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Abstract. Cancer stem cells (CSCs) represent a small, yet
pivotal subpopulation of tumor cells that play significant roles
in tumor initiation, progression and therapeutic resistance.
Circular RNAs (circRNAs) are a distinct class of RNAs char-
acterized by their closed-loop structures, lacking 5' to 3'ends.
There is growing evidence that circRNAs are integral to the
development and regulation of CSCs. Aberrant expression of
circRNAs in CSCs can contribute to oncogenic properties and
drug resistance. Specifically, oncogenic circRNAs modulate
CSC behavior via key signaling pathways, thereby promoting
CSC self-renewal and maintenance, as well as tumor progres-
sion. This review summarizes the latest research on the
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functional roles and regulatory mechanisms of circRNAs in
CSC behavior and discusses potential applications and chal-
lenges of targeting circRNAs in CSCs. Understanding the
intricate interactions between circRNAs and CSCs may lead to
novel therapeutic strategies that effectively combat treatment
resistance and improve patient outcomes.
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1. Introduction

Circular RNAs (circRNAs), unlike their linear counterparts,
are ring-shaped RNA molecules formed by back-splicing,
wherein the 3' and S'ends of linear RNA are joined. Although
circRNAs were discovered as early as the 1970s (1,2), they were
initially regarded merely as by-products of RNA splicing and
garnered little attention. It was not until recent advancements
in high-throughput sequencing technologies and bioinformatic
tools that the widespread presence of circRNAs in eukaryotes
was acknowledged (3.4). CircRNAs are produced through a
process known as ‘back splicing’, which may include mecha-
nisms such as exon skipping (5), circularization mediated
by cis/trans elements (6), lariat-mediated circularization,
circularization driven by intron pairing (4) or the splicing
of pre-tRNAs (7). Based on their structural components,
circRNAs are categorized into three primary types: Exonic
circRNAs (ecircRNAs), which consist of one or multiple exon
sequences; intronic circRNAs, composed solely of one or
multiple intron sequences; and exon-intron circRNAs, which
include both exons and introns (8). Among these, ecircRNAs
have been the most extensively studied. CircRNAs exhibit
several significant characteristics: i) Their unique circular
structure confers resistance to degradation by exonucle-
ases, thereby enhancing their stability and extending their
half-life (9,10); ii) CircRNAs are ubiquitously expressed, as
demonstrated by sequencing studies revealing their abundant
presence across eukaryotic species (11,12); iii) circRNAs show
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conservation across species, with studies indicating that certain
circRNAs found in mouse tissues are homologous to those
derived from humans (4,13); iv) the expression of circRNAs is
both tissue- and cell-specific. Research by Memczak et al (3)
and Salzman et al (14) has shown that, although thousands of
circRNAs are expressed across the genome, their expression
levels vary significantly among different cells, tissues and
developmental stages. Accumulating evidence underscores the
crucial roles of circRNAs in regulating a variety of cellular
processes, including cell proliferation, differentiation and the
maintenance of stemness (15).

Cancer stem cells (CSCs), also known as tumor-initiating
cells (TICs), constitute a small subpopulation within tumors
that have the capabilities of self-renewal and differentiation
into various cell types (16). Initially identified in human acute
myeloid leukemia, CSCs have subsequently been isolated
from a range of solid tumors, including those of the breast,
glioma, colon and liver (17,18). Two prevalent hypotheses
propose different origins for these cells: The first suggests that
CSCs arise from non-malignant stem cells that undergo trans-
formation due to tumor gene mutations (19), while the second
posits that CSCs develop from highly differentiated non-stem
cells that acquire stem-like properties following transforma-
tion, a process often characterized by epithelial-mesenchymal
transition (20). CSCs are distinguished by their robust
self-renewal ability and differentiation capabilities, enabling
them to produce progeny similar to themselves, as well as to
differentiate into diverse cell types (21). Furthermore, CSCs
display enhanced tumorigenicity, playing a critical role in
tumor initiation, progression and treatment resistance (22).
For instance, CSCs isolated from original tumor tissues and
transplanted into severe combined immunodeficiency disease
mice have been shown to form new tumors (23). Metastasis,
the process through which tumor cells migrate from their
primary site via the bloodstream or lymphatic system to
establish new tumor foci in other parts of the body (24), is
a principal characteristic of malignant tumors and a major
contributor to advanced cancer and treatment failure (25).
Research has demonstrated that CSCs are integral to the
metastasis of various cancers, including pancreatic, breast
and prostate cancers (26-28). In addition, angiogenesis,
essential for tumor growth and metastasis, is facilitated by
CSCs, which can differentiate into vascular endothelial cells
to promote this process in tumors, such as glioblastoma,
liver cancer and renal carcinoma (29-31). CSCs are also
closely linked to treatment resistance, including resistance to
chemotherapy and radiotherapy. Aldehyde dehydrogenase 1
(ALDHI1), a detoxifying enzyme highly expressed in CSCs,
helps mitigate the toxic effects of reactive oxygen species
and regulates the cell cycle, allowing sufficient time for
DNA repair and thus enabling CSCs to withstand therapeutic
interventions (32-34). Therefore, elucidating the mechanisms
underlying the unique characteristics and behaviors of CSCs
may lead to more effective strategies to curb cancer progres-
sion and enhance therapeutic outcomes.

Recent research has highlighted the potential influence of
circRNAs on the properties and behavior of CSCs, impacting
tumor progression and therapeutic responses. This review
aims to succinctly summarize current research on the roles
and mechanisms of circRNAs in various CSCs and to discuss

their potential applications in cancer research and treatment,
thus offering new insights into CSC-related oncology.

2. Expression profiles of circRNAs in CSCs

Methods for isolating CSCs. CSCs, which typically account
for as few as 1 in 100,000 to 1 in 1,000 cells within tumor
tissues, present a considerable challenge for isolation and
enrichment (35). The effective isolation of CSCs is crucial for
advancing our understanding of tumor development and thera-
peutic resistance. Several prevalent methods are employed
to enrich CSCs from tumor tissues or tumor cell popula-
tions, including fluorescence-activated cell sorting (FACS),
magnetic-activated cell sorting (MACS), side population (SP)
analysis and the sphere formation assay (refer to Fig. 1 showing
a flow diagram of CSC isolation).

