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Abstract

Population structure is known to cause false-positive detection in association studies. We compared the power, precision,
and type-I error rates of various association models in analyses of a simulated dataset with structure at the population
(admixture from two populations; P) and family (K) levels. We also compared type-I error rates among models in analyses of
publicly available human and dog datasets. The models corrected for none, one, or both structure levels. Correction for K
was performed with linear mixed models incorporating familial relationships estimated from pedigrees or genetic markers.
Linear models that ignored K were also tested. Correction for P was performed using principal component or structured
association analysis. In analyses of simulated and real data, linear mixed models that corrected for K were able to control for
type-I error, regardless of whether they also corrected for P. In contrast, correction for P alone in linear models was
insufficient. The power and precision of linear mixed models with and without correction for P were similar. Furthermore,
power, precision, and type-I error rate were comparable in linear mixed models incorporating pedigree and genomic
relationships. In summary, in association studies using samples with both P and K, ancestries estimated using principal
components or structured assignment were not sufficient to correct type-I errors. In such cases type-I errors may be
controlled by use of linear mixed models with relationships derived from either pedigree or from genetic markers.
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Introduction

The power of an association study depends on the phenotypic

variance explained by the causal variant, the extent of linkage

disequilibrium (LD) between the causal variant and the markers,

and, not least, the size of the study sample. Several recent

association studies have thus focused on collecting large samples to

obtain higher powers of detection [1,2] but this practice is often

associated with population stratification problems. Among the

factors thought to cause lack of reproducibility in association

studies reviewed [3], population stratification has probably been

the most cited reason [4].

Population stratification refers to the inclusion of individuals

from isolated subpopulations in the population of interest. In such

a population, individuals from a subpopulation are, on average,

more closely related to each other than to other individuals in the

population as a whole. Population structure is common in nature.

It manifests in the form of herds, colonies, and ethnic groups, and

as a consequence of geographic isolation and natural or artificial

selection [5]. A subtle form of stratification can also occur at the

family level, especially in livestock when animals are bred in full-

sib or half-sib families [6].

Genetic association studies aim to correlate differences in trait

level with differences in genotypes at a tested marker. This

correlation is assumed to arise from the co-occurrence of the

marker with the quantitative trait locus (QTL), i.e., LD. The

presence of LD is usually equated with physical linkage. However,

in a stratified population with differences at the trait level, markers

with different frequencies across populations will also correlate

with trait levels. Thus the use of a structured population in an

association study may yield false associations due to differences in

allele frequencies among subpopulations [7].

Examination of an unstratified sample is thus optimal in an

association study [5]. However, combining samples from multiple

populations is often necessary to increase the power of detection.

In some cases, study of a structured population may be

advantageous. Markers tightly linked to causal variants achieve

similar significance in tests of association, making it difficult to

distinguish them from the causal variant. In such cases, the use of a

structured sample may enable precise localization of the causal

variant, as a marker in strong LD with the causal variant in one

population may not be in strong LD in the other [8]. Thus, the use

of statistical methods that correct for stratification at the

population and family level, especially in livestock are important
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for the present and future association studies that aim to genotype

large samples.

Several methods, such as structured analysis (SA) [9], principal

component analysis (PCA) [10] and the use of linear mixed models

(LMM) [5], have been reported to be useful in correcting for

stratification in genome-wide association (GWA) samples. It has

been noted that correcting for stratification is more challenging

when family structure is present along with population stratifica-

tion [11]. In this study, we simulated an admixed population

(variable ancestry from two populations) with familial relatedness

as generally observed in commercial cattle populations and

compared the power, precision and false-positive detection rates

of analyses using the SA, PCA, and LMM approaches. We also

applied these methods to two publicly available real datasets and

compared the incidence of false-positive associations.

Materials and Methods

The study uses a simulated dataset and 2 publicly available

datasets, so no ethical approval was required.

