)

Figure 83 Correlation between the top 20 PCs and the
known ancestries in the simulated dataset (100 repli-
cates).

(EPS)
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