Both FACS and MACS techniques utilize cell surface
labeling to sort cells (36,37). Key surface markers used to
identify CSCs include CD44, CD133, ALDH and epithelial
cell adhesion molecule (EpCAM). Over the years, these and
other biomarkers have been identified to characterize CSCs
across various tumor types (see Table I). Since the pioneering
work by Bonnet and Dick (38), who first isolated CSCs
from leukemia using FACS, this technology has become the
predominant method for cell isolation. FACS enables the
simultaneous sorting of cells based on multiple biomarkers,
offering high purity and specificity. In addition, it allows for
the analysis of intracellular pathways and protein interactions,
thus addressing the challenges of CSCs' membrane antigen
specificity (39). However, maintaining cell viability during
FACS requires stringent experimental conditions and precise
cell pretreatment, which can be challenging due to high
equipment costs and complex operational requirements (40).
By contrast, MACS employs magnetic beads coated with
antibodies targeting specific cell surface markers on CSCs,
with separation achieved using a magnetic field (41). Although
MACS is less disruptive to cell viability, its dependence on a
single antigen and the complexities associated with its opera-
tion, coupled with high costs, somewhat limit its widespread
application (40).

SP cells, first identified by Goodell et al (42) in 1996,
are characterized by their ability to efflux the Hoechst33342
dye during bone marrow cell culturing. These cells exhibit
properties consistent with CSCs and have been identified in
various tumor tissues and cell lines, including ovarian, colon,
gastric and lung cancers (43-46). SP analysis is relatively
straightforward, but it suffers from low separation efficiency
and the cytotoxicity of the dye, which can compromise cell
viability. However, for CSCs lacking known surface markers,
SP analysis combined with flow cytometry remains a viable
method for isolation. For instance, this approach has been
utilized to study the impact of exosomes loaded with the
circRNA of par-3 family cell polarity regulator on CSCs in
nasopharyngeal carcinoma and to explore the metabolic
mechanisms by which CSCs facilitate metastasis in pancreatic
ductal carcinoma (47,48).

Another commonly utilized method for the isolation and
identification of CSCs is the sphere formation assay (49). In
this technique, tumor tissues are enzymatically dissociated
into single cells, which are then cultured at low density in



Table I. Biomarkers of cancer stem cells in human cancers.
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Cancer type

Markers

(Refs.)

Breast cancer
Gastric cancer
Colorectal cancer
Glioma/glioblastoma
Hepatocellular cancer
Cervical cancer
Pancreatic cancer
Bladder cancer
Ovarian cancer
Lung cancer

AML

CD44v6*, CD44*, ALDH, CD24

CD44*/CD24 , EpCAM, ALDH1, CD29*, CD133*, ESA*/CD44*/CD24, CD90*
CD44*, ALDH*, CD44V8-10*,CD133*, CD24*, EpCAM™, LGRS,
CD200*,CD133*, EpCAM®, CD44*, ALDH1*, CXCR4, LGRS,

CD133*, LGRS, CD70", CD49f, CXCR4, CD44*, CD87*, ALDH,

EpCAM, LGRS, CD24*, CD133*,CD24*/CD133*, CD90, CD44*

LGRS, CD133*, CD44*/CD24*, ALDH*

CXCR4, LGRS, CD44*/CD24*, CD133*, CD90, AFP

CD24*, ALDH, CD133+, CD44*/CD117*, CD44*/CD24~
ALDH, CD166%, CD44*, CD133*, CXCR4, CD87
CD133*,CD70/CD27,CD25*, CD123*, TIM-3, BMI-1

(139,202-207)
(162,208-214)
(215-221)
(93,94,222-227)
(228-234)
(235-238)
(239-243)
(244-247)
(248-252)
(151,253-257)
(258-263)

AML, acute myeloid leukemia; AFP, a fetoprotein; EpCAM, epithelial cell adhesion molecule; ALDH, aldehyde dehydrogenase; CXCR4,
C-X-C chemokine receptor type 4; LGRS, leucine rich repeat containing G protein-coupled receptor 5; BMI-1, B lymphoma Mo-Mlv insertion

region 1 homolog; TIM-3, hepatitis A virus cellular receptor 2.
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Figure 1. Flow diagram of cancer stem cell isolation.

serum-free medium supplemented with epithelial growth
factor and basic fibroblast growth factor. Under these specific
conditions, individual CSCs are capable of forming colonies
or spheres, thereby facilitating their isolation and subsequent
analysis (50,51). Although the purity and specificity of CSCs
isolated by this method may not rival those achieved through
FACS, the sphere formation assay remains popular in research
laboratories due to its simplicity, cost-effectiveness and ease of
implementation (52-55).

In addition to these traditional methods, CSCs can also be
isolated based on their resistance to therapeutic agents. For
instance, Calcagno et al (56) demonstrated that prolonged
exposure of breast cancer cells to azithromycin not only
selected drug-resistant cells but also enriched populations with
a CD44%/CD24 stem cell-like phenotype. Similarly, cancer
stem-like cells have been isolated using cisplatin and paclitaxel

selection from a human ovarian cancer cell line (57). Each of
the aforementioned isolation methods has its own strengths
and limitations and their combined application can lead to
more effective isolation of CSCs with high purity.

Methods for screening target circRNAs. Screening for target
circRNAs involves several methodologies, each with unique
advantages and limitations:

RNA sequencing (RNA-seq). RNA-seq is a high-throughput
method that is particularly powerful for discovering and
profiling circRNAs (4,58,59). This technique provides
comprehensive detection of both coding and non-coding
RNAs, possesses high sensitivity for detecting low-expression
circRNAs and enables quantitative comparisons of expres-
sion levels across samples. However, the high costs and the
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complexity of data processing associated with RNA-seq are
significant drawbacks (6). Challenges such as reverse tran-
scription template-switching and ligation artifacts during
circRNA-seq library construction can lead to the generation
of inaccurately joined cDNA sequences, thus resulting in erro-
neous circRNA predictions (60). In addition, exon repeats and
trans-splicing events in linear mRNA can further contribute to
incorrect circRNA predictions (6).

Microarray analysis. As an alternative high-throughput
technology to RNA-seq (61), microarray analysis is faster
and requires less bioinformatics expertise but is limited to
detecting known circRNAs (62). This method is advantageous
for its speed and ease of use compared to RNA-seq.

Database screening. Various circRNA databases are
available, covering aspects such as tissue and cell specificity
[e.g., CircAtlas (63), CIRCpedia (64) and MiOncoCirc (65)],
disease associations [e.g., circRNADDb (66)], circRNA-miRNA
interactions [e.g., MiRanda (67), TargetScan (68) and
circBase (11)], circRNA-RNA-binding protein (RBP) interac-
tions [e.g., CircInteractome (69), CSCD (70) and TSCD (12)]
and circRNA protein-coding potential [e.g., circRNADbD (66)].
Utilizing these databases facilitates the rapid identification and
validation of known circRNAs. However, Vromman et al (71)
have highlighted the limited content overlap between these
databases, inconsistencies in circRNA naming and the frequent
absence of complete sequences, which can complicate the
identification process. It is crucial, therefore, to consider the
specific molecular identity of circRNAs carefully, accounting
for potential alternative splicing events.