Simulation Study
An admixed population (Fig. 1) was simulated using the

QMSim software package [12]. First, an historic population

(HP) was simulated to generate the initial linkage disequilibrium

(LD) and to allow for mutation (2.561023/locus/generation) and

drift. The HP consisted of 5,000 individuals that were randomly

mated for 1,000 generations. The genome was assumed to have 20

chromosomes of 100 cM each with 40,000 evenly distributed bi-

allelic SNP markers with equal frequencies (0.5) for the two alleles

in the base population. Only two QTLs with two equally frequent

alleles were simulated, both located on chromosome 1 at 20 cM

and 80 cM. The QTL mutation rate was 2.561025/generation.

The number of recombination per Morgan (per chromosome) was

sampled from a Poisson distribution of mean = 1 and the cross-

overs were randomly placed on the chromosomes. QTL effects

were introduced in the last generation of the HP for a trait

(mean = 0, variance = 1) with a heritability of 0.3. The allelic

effects were sampled from a gamma distribution with a shape

parameter of 0.4 as implemented in QMSim [12], so that the two

QTLs together explained 10% of phenotypic variance. The

remaining genetic variance was simulated as a polygenic effect.

After 1,000 generations, the population size was reduced to 2,500

individuals (2,000 females, 500 males).

Next, two populations were generated from the HP by mating

two separate parent groups in isolation. The parent groups (1,000

females, 50 males each) were randomly selected from the last

generation of the HP. Each sire was mated to 20 dams, with each

mating producing one offspring. This procedure yielded a total of

1,000 offspring with an equal sex ratio (500 males, 500 females)

from each parent group. Fifty randomly selected male offspring

from each group were used as sires for the next generation,

whereas all female offspring along with 500 randomly selected

dams from the previous generation were used as dams for the next

generation. This mating scheme was continued for 30 generations.

After 30 generations, the average genetic distance between

populations in 100 replicates, estimated as mean Fst from all

40,000 SNP markers, was 0.025 [standard deviation

(SD) = 0.0006]. The allele frequencies of the markers (Fig. 2) and

mean phenotype levels (Fig. 3) differed between populations.

In the next step of the simulation, individuals from two isolated

populations were mated to yield an admixed population. Twenty-

five males and 500 females were selected from each population to

serve as parents. These individuals were randomly mated for four

generations to yield an admixed population of 1,000 individuals

(500 males, 500 females), following the mating scheme described

above. After admixture, QTLs in the last generation explained 0–

13% of the total phenotypic variance. The individuals’ ancestries,

calculated as average genetic contributions from one parent

population to individuals in the admixed population over four

generations, are presented in Figure 4. Data on phenotypes for

Figure 1. Schematic representation of the simulation.
doi:10.1371/journal.pone.0088926.g001

Figure 2. Absolute differences in allele frequencies of single-
nucleotide polymorphism (SNP) markers between populations
(100 replicates).
doi:10.1371/journal.pone.0088926.g002
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these 1,000 samples, along with their genotypes for 40,000 SNP

markers, were used in our association analyses.

Chromosome 1, which contained two simulated QTLs, was

used to assess the power and precision of the models and five

chromosomes (chromosomes 2–6) without simulated QTLs (null

chromosomes) were used to assess the false-positive rate (type-I

error). A total of 100 replications were used to compare the

models.

Publicly Available Real Data
In addition to the simulated datasets, the models for GWA

studies were applied to the following two publicly available

datasets to assess their ability to control type-I error.

Human GOLDN Dataset. This human stature dataset was

collected from 1,315 European American individuals genotyped

for 637 genetic markers as part of the Genetics of Lipid Lowering

Drugs and Diet Network (GOLDN) study [13,14]. Individuals’

height, sex, and age were recorded. Previous studies have found no

significant population structure in this sample and no significant

association between height and any of these genotyped markers.

Dog Data on Hip Dysplasia. This dataset contains hip

dysplasia data from 292 dogs of two breeds (Labrador retriever

and greyhound) and their crosses (F1, F2, and backcrosses). The

samples were genotyped for 23,500 SNPs and hip dysplasia was

measured using the Norberg angle [15]. The relationship matrix

was estimated from pedigree. The ancestors of each dog were

traced back as far as possible. We used 1,000 randomly chosen

markers assumed to be unlinked to the variants controlling hip

dysplasia [14].

Association Models
The allele substitution effect (b) of an SNP was estimated by

successively fitting the marker in the following models. The

simulated data contained two confounding factors: admixture (P)

and familial relatedness (K). The models compared corrected for

none, one, or both factors.

The significance of estimated b was then tested against the null

hypothesis (b = 0) using a t-test with Bonferroni correction for

multiple testing, at a significance level of a = 0.05. All analyses

were carried out with the DMU software package [16].

1) Linear Model (LM). A linear model (LM) ignoring K and P

was used to estimate the allele substitution effect:

y~m1zbgze

where y was a vector of phenotypes, m was an overall mean, 1
was a vector of ones, b was the allele substitution effect of the

SNP, g was a vector of additively coded (0, 1 and 2) SNP

genotypes and e was a vector of random residuals with normal

distribution N(0,Is2
e ), where s2

e is the error variance and I is

the identity matrix.

2) Linear Mixed Model Including Pedigree-Based Re-
lationship (LMMped). An LMM accounting only for K

was used to test the associations of single SNPs with the

phenotype:

y~m1zbgzuze

The terms in the model are similar to those in the LM, with

the addition of random polygenic effects (u). K was included

in the model as the variance-covariance structure (A) of u,

estimated from the pedigree relationships. u was assumed to

be multivariate normally distributed u*N(0,s2
gA), where s2

g

is the genetic variance and A is the additive genetic

relationship matrix derived from pedigree records for the last

three generations.

3) Linear Mixed Model Including Genomic Relation-
ship (LMMgmat). This LMM was similar to the LMMped

accounting for K, differing only in the estimation of the

variance-covariance matrix of u. Instead of a pedigree-based

relationship matrix (A), genome-wide SNP markers were used

to estimate the genomic relationship matrix (G ) [17]. u was

assumed to be multivariate normally distributed

u*N(0,s2
gG).

4) Structured Association. A model based on the clustering

method of the STRUCTURE software package [9] was used

to correct for P. One thousand markers evenly distributed

over the genome were selected and individuals were assigned

to two clusters (k = 2) in a structure linkage model [18].

Figure 3. Differences in mean phenotypes of two populations
after separation for 30 generations (100 replicates).
doi:10.1371/journal.pone.0088926.g003

Figure 4. Distribution of individuals’ ancestries after admixture
(100 replicates).
doi:10.1371/journal.pone.0088926.g004
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Admixture was assumed and partial membership to a cluster

was allowed. The membership of an individual in a cluster (s,

varying continuously between 0 and 1) was used as a covariate

in the following models to correct for P.

1) 4a) Linear Model with STRUCTURE (LMstr). This

model was similar to the LM, with additional fixed

regression (c) of the phenotype on s to account only for P

while ignoring K:

y~m1zbgzcsze

2) 4b) Linear Mixed Model with STRUCTURE
(LMMstr). This model was similar to LMMped, with

the addition of fixed regression of the phenotype on s to

correct for K and P:

y~m1zbgzuzcsze

5) Principal Component Analysis (PCA). PCA was per-

formed to correct for P in the sample. Principal components

(PCs) for the covariance matrix, estimated from all 40,000

SNP markers, were calculated. SNP genotypes and pheno-

types were corrected for the first two PCs, as described

elsewhere [10].