Bioinformatics prediction. With the deepening research
into circRNASs, numerous bioinformatics tools have been devel-
oped for their prediction, including find-circ (3), CIRI (72),
CIRCexplore (73) and MapSplice (74), among others (75-77).
However, these tools vary significantly in their algorithms,
leading to substantial differences in their prediction outcomes.
Hansen et al (78) analyzed results from several prediction
tools and found only a 16.8% overlap in their predictions, with
>40% of the predicted circRNAs identified by only one soft-
ware tool. They also noted that certain circRNAs predicted
by multiple tools were sensitive to RNase R, indicating that
these might be artifacts (78). To minimize the risk of missing
potential circRNAs and identifying false positives, it is recom-
mended to use multiple prediction algorithms.

Expression profiles of circRNAs in CSCs. High-throughput
sequencing technologies have led to the identification of
numerous novel dysregulated circRNAs within cancer cells,
including CSCs. These circRNAs exhibit differential expres-
sion patterns between CSCs and non-stem cancer cells,
underscoring their potential roles in the biology of CSCs.
The discovery of these novel circRNAs has primarily been
facilitated by primary expression profiles obtained through
RNA-seq following ribosomal RNA depletion and circRNA
microarray analyses (9). For instance, Zhu ef al (79) analyzed
RNA-seq data from 10 hepatocellular carcinoma (HCC)
samples along with paired para-cancerous tissues, identifying
3,198 liver-specific circRNAs. Among these, 120 circRNAs
were found to be >2-fold downregulated in HCC tissues
compared to paired non-cancerous tissues (79). Furthermore,
in comparison to a high EpCAM expression group - a marker

associated with CSC expansion in HCC (80) - 157 circRNAs
were upregulated in the low EpCAM expression group (79).
Chen et al (55) compared the circRNA transcripts in five
matched pairs of HCC adherent cells and CSCs using
RNA-seq. They discovered that 193 circRNAs were aber-
rantly expressed in HCC stem cells relative to the adherent
cells. Similarly, Yan et al (81), through high-throughput
sequencing of three pairs of breast CSCs and their non-stem
counterparts, identified a total of 5,727 circRNA candidates,
with 27 exhibiting differential expression, including 8 that
were upregulated and 19 that were downregulated. Sphere
culture, a commonly used method to enrich CSCs, has also
been instrumental in identifying circRNA profiles. For
instance, Rengganaten et al (82) conducted genome-wide
sequencing analysis of CSC-enriched colorectal cancer
(CRC) spheroid cells and identified 636 circRNAs specific
to these cells. Sohn (83) utilized a circRNA-based micro-
array to examine two epithelial ovarian cancer cell lines and
their spheroid-forming derivatives, finding 214 circRNAs
with significant differential expression in the ovarian CSCs;
159 of these were upregulated, while 55 were downregu-
lated. In a study by Tao et al (84), transcriptome microarray
analysis of human bladder CSCs (BCMabl1+CD44+) and
non-stem bladder cancer (BLCA) cells (BCMabl-CD44-)
isolated from three patients revealed 127 differentially
expressed circRNAs, with 113 significantly upregulated and
14 downregulated. The findings of RNA-seq and microarray
analyses that identify CSC-related circRNAs are summa-
rized in Table II.

3. Function and mechanisms of circRNAs in CSCs

Initially regarded as mere byproducts of splicing errors,
circRNAs have emerged as a significant class of regulatory
molecules with diverse functions. Notably, they play a crucial
role as microRNA (miRNA) sponges, effectively sequestering
miRNAs and inhibiting their activity (85). Furthermore,
circRNAs interact with RBPs, which significantly impacts
gene regulation and the maintenance of cellular homeo-
stasis (86-88). In addition, circRNAs are involved in regulating
alternative splicing, transcriptional control and even protein
translation (89-91). The role of circRNAs in these complex
processes add an additional layer of regulatory complexity
within cells. Investigating the functions and mechanisms of
circRNAs in CSCs could illuminate key aspects of tumorigen-
esis and open new avenues for cancer diagnosis and therapeutic
strategies (the functions and mechanisms of circRNAs in
CSCs are detailed in Tables III-V).

Glioma stem cells (GSCs). Glioma, the most prevalent
and aggressive form of tumor within the central nervous
system, is associated with a poor prognosis for patients (92).
Glioblastoma (GBM), a subtype of glioma, is notably char-
acterized by the presence of GSCs, which exhibit properties
akin to stem cells. These GSCs express markers typical of
stem cells, such as CD133 and leucine-rich repeat-containing
G protein-coupled receptor 5 (LGRS), and are capable
of continuous proliferation and multilineage differentia-
tion (93,94). There is growing evidence that a group of RNA
molecules, including circRNAs, play significant roles in the



*Surouanbas YN ‘bas-vNY “¥Dd 2anemuenb-uonduosuen 9s10A1 ‘YD Jb-1¥ ‘umouun J0 duou ¢/ {S[[90 JunenIu-Io0wn) ‘s, <3unlos [0

P9JBAIIOB-20UISAIONY SOV (S[[90 WIS JOOURD ISBAIQ ‘S)SD ¢S[[99 JOAB[OUOW ‘SDIA] {S[[99 WIA)S JOOURD JLISES ‘SHSDD) ‘BWOUIOIRD Je[n[[2003eday ‘DDH (S[[0 WIS JOOURI ‘SHSD) SYNY JB[NOIID ‘SN YOI

(S 1< 23ueyd p[o] ‘SYNYOIIO

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 55: 50, 2025

PA1R[NSAIUMOP GG PUB SYN YOI Ae1reo1onu S[[99 JaAe[oUOW pue $HSD
/ parerndaidn 6G1) SYNYOIO $1¢ VNI / Iy no a1eydg ueLIeAO Jo sired ¢
(porenSarumop SDIL-uou pue sOI,
8 9¢9 pue paem3axdn €06 1) 18T bas-yNY ¥ oseNy Ino 21aydg [830210[09 jo sired ¢
(9o1wr) sHI-uou
01 (T< 93ueyd p[o) SYNYIO €98°01 bas-vNY / / PUe SDLL-[eII0[0D)
sordues
(0'z< 93ueyo 129 W)S-Uou JIOULBD
PIOJ ‘SYNYQIIO paje[nSaIumop 4 pue Ke1reoIrotwu Iappe[q pue sOSD
9 SYN¥oI0 pajen3aidn ¢11) SYNYOIO /7] Qwojdrosuern / SOVA Ioppe[q jo sired ¢
(SYNYOIIO paje[nIoIumop ¢ g pue
01 SYNY2I10 paje[n3aidn ¢0g) SYNUO 914 bas-yNY M 9seNy amno a1yds  SOIN pue sOSDD Jo sared ¢
(8 1= 93ueyd
PIOJ ‘SYNYOIIO paje[n3aIumop g pue M 9seNy pue SDSD 1SBAIQ-UOU payojewu
9 SYNRI2110 paje[n3aidn Q) SYNROIO /T bas-v N parodop-y NI aInyno aroydg pue sDSDOY jo sired ¢
¥ 9seNy pue SDSD PayYdIeW puB S[[3d
6 (S 0> 10 < 93uryd P[oJ) SYNIIO ¢61 bos-vNd poio[dop-yNY!  QImynod uorsuadsng juaIdype DOH Jjo sired ¢
MDdb-1d Aq SY NI poyjowr juowean [eroadg spoyjow sodwreg
PajEpIEA SYNYID passardxa A[JUISHJIp JO JoquUNN uonoRqQ uoneredas DD