5) In the simulated datasets on an average the top two PCs

explained 2.23% of the total variance in the range of 2.05 to

2.62. Although the fraction of the total variance explained was

low, in most cases one of the first two PCs for the simulated

datasets (Fig. S1) or the first PC for the dog dataset (Fig. S2)

showed the strongest correlations with known ancestries and

separated samples on ancestries. We also found that in most of

the cases the correlation between PCs and known ancestries

decayed rapidly beyond the first two PCs (Fig. S3). Thus, the

first two PCs were used to correct for P. Although PCs did not

separate the human samples, two PCs were used to correct the

genotypes and phenotypes for comparison. The corrected

genotypes (g�) and phenotypes (y�) were fitted in the following

models to correct for P.

1) 5a) Principal Component Analysis in a Linear
Model (LMpca). Here, y� and g� were fitted in the LM

to account only for P while ignoring K:

y�~m1zbgze

2) 5b) Principal Component Analysis in a Linear
Mixed Model (LMMpca). Here, y� and g� were fitted

in LMMped to correct for K and P:

y�~m1zbgzuze

Comparison of the Models
Type-I Error. Simulated Data. SNPs on five null chromosomes

(with no simulated QTL) were used to assess the type-I error rates

of all described models. A total of 1,000,000 SNPs over 100

replicates were fitted into the models to estimate b. The

distribution of 2log10 p-values of the t-test was plotted against

the null (uniform) distribution in a quantile-quantile (QQ) plot.

Deviation from the null distribution was used to assess the type-I

error rate. In addition, the number of observed significant SNPs

on null chromosomes was compared with the expected number at

different significance levels.

Real Data. The human data were analyzed with LM,

LMMped, LMMpca (first two PCs), and LMMstr (k = 2), with

the inclusion of sex, age, and squared age as covariates [14].

Previous studies have reported no significant association between

the SNPs and height. The deviation of 2log10 p-values of the t-test

from the expected uniform distribution in a QQ plot was used to

assess the type-I error rate.

The data on hip dysplasia in dogs were fitted to the LM,

LMMped, LMMpca (first two PCs), LMMstr (k = 2), and

LMMpedB, a model similar to LMMped but with the addition

of breed (as proportion of Labrador retriever) as a fixed regression.

The 1,000 randomly chosen markers were assumed to be

unassociated with the causal variants for hip dysplasia. The

distribution of 2log10p-values of the test of association was

compared with the expected distribution under the assumption of

no association in a QQ plot. Deviation from the expected

distribution was used to assess the type-I error rate.

Power and Precision. The power of the models to detect the

QTL was assessed from chromosome 1, with 2 simulated QTL,

i.e., for 199 QTLs over 100 replicates (one QTL fixed for an allele

was left out of the analysis). A QTL was considered detected when

an SNP within 1 cM of the simulated QTL showed significance

after Bonferroni correction (for 12,000 SNPs tested on six

chromosomes) at a= 0.05. The absolute distance between the

detected and simulated QTL positions was calculated to ascertain

the precision of the methods in locating the QTL. Power and

precision were estimated separately for small effect (explaining

,5% of s2
p) and large effect QTL (explaining .5% of s2

p).

Results

Results from the simulation study
Type-I Error. The distributions of 2log10 p-valuesfor the

SNPs on the five null chromosomes were compared with expected

uniform distributions (Fig. 5). In general, type-I error rates were

lower in LMMs, where familial relationship (K) was used to model

the covariance structure of the random individual effect than in

LMs (which did not account for K). Among LMMs, LMMpca

closely followed the expected type-I error rate, whereas LMMgmat

was the most conservative, showing a lower than expected type-I

error rate.

The average number of significant SNPs on the null chromo-

somes is compared with expected numbers under the null

hypothesis at different significance levels in Table 1. At a

Bonferroni-corrected significance level, a= 0.05 (corrected for

10,000 SNPs tested on five chromosomes) LMs that did not

account for K (LM, LMstr, and LMpca) showed significantly

higher false-positive results than expected (p,0.01), whereas

LMMs that corrected for K (LMMped, LMMstr, LMMpca, and

LMMgmat) showed better control of false-positive results.