8
a
)
:

PUBLICATIONS

'$DSD Ul sAe1reoIdrwr pue bas-y N AQ paynuapr Sy NP0 JO MIAAIIAQ 'T] Q[9BL


https://www.spandidos-publications.com/10.3892/ijmm.2025.5491

YANG et al: CircRNAs: FUNCTIONS AND MECHANISMS IN CSCs

Table III. CircRNAs act as miRNA sponges in CSCs.

Expression
CSC levels
CSC separation  CircRNA in tumors Target Downstream Signaling
type method name and CSCs Location miRNAs gene pathway Function (Refs.)
GSCs  Sphere circPTN Upregulated  Cytoplasm miR-145- SOX9 / Promoted cell (96)
culture 5p self-renewal
GSCs  Sphere circPTPRF  Upregulated / miR-1208 YY1 / Promoted cell 97
culture proliferation,
invasion, self-
renewal and
tumorigenesis
GSCs  Sphere circKIF4A  Upregulated / miR-139- Wnt5a Wnt/ Promoted cell (99)
culture 3p [-catenin 7 self-renewal and
proliferation
GSCs  Sphere circCHAF1A Upregulated Cytoplasm miR-211- HOXC8 MDMZ21/ Promoted cell (100)
culture and 5p P53 | proliferation and
MACS tumorigenesis
GSCs  Sphere circATPSB  Upregulated  Cytoplasm miR-185- ~HOXB5  IL6/JAK2/ Promoted cell (101)
culture Sp STAT3 1 proliferation,
tumorigenesis
GSCs  Sphere circtNDC80  Upregulated  Cytoplasm miR-139- ECE1 / Promoted cell (102)
culture 5p growth, viability
and self-renewal
GSCs  Sphere circASPM Upregulated  Cytoplasm miR-130b-  E2F1 / Promoted cell (103)
culture 3p proliferation and
tumorigenesis
GSCs  Sphere citMELK  Upregulated  Cytoplasm miR-593 EphB2 / Promoted cell (200)
culture viability, growth
and self-renewal
GSCs  Sphere cARF1 Upregulated  Cytoplasm miR-342- ISL2 VEGFA/  Promoted cell (112)
culture 3p ERK 1 proliferation,
invasion and
angiogenesis
GSCs  Sphere circGNB1 Upregulated  Cytoplasm miR-515- XPR1 IL6/JAK2/ Promoted cell (201)
culture Sp/miR- STAT3 1  viability,
582-3p proliferation,
invasion, self-
renewal and
tumorigenesis
LCSCs Sphere CDR1as Upregulated  Cytoplasm miR-7-5p KLF4 / Promoted cell (121)
culture proliferation and
self-renewal
LCSCs Suspension circ- Upregulated  Cytoplasm miR-6887-  JAK2 JAK?2/ Promoted cell (55)
culture MALAT1 3p STAT3 1 self-renewal
Breast Sphere circVRK1 Downregulated / miR-153-5p / / Inhibited cell 81)
CSCs  culture self-renewal
and expansion
Lung Drug hsa_circ_ Upregulated  Cytoplasm miR-527 PHF21B  Wnt/ Promoted cell (153)
CSCs screening 0003222 [-catenin 1 proliferation,
and sphere self-renewal,
culture invasion and

migration



Table III. Continued.
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Expression
CSC levels

CSC separation CircRNA  in tumors Target  Downstream Signaling

type method name and CSCs Location =~ miRNAs gene pathway Function (Refs.)

Gastric MACS hsa_circ_ Upregulated Cytoplasm miR-375 YAPI1 / Promoted cell (167)

CSCs 0051246 and nucleus proliferation,
self-renewal,
migration,
invasion and
tumorigenesis;
inhibited cell
apoptosis

CSCs, cancer stem cells; circRNAs, circular RNAs; miRNA, microRNA; GSCs, glioma stem cells; LCSCs, liver cancer stem cells; MACS,
magnetic-activated cell sorting; circPTN, circRNA of pleiotrophin; circPTPRF, circRNA of protein tyrosine phosphatase receptor type F;
circKIF4A, circRNA of kinesin family member 4A; circCHAF1A, circRNA of chromatin assembly factor 1 subunit A; circNDC80, circRNA of
NDCS80 kinetochore complex component; circASPM, circRNA of assembly factor for spindle microtubules; circMELK, circRNA of maternal
embryonic leucine zipper kinase; cARF1, circRNA of ARF GTPase 1; circGNB1, circRNA of G protein subunit beta 1; CDR1as, cerebellar
degeneration-related protein 1 antisense RNA; circ-MALAT1, circ-MALAT1, circRNA of metastasis associated lung adenocarcinoma tran-
script 1; circVRKI1, circRNA of VRK serine/threonine kinase 1; SOX9, sry-box transcription factor 9; YY1, YY1 transcription factor; Wnt5a,
Wnt family member 5A; HOXC8, homeobox C8; E2F1, E2F transcription factor 1; ECE1, endothelin-converting enzyme 1; EphB2, Eph
receptor B2; ISL2, ISL LIM homeobox 2; XPR1, xenotropic and polytropic retrovirus receptor 1; KLF4, kriippel-like factor 4; JAK2, janus
kinase 2; PHF21B, PHD finger protein 21B; YAP1, Yes!1 associated transcriptional regulator; IL6, interleukin 6; VEGFA, vascular endothelial
growth factor A; MDM2, MDM?2 proto-oncogene; STAT3, signal transducer and activator of transcription 3; 1, upregulation or activation; |,

downregulation or inactivation; /, none or unknown.

progression of GBM and in the enhancement of aggressive
traits in GSCs (95).