Power. The power of the models to detect two simulated

QTLs on chromosome 1 using 100 replicates with 199 QTLs is

summarized in Figure 6. Power was compared only among LMMs

Comparison of GWAS Methods in Admixed Populations
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because the LMs had very high false-positive detection rates

(Fig. 5). No LMM had the power to detect small-effect (,5% of

s2
p) QTLs. The power was ,5%, at the level expected with

a = 0.05. In contrast, all models tested showed 53–60% power to

detect large-effect (explaining .5% of s2
p) QTLs. LMMped and

LMMstr had the highest powers (59.6%), followed by LMMpca

(57.6%) and LMMgmat (53.5%), although this difference was not

significant [x2 (3, n = 99) = 0.9925; p = 0.8031]. Overall, LMMped

had the highest power, detecting 32% of simulated QTLs,

followed by LMMstr (31.7%), LMMpca (30.7%), and LMMgmat

(28.1%); however, this difference was also not significant [x2 (3,

n = 199) = 0.8983; p = 0.8258].

Out of the total 199 simulated QTLs, 53 were detected by all

the four models, the majority (50) of which being large effect QTL

(mean genetic variance = 0.087, SD = 0.02). On the other hand

133 QTLs were not detected by any of the models, majority (95) of

them being small effect QTL (mean genetic variance = 0.031,

SD = 0.032).

Precision. The precision of the models, measured as the

absolute distance (cM) between the positions of simulated and

detected QTLs, is described in Figure 6 and Table 2. All four

methods compared showed greater precision for the localization of

large-effect compared with small-effect QTLs. On average, large-

effect QTLs were localized within 0.36–0.39 cM of the simulated

QTL positions, whereas small-effect QTLs were localized within

0.62–0.66 cM. LMMped was most precise (60.62 cM) for small-

effect QTLs, and LMMgmat was most precise (60.36 cM) for

large-effect QTLs.

Results from the Published Data
Human GOLDN Dataset. For the Human GOLDN dataset,

type-I error was compared among the LM, LMMped, LMMstr,

and LMMpca. The distribution of test statistic is given in a QQ

plot (Figure 7). The LM without correction for K and P showed the

highest false-positive rate. The three LMMs (LMMped, LMMstr,

and LMMpca), showed similar distributions of 2log10 p-values,

which were slightly higher than expected.

Dog Data on Hip Dysplasia. The dog data were analyzed

using the LM, LMMped, LMMpedB, LMMstr, and LMMpca.

The type-I error rates for these methods are compared in a QQ

plot in Figure 8. The LM showed the highest rate of type-I errors,

and this rate was comparable among LMMs, with LMMpedB and

LMMstr showing the lowest type-I error rates.

Discussion

We compared the power, precision and false-positive association

rates of several GWA models in analyses of simulated admixed

data with familial relationships. LMs that did not model K (LM,

LMstr, and LMpca) showed higher rates of false-positive

associations than did LMMs accounting for K (Fig. 5, Table 1).

Regardless of whether they corrected for population stratification,

LMMs controlled for false-positive results at the nominal level.

This is probably due to the capture of the ancestry of individuals

by the variance-covariance structure modeled into the random

Figure 5. Quantile-quantile plot of 2log10p-values for associ-
ation tests using different models in the simulated dataset.
doi:10.1371/journal.pone.0088926.g005

Table 1. Average number of significant single-nucleotide polymorphisms (SNPs; 100 replicates) in five chromosomes (10,000
SNPs) without simulated quantitative trait loci.