CircRNA of pleiotrophin (circPTN; hsa_circ_0003949),
a cytoplasmic circRNA, functions as a molecular sponge
for miR-145-5p, thereby facilitating the self-renewal of
GSCs (96). CircRNA of protein tyrosine phosphatase receptor
type F (circPTPRF; hsa_circ_0012077), has been found to
support the self-renewal of GSCs and to foster tumorigenesis
through the circPTPRF/miR-1208/YY1 signaling axis (97).
CircKIF4A (hsa_circ_0090956), originating from the
kinesin family member 4A (KIF4A) gene, is implicated in
promoting cell proliferation across various tumors, including
gliomas (98). Huo ef al (99) have proposed that circKIF4A
sustains the stemness of GSCs through the miR-139-3p/Wnt5a
signaling pathway. CircCHAFI1A (hsa_circ_0000876),
which is formed by the back-splicing of chromatin assembly
factor 1 subunit A (CHAFI1A) transcript variant 1 exons 1
and 2, enhances GSC proliferation and tumorigenicity via
the FMR1/circCHAF1A/miR-211-5p/HOXCS8 feedback
loop (100). CircATP5B (hsa_circ_0027068), produced from
the ATP5B gene, augments cell proliferation by seques-
tering miR-185-5p, which in turn upregulates homeobox B5
expression in GSCs (101). CircNDC80 is generated by the
circularization of exons 14 to 17 of the NDC80 kinetochore
complex component (NDC80) gene. It acts as a sponge for
miR-139-5p and supports the self-renewal and stemness of
GSCs by inhibiting the expression of endothelin converting
enzyme 1 (ECEIl) (102). CircRNA of assembly factor for
spindle microtubules (circASPM; hsa_circ_0015772),
found to be upregulated in glioblastoma tissues,

contributes to GSC proliferation and tumorigenesis via
the CircASPM/miR-130b-3p/E2F1 pathway (103). Beyond
their role as miRNA sponges, circRNAs also influence the
malignant characteristics of GSCs through interactions with
RBPs. Jiang er al (104) have demonstrated that circRNA of
karyopherin subunit 1 (circKPNB1; hsa-circ_0004796) binds
to the SPII protein, facilitating its nuclear translocation. As
a transcription factor, SPI1 subsequently upregulates tumor
necrosis factor a (TNF-a) and activates nuclear factor kB
(NF-«B) signaling, which promotes the malignant pheno-
types of GSCs (104). CircRNA of ribonuclease P RNA
component HI (circRPPHI; has_circ_0000512), which is
upregulated in glioma cell spheres, enhances the stemness of
glioma cells (105). Furthermore, Xu et al (54) have identified a
crucial role for circRPPH1 in sustaining the self-renewal capa-
bilities of GSCs through its interaction with the RBP ATF3,
thereby activating the TGF-f31/Smad?2 signaling pathway. In
addition, Li et al (106) reported a feedback loop involving
U2AF65, circRNA of non-SMC condensin I complex
subunit G (circNCAPG; hsa_circ_0069280) and RREBI that
exacerbates the malignant phenotypes of GSCs by activating
the transforming growth factor 3 (TGF-f3) pathway.

In the realm of oncology, angiogenesis is pivotal for
tumor growth, progression and metastasis (107). Gliomas,
in particular, demonstrate increased angiogenesis, contrib-
uting significantly to their rapid proliferation and aggressive
behavior (108). Vascular endothelial growth factor (VEGF), a
key gene in angiogenesis, is essential for the induction of blood
vessel formation during tumor growth and metastasis (109).
VEGFA, highly upregulated under hypoxic conditions, is
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Table V. CircRNAs translated into proteins in CSCs.

Expression
CSC levels in
CSC separation  CircRNA tumors and Proteins Signaling
type method name CSCs Location (peptides) Mechanism  pathway Function  (Refs.)
LUAD- FACS circ-FBXW7 Downregulated / circFBXW7- Promoted Whnt/ Inhibited cell (156)
SCs 185AA ubiquitination f-catenin | renewal and
and inhibited promoted
stability of cell
[-catenin sensitivity to
Osimertinib
Bladder FACS circGprcSa  Upregulated Nucleus circGprcSa-  circGpreSa- / Promoted (192)
CSCs peptide peptide bound cell self-
to GprcSa renewal
and
metastasis

CSCs, cancer stem cells; circRNA, circular RNA; LUAD-SCs, lung adenocarcinoma stem cells; FACS, fluorescence-activated cell sorting;
circ-FBXW7, circRNA of F-box and WD repeat domain containing 7; 1, upregulation or activation; /, none or unknown.

among the most potent inducers of angiogenesis (110). ISL
LIM homeobox 2 (ISL2), a LIM/homeodomain-type tran-
scription factor belonging to the Islet-1 family and primarily
expressed in primary sensory and motor neurons (111), has
been shown to regulate transcriptionally and promote the
secretion of VEGFA in GSCs, thus enhancing cell prolifera-
tion, invasion and angiogenesis (112). However, the expression
of ISL2 in GSCs is modulated by the circRNA of ARF
GTPase 1 (cARFI; hsa_circ_0016767) /miR-342-3p/ISL2
axis, which plays a significant role in angiogenesis and
tumorigenesis (112).

Emerging evidence suggests that circRNAs are implicated
not only in the growth and development of GSCs but also in
their metabolic processes. Distinct from apoptosis, necrosis
and autophagy, ferroptosis is an iron-dependent regulated
form of cell death (113). In ferroptosis, the accumulation of
ferrous ions leads to the aggregation of peroxidized lipids
in membranes, causing instability or rupture and ultimately
resulting in cell death (113). Hsa_circ_0031751, also known
as circLRFNS, is an exonic circRNA derived from the
back-splicing of exon 13 to exon 19 of the leucine rich repeat
and fibronectin type III domain containing 5 (LRFNS)
transcript. It has been reported to bind to paired related
homeobox 2, inhibiting GTP cyclohydrolase 1 expression,
thus suppressing the viability and proliferation of GSCs and
promoting their ferroptosis (114). CircRNA of ring finger
protein 10 (circRNF10; hsa_circ_0028912), a circular RNA
highly upregulated in glioblastoma, is associated with poor
prognosis. It can bind to MKRN3, blocking the activity of E3
ubiquitin ligase and enhancing the expression of the transcrip-
tional factor ZBTB48. In addition, by binding with ZBTB48, it
upregulates heat shock protein family B (small) member 1 and
insulin-like growth factor 2 mRNA binding protein 3 expres-
sion, thereby promoting iron metabolism and aiding GSCs in
evading ferroptosis (115).

Liver CSCs. Liver cancer remains one of the deadliest malig-
nancies globally, accounting for hundreds of thousands of
deaths annually (116). In liver cancer, stem cells characterized
by markers such as CD13, CD133, CD90 and EpCAM are
implicated in cancer progression, drug resistance, metastasis
and recurrence (117). Recent research has highlighted that
circRNAs are abnormally expressed and play vital regulatory
roles in both cancer cells and CSCs in liver cancer.

Hepatoblastoma (HB), the most common primary malig-
nant hepatic tumor in infants and children, is composed of
heterogeneous populations of stem/progenitor cells (118,119).
Cerebellar degeneration-related protein 1 antisense RNA
(CDRI1as; hsa_circ_0001946), a prominent circRNA, has
been identified to play a significant role in various diseases,
particularly in tumors (120). Chen et al (121) demonstrated
that CDR1as was highly expressed in CSCs derived from
HB cell lines and, through the CDR1as/miR-7-5p/KLF4 axis,
contributes to the proliferation and self-renewal capabilities of
CSCs within these cells.

HCC is the most prevalent form of liver cancer, accounting
for ~70-85% of liver cancer cases worldwide. HCC primarily
arises from hepatocytes and is characterized by high inva-
siveness and a propensity for malignant metastasis (122).
CircZKSCANI, a circular RNA originating from the zinc
finger with KRAB and SCAN domains 1 (ZKSCANI)
gene, has been demonstrated by Yao er al (123) to inhibit
HCC proliferation, invasion and migration. Furthermore,
Zhu et al (79) reported that circZKSCANI is downregulated
in EpCAM" HCCs. It inhibits HCC stem cell stemness by
competitively binding to fragile X mental retardation protein
(FMRP), thereby blocking the interaction between FMRP
and cell cycle and apoptosis regulator | mRNA, which leads
to the suppression of the transcriptional activity of the Wnt
signaling pathway (79). Telomerase activity plays a vital
role in maintaining genomic stability and cellular longevity.
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In liver cancer, the circular RNA of maternally expressed 3
(circMEG?3) is expressed at low levels and negatively corre-
lates with the expression of the telomerase-related gene Cbf5,
a component of the telomere synthase H/ACA ribonucleopro-
tein. Jiang et al (124) demonstrated that, dependent on HULC,
circMEG3 suppresses the expression of Cbf5 by inhibiting
the N6-methyladenosine (m6A) methyltransferase METTL3,
thereby impeding the growth of liver CSCs.

Significant activation of the JAK/STAT pathway has
been observed in tumor stem cells (125). The transcription
factor paired box 5 (PAXS), acting as a tumor suppressor, is
involved in liver carcinogenesis (126). CircRNA of metastasis
associated lung adenocarcinoma transcript 1 (circ-MALATI,
hsa_circ_0002082) is highly expressed in hepatocellular
carcinoma stem cells (HCSCs) and functions as a sponge for
miR-6887-3p, leading to the upregulation of Janus kinase 2
(JAK?2) expression. In addition, it binds to ribosomes and
PAXS5 mRNA, inhibiting the translation of PAX5 mRNA and
thus promoting the self-renewal of HCSCs (55). Unlike GLI
family zinc finger 2 (GLI2) and GLI3, GLII functions solely
as an activator within the Hedgehog (Hh) signaling pathway,
which is crucial for tumor initiation and progression (127).
Gu et al (128) discovered that circRNA of importin 11
(circIPO11) is highly expressed in liver tumor tissues and liver
CSCs (CD13+CD133+). They revealed that circIPO11 interacts
with topoisomerase 1 (TOP1) to initiate transcription of GLII,
thereby activating the Hh signaling pathway and sustaining the
self-renewal of liver CSCs (128). Cia-MAF, another circular
RNA robustly expressed in liver cancer and liver TICs, has
been shown to contribute to the self-renewal and metastasis
of TICs by binding to and activating the transcription factors
MAFF promoter through the recruitment of the TIP60
complex to the promoter (129).

A read-through circular RNA (rt-circRNA) is a distinctive
type of circRNA formed by coding exons from two adjacent and
similarly oriented genes (130). Chen ef al (131) discovered that
a functional rt-circRNA, rtcisE2F, enhances the self-renewal
and metastasis of liver TICs by facilitating the interaction
between E2F transcription factor 6 (E2F6)/E2F3 mRNA
and insulin-like growth factor 2 mRNA-binding protein 2
(IGF2BP2, m6A reader that maintains mRNA stability), and
inhibiting their association with YTH domain-containing
family protein 2, a m6A reader that promotes mRNA decay.
This interaction increases the stability of E2F6/E2F3 mRNA
and prevents its degradation, which is vital for the self-renewal
of liver TICs and the activation of the Wnt/B-catenin
pathway (131). Traditionally, circRNAs were primarily under-
stood to originate from the nuclear genome. However, recent
studies have shown that the mitochondrial genome also encodes
a small number of circRNAs, known as mecciRNAs (132,133).
Chen et al (134) identified a mitochondria-encoded circular
RNA, mitochondrial circRNA for translocating phospho-
glycerate kinase 1, which inhibits mitochondrial oxidative
phosphorylation and promotes glycolysis and the self-renewal
of liver TICs by regulating the PGK1-PDK1-PDH pathway.

Breast CSCs (BCSCs). Breast cancer continues to be one of the
most challenging malignancies in women, despite advances in
targeted therapies, radiotherapy and immunotherapy (135,136).
A significant contributor to treatment resistance and disease

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 55: 50, 2025 11

persistence in this context is the presence of BCSCs, a subset
of cells within the tumor that exhibit stem cell-like charac-
teristics (137). Ponti et al (138) reported the isolation and
in vitro propagation of breast cancer-initiating cells, which
possess stem/progenitor cell properties, providing a valu-
able model for studying BCSCs and developing therapeutic
strategies. Wright er al (139) identified distinct populations of
CD44+/CD24- and CD133+ cells with CSC characteristics in
Brcal breast tumors, emphasizing the heterogeneity of BCSCs.

Recent research has found that circRNAs play a signifi-
cant role in regulating the biological functions of BCSCs.
For instance, hsa_circ_002178, a circRNA found to be
upregulated in breast cancer tissues and cells, was shown
by Li et al (140) to support the maintenance of stem cell
characteristics in breast cancer cells, as demonstrated by
sphere-forming assays and stem cell surface marker analysis.
CircRNA of nucleolar and coiled-body phosphoprotein 1
(circNOLC1) previously reported to promote tumorigenesis
in prostate and ovarian cancers through sponging miR-647
and binding ESRP1 protein, respectively (141,142), has
also been found by Liu et al (143) to be involved in BCSC
activity and progression via the miR-365a-3p/STAT3 signaling
pathway. Additionally, another circRNA, circRNA of VRK
serine/threonine kinase 1 (circVRK1), has been identified as
an inhibitor of the self-renewal and expansion of BCSCs (81).
Circ-Foxo3, a circRNA that promotes apoptosis and inhibits
cell proliferation and metastasis, is expressed at low levels in
breast cancer spheroidal cells, which may facilitate these cells'
evasion of apoptosis (144-146). It is well established that CSCs
mediate the metastasis of tumor cells and are associated with a
poor patient prognosis (147). Kamalabadi-Farahani er al (148)
observed that metastatic breast cancer cells have a significantly
higher capability of forming spheres, a method used to enrich
CSCs, compared to primary breast cancer cells. Furthermore,
the expression of cicBIRC6 was significantly upregulated in
these metastatic tumor cells, suggesting that cicBIRC6 plays a
crucial role in the dynamics of breast CSCs (148).