Model Significance level

Correction for 0.05 0.005 0.0005 0.000005

LMMped K 514.73* (7.83) 53* (1.7) 5.5 (0.4) 0.02 (0.014)

LMMstr P+K 511.88 (7.9) 51.97 (1.6) 5.64* (0.4) 0.02 (0.014)

LMMpca P+K 520.89** (7.6) 53.92** (1.6) 5.88** (0.4) 0.02 (0.014)

LMMgmat K 472.15 (5.7) 44.92 (1.2) 4.45 (0.3) 0.01 (0.01)

LM - 1014.51** (18.9) 190.2** (6.8) 36.93** (2.0) 1.43** (0.17)

LMstr P 998.22** (17.8) 184.33** (6.4) 34.78** (1.8) 1.34** (0.16)

LMpca P 968.01** (18.7) 175.27** (6.5) 32.01** (1.7) 1.17** (0.16)

Expected false-positive associations 500 50 5 0.05

Standard errors are given in parentheses. The average number of significant SNPs (Sobs) in 100 replicates was compared with the expected number (Sexp) at different
significance levels using t-tests. (H0: Sobs = Sexp; H1: Sobs.Sexp; *p,0.05, **p,0.01). Significance level of 0.000005 corresponds to a nominal significance level of 0.05 after
Bonferroni correction for 10000 tests.
LMMped = Linear Mixed Model Including Pedigree-Based Relationship, LMMstr = Linear Mixed Model with STRUCTURE, LMMpca = Principal Component Analysis in a Linear
Mixed Model, LMMgmat = Linear Mixed Model Including Genomic Relationship, LM = Linear Model, LMstr = Linear Model with STRUCTURE, LMpca = Principal Component
Analysis in a Linear Model, P = admixture, K = Familial relationships.
doi:10.1371/journal.pone.0088926.t001
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polygenic effect, as previously shown [5]. The results of analyses of

publicly available human and dog data also show that LMMped

was comparable to LMMstr and LMMpca in controlling for type-I

errors (Figs. 7 and 8). Thus, in a sample with structure at the

family and population levels, correction for K alone might be

sufficient to control for false-positive associations arising from

population structure.

In contrast, correction for P alone in the LMpca and LMstr was

insufficient to control for false-positive associations. This is

probably because STRUCTURE [9] and PCA [10] corrected

for P, but subtle admixture at the family level was not captured by

STRUCTURE (k = 2) and LMpca (two PCs). Thus our findings

indicate that correction for structure at the population level alone

is not sufficient in samples with structure at the population and

family levels. In such samples, LMMs can be effectively used to

control for false-positive results.

Among LMMs, LMMgmat was the most conservative and

consequently suffered a slight loss of power. In this model, the

relationship matrix (G) was estimated from the whole genome,

including markers linked to the simulated QTL. This probably led

to correction of part of the QTL effects in the data, thereby

reducing the model’s power to detect QTLs.

The compared models had powers of ,60% in detecting large-

effect QTLs. In our simulation, the same set of QTLs were

segregating in the two ancestral populations, which might not

accurately reflect the situation in real populations, where

subpopulations may have different causal variants affecting the

same trait, thereby reducing the power to detect such QTLs. Thus,

our power results likely reflect the upper boundary of detection

power in structured populations for QTLs with similar effects

using the same sample size. In our study, none of the tested

methods had the power to detect small-effect QTLs in the

simulated dataset. This finding might be explained by a lower

average LD (r2 = 0.07) between adjacent markers and a similar LD

between markers and the QTL. Increasing the marker density and

sample size might increase the power to detect small-effect QTLs

in such a dataset.

It should also be noted that the LD levels in the dataset is

defined by the specific parameters (mutation rate, recombination

rate and type of mating) used in the simulation. The mutation rate

for markers assumed in this study was higher than what is observed

in real life (e.g. 1028 per base per generation in human, The 1000

Genomes Project Consortium. 2010 [21]). However, we had only

2000 marker per chromosome (100 cM<100 MB). Therefore, the

mutation rate considered in the study reflects the chance of having

a mutation for a genomic region the SNP represents. Altering the

genetic parameters may change the LD structure; however we do

not expect a change in the relative ranking of the methods in the

power of QTL detection; the same is true for the type-I error rate.

Moreover, we use chromosomes devoid of the simulated QTL to

assess the type-I error rate; hence the false associations arise only

due to stratification and not because of the LD between markers

and the QTL. Our study focuses on quantitative trait, but the

findings can be generalized to case-control data as reported by

Figure 6. The power [% of quantitative trait loci (QTLs) detected] and precision (absolute distance between simulated and detected
QTL; gray bars) of the models in QTL localization.
doi:10.1371/journal.pone.0088926.g006

Table 2. Absolute error (cM) in quantitative trait loci
localization.

Small effect Large effect All

LMMped 0.62 0.38 0.40

LMMstr 0.66 0.39 0.41

LMMpca 0.66 0.38 0.40

LMMgmat 0.66 0.37 0.38

Precision is given as the absolute genetic distance between simulated and
detected quantitative trait loci (61 cM).
LMMped = Linear Mixed Model Including Pedigree-Based Relationship,
LMMpca = Principal Component Analysis in a Linear Mixed Model, LMMstr = Linear
Mixed Model with STRUCTURE, LMMgmat = Linear Mixed Model Including Genomic
Relationship.
doi:10.1371/journal.pone.0088926.t002
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Figure 7. Quantile-quantile plot of 2log10p-values for association tests of the human GOLDN dataset using different models.
doi:10.1371/journal.pone.0088926.g007

Figure 8. Quantile-quantile plot of 2log10p-values for association tests of the dog hip dysplasia dataset using different models.
doi:10.1371/journal.pone.0088926.g008

Comparison of GWAS Methods in Admixed Populations

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e88926



Kang et al., 2010 [19]; who found variance components based

method to be effective in correcting for stratification.

The models showed comparable precision in QTL localization.

Large-effect QTLs were localized with higher precision than were

small-effect QTLs. This result contrasts with that of MacLeod et

al. [20], who found that small-effect QTLs were mapped more

precisely than large-effect QTLs. This difference is probably due

to sampling bias, as the models in our study had no/very low

power to detect small-effect QTLs, but ,60% power for large-

effect QTLs; this situation allowed comparison of only a few

observations.

In our simulation, we found that in most cases (86) the first

principal component captures the genetic variation due to

population stratification (correlation of 0.77 with ancestry; see

Fig. S1). However, in nine cases the second PC, in three cases the

third PC and in two cases the fourth PC had showed the highest

correlation with the ancestries (0.67, 0.58, and 0.52, respectively).

These observations suggest that in a dataset with structure at both

population and family level, the latter may account for more

genetic variation than the former. Therefore correction for only

the first two PCs might not always be sufficient to correct for

population stratification. It may thus be important to find out

which PCs explain the cryptic relationship better in each dataset

and include those to correct population stratification.

Our findings show that LMM approaches accounting for K are

able to correct for structure at the family and population levels.

We also found that the power and type-I error rate of LMMgmat

with G were comparable to those of LMMped with A. Thus,

LMMs may be used to correct for structure at the family and

population levels by including K estimated from pedigree or

genetic markers.

Supporting Information

Figure S1 Top two axes of variation in the simulated
datashowsseparation of samples along the top two axes
of variation in 4 replicates of simulated data. The samples

are color coded with the individual ancestry (IA).Replicates i and

iii show separation along the first axis whereas replicates ii and iv

show separation along the second axis. Over 100 replicates, in 86

cases the first PC had the highest correlation (mean of 0.77) with

the ancestries, in 9 cases with the second PC (0.67), in 3 cases with

third PC (0.58) and in 2 cases with the fourth PC (0.52).

(EPS)

Figure S2 Top two axes of variation in the Dog hip
dysplasia datashows separation of Dog breeds, Labra-
dor (L), Greyhound (G), and crosses along the top 2 PCs.
The first PC had a correlation of 0.91 with the breed proportions.

(EPS)

Figure S3 Correlation between the top 20 PCs and the
known ancestries in the simulated dataset (100 repli-
cates).
(EPS)
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