Lung CSCs. Lung cancer remains a prevalent malignant tumor
and a leading cause of cancer-related mortality globally (135).
CD133-positive CSCs have been identified in lung cancer,
demonstrating both tumorigenic potential and stem-like
features (149,150). ALDHI has also been recognized as a
marker for lung CSCs, offering a promising prognostic factor
and therapeutic target for lung cancer treatment (151). Beyond
traditional markers, studies have indicated that circRNAs
play a role in influencing lung CSC properties and mediating
lung cancer progression. For instance, circ_0044516 has been
found to regulate the miR-136/MAT2A pathway, maintaining
lung CSC properties and facilitating lung cancer develop-
ment (152). Hsa_circ_0003222, highly expressed in lung
CSCs, contributes to the progression of non-small cell lung
cancer (NSCLC) and the maintenance of stemness via the
miR-527/PHF21B/B-catenin axis (153). In addition to their
self-renewal and differentiation capabilities, CSCs are impli-
cated in drug resistance and recurrence of NSCLC (154,155).
Hsa-circ-0001451, formed by the circularization of exon 3
and exon 4 of the F-box and WD repeat domain containing 7
(FBXWT7) gene and termed circ-FBXW?7, has been studied
by Li et al (156). They identified that circ-FBXW?7 can be


https://www.spandidos-publications.com/10.3892/ijmm.2025.5491

12 YANG et al: CircRNAs: FUNCTIONS AND MECHANISMS IN CSCs

translated into a short polypeptide, circFBXW7-185A A, which
inhibits CSC renewal and reverses resistance to osimertinib
in drug-resistant lung adenocarcinoma cells and stem cells
by modulating the Wnt pathway through the ubiquitination
and inhibitory effects of circFBXW7-185AA on f-catenin.
Long-term exposure of lung cancer cells to cisplatin (DDP)
can effectively enrich tumor stem cells in NSCLC (157).
Zhao et al (158) suggested that circRNA CDR1as modulates
the enrichment of CSCs in DDP-resistant NSCLC cells by
controlling the miR-641/HOXAY axis, providing new insights
into the enrichment of CSCs in DDP-resistant NSCLC cells.

Gastric CSCs (GCSCs). Gastric cancer is a major malignant
tumor of the digestive system, ranking fifth in incidence and
fourth in mortality among cancers worldwide (159). Previous
studies have underscored that the acquisition of CSC-like
properties is critical for the development and maintenance
of gastric cancer malignancy (160,161). Various cell surface
markers, such as CD44 and CD44CD24, which are linked to
self-renewal and differentiation properties, have been identi-
fied in GCSCs (162,163). The study of circRNAs in relation
to GCSCs has attracted significant attention recently. For
instance, circ0007360, primarily expressed in the cytoplasm,
inhibits the stemness of gastric cancer cells through the
¢irc0007360/miR-762/IRF7 axis (164). Another circRNA,
circ-0075305, indirectly disrupts the TCF4-3-catenin complex
and downregulates sry-box transcription factor 9 (SOX9)
through the miR-708-5p/RPRDI1A axis, thereby suppressing
the stem cell-like properties of gastric cancer (165). Conversely,
Xia et al (166) proposed that circFAM73A enhances stem
cell-like properties by sponging miR-490-3p to increase the
expression of the stem cell factor high mobility group A2
in gastric cancer cells. In addition, hsa_circ_0051246 acts
as a sponge for miR-375, promoting the progression of
GCSCs via the hsa_circ_0051246/miR-375/YAPI axis (167).
Furthermore, circRNA of solute carrier family 4 member 7
(hsa_circ_0064618), mainly localized in the nucleus, interacts
with HSP90 to activate the NOTCHI1 signaling pathway,
thereby enhancing CSC-like properties in gastric cancer (168).

Colorectal CSCs. CRC ranks as the third leading cause of
cancer-related deaths, with ~1.85 million cases and 850,000
deaths annually (169). In CRC, CSCs are identified by specific
surface markers such as CD44, CD133 and LGRS5 (170-172).
These markers are crucial in promoting the malignant behavior
of colon cancer (173,174). In addition, emerging evidence
indicates that circRNAs play a significant role in the develop-
ment and progression of colorectal cancer by regulating the
behavior and activity of CSCs.

One notable circRNA, circAGFGI, originates from
the ArfGAP with FG repeats 1 (AGFG1) gene. It has been
recognized as an oncogene in various cancers, including
triple-negative breast cancer, NSCLC, ovarian cancer and
osteosarcoma (175-178). In CRC, circAGFG1 is known to acti-
vate the WNT/B-catenin pathway by modulating the miR-4262
and miR-185-5p/YY1/CTNNBI axis (179). The knockdown
of circAGFGl leads to a reduction in sphere-forming ability
and a decrease in the population of CD133+ cells, under-
scoring its role in controlling CSCs in CRC (179). Similarly,
hsa_circ_0001806 and hsa_circ_0082096 have been found

to influence CSC properties and tumor growth in CRCs by
sponging different miRNAs (180,181). Another circRNA,
circRNA of receptor accessory protein 3 (circREEP3), which
is upregulated in CRC tissues, was knocked out to result in
suppressed CRC tumorigenesis, metastasis and stem cell-like
phenotypes. The underlying mechanism involved circREEP3's
recruitment of the chromatin remodeling protein CHD7 to
the promoter of the FKBP prolyl isomerase 10 gene, thereby
activating it (182). m6A, the most prevalent RNA modification
in eukaryotic cells, plays a regulatory role in RNA transcrip-
tion, splicing, degradation and translation (183). Both m6A
modification and circRNAs are implicated in the pathogenesis
of various diseases, particularly cancer (184). For instance,
m6A-modified circRNA of fibronectin type III domain
containing 3B curtails CRC stemness and metastasis via the
degradation of ASB6, dependent on ring finger protein 41 (185).
Another circRNA, circCTICl1, highly expressed in colon
tumors and colon TICs, promotes the self-renewal of colon
TICs by recruiting the nuclear remodeling factor complex
to the c-Myc promoter, thereby enhancing c-Myc expres-
sion (186). Furthermore, Cis-HOX, a circular RNA, regulates
the stability of homeobox C10 (HOXC10) mRNA by directly
interacting with it, thus preventing KSRP-mediated degrada-
tion. This interaction leads to increased HOXCI10 expression,
which in turn supports the self-renewal, invasion and tumori-
genesis of APC-wild type colorectal TICs (187).

Bladder CSCs. BLCA is a prevalent malignant urothelial
cancer in men, posing a significant health burden. Recent
statistics indicate there were ~549,000 new cases and 200,000
deaths in 2018, with the death rate being about four times
higher in men compared to women (188). Advances in under-
standing bladder CSCs and the role of circRNAs have been
pivotal.

C-Myc, a well-established oncogene, is known for its role in
maintaining the pluripotency and self-renewal across various
stem cell types, including CSCs. Chen et al (189) reported that
hsa_circ_0068307 influences bladder CSC-like properties
via the hsa_circ_0068307/miR-147/c-Myc axis. By contrast,
circ_0030586 was found to inhibit cell proliferation and stem-
ness in BLCA by deactivating the ERK signaling pathway
through the circ_0030586/miR-665/NR4A3 axis (190). In
addition, circSETD3 has been shown to curtail stem cell prop-
erties in BLCA via the circSETD3/miR-641/PTEN axis (191).
In a transcriptome microarray analysis that compared
bladder CSCs with non-stem cells, Tao et al (84) identified
circRNA_103809 as the most highly expressed circRNA
in bladder CSCs. They demonstrated that circRNA_103809
enhances self-renewal, migration and invasion capabilities in
BLCA by acting as a sponge for miR-511 (84). Furthermore,
Gu et al (192) discovered that circGprc5Sa, which is upregulated
in BLCA and bladder CSCs, can encode peptides. CircGprc5a
exerts its effects through a peptide-dependent mechanism
via the circGprcSa-peptide-Gprc5a axis, promoting CSC
self-renewal and metastasis.

Other CSCs. Beyond the regulatory roles of circRNAs
in CSCs previously discussed, several studies have high-
lighted their involvement in other cancer types. For
instance, Yang et al (193) discovered that cir-CCDC66
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(hsa_circ_0001313) was upregulated in renal cell carcinoma
(RCC) stem cells and demonstrated that overexpressed
cir-CCDC66 promoted RCC stem cell growth and enhanced
CSC enrichment. Similarly, Wang et al (194) identified
that estrogen receptor-p3 augmented the CSC population by
regulating the circPHACTR4/miR-34b-5p/c-Myc signaling
pathway in clear cell RCC. In another study, Lin et al (195)
found that hsa-circ_0003420 induced apoptosis in acute
myeloid leukemia stem cells and impaired their stem
cell properties by inhibiting insulin-like growth factor 2
mRNA-binding protein 1 levels. Furthermore, Shi et al (196)
demonstrated that the knockdown of circRNA of phosphati-
dylinositol-4-phosphate 5-kinase type 1 a (circPIPSK1A) in
osteosarcoma cells suppressed sphere formation abilities and
reduced the population of CD133+CD44+ cells, indicating its
role in controlling CSCs in osteosarcoma.

4. Potential applications of circRNAs in CSCs

As potential biomarkers for CSCs. Specific cell markers,
including CD133, CD44, EpCAM and ALDH, have proven
valuable for identifying CSCs (197). However, distinguishing
true CSCs from non-CSC tumor cells remains challenging
because these markers are not uniquely specific to the CSC
subpopulation, and certain CSCs may lack these traditional
markers (198). Therefore, the search for new markers is
crucial for more accurate identification and isolation of
CSCs.

CircRNAs exhibit specific expression patterns in CSCs,
rendering them promising biomarkers for the identification
and characterization of CSCs. For instance, in hepatocellular
CSCs, 193 circRNA transcripts were found to be aberrantly
expressed compared to adherent cells, with circ-MALAT1
showing significantly higher expression levels in CSCs
than in matched adherent cells (55). Profiling circRNA
expression in CSCs has led researchers to identify signature
circRNA profiles that can distinguish CSCs from non-CSCs
across various cancer types, including breast, bladder,
colorectal, ovarian and gastric cancers (81-84,168). These
circRNA signatures provide valuable insight into the pres-
ence, abundance and heterogeneity of CSCs within tumors.
Furthermore, multiple circRNAs are highly expressed
in both tumors and CSCs, influencing the proportion of
CSCs. For instance, circPTN expression in GSCs was
~10-fold higher than in adherent cells, and overexpressed
circPTN enhanced the sphere formation ability of these
stem cells (96). CircPIPSK1A expression was significantly
increased in clinical osteosarcoma tissues and its knockdown
reduced the CD133+CD44+ cell population in osteosarcoma
cells (196).

Furthermore, the inherent stability and resistance to
degradation of circRNAs make them suitable for detection in
various clinical samples, such as blood, urine or tissue biopsies.
Utilizing circRNAs as biomarkers may enable non-invasive or
minimally invasive approaches for detecting and monitoring
CSCs, thereby facilitating personalized treatment strategies.

Regulation of CSC self-renewal. Self-renewal is a fundamental
characteristic of CSCs, enabling them to maintain their popula-
tion and contribute to tumor growth and progression. CSCs can
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self-renew through asymmetric division, which produces both
identical stem cells and differentiated progenitor cells (199).
Dysregulation of self-renewal processes in CSCs can lead to
uncontrolled proliferation and therapy resistance.

Studies have highlighted circRNAs as critical regulators
of self-renewal in CSCs by influencing key signaling path-
ways and molecular processes. These circRNAs function
as miRNA sponges, sequestering miRNAs and preventing
their interaction with target mRNAs, thus regulating the
self-renewal of CSCs. For instance, circPTN, circMELK and
CDRlas maintain self-renewal in GSCs and HB-CSCs, by
sequestering miR-145-5p, miR-7-5p and miR-593, preventing
their negative effects on the key transcription factors SOX9
and KLF4, and oncogenic gene Eph receptor B2 (96,121,200).
Similarly, circPTPRF, circNDC80, and hsa_circ_0051246
support the self-renewal capacity of glioma and gastric
CSCs by adsorbing various miRNAs, thus inhibiting their
degradative impact on target genes such as YY1, ECEIl,
and YAPI1 (97,102,167). Furthermore, abnormal activation
of the Wnt/pB-catenin and JAK-STAT signaling pathways
is associated with enhanced proliferation, differentiation
and self-renewal capabilities of CSCs (21). In glioma and
lung CSCs, circKIF4A and hsa_circ_0003222 activate
the Wnt/f-catenin signaling pathway by sequestering
miR-139-3p and miR-527, respectively, thereby fostering
CSC self-renewal (99,153). In addition, circ-MALAT1
and circRNA of G protein subunit f1 (circGNBI; hsa_
circ_0009362) enhance the self-renewal of liver and glioma
CSCs by activating the JAK2/STAT3 pathway through the
sequestration of different miRNAs (55,201). This competi-
tive interaction mitigates the inhibitory effect of miRNAs
on self-renewal-associated genes, leading to an enhanced
self-renewal capacity in CSCs.

CircRNAs can interact with RBPs, significantly influ-
encing cell signaling pathways that govern the self-renewal
processes. For instance, circKPNB1 promotes the self-renewal
of GSCs by binding to the SPIIl protein and activating the
TNF-a/NF-«B signaling pathway (104). Similarly, CircRPPH1
interacts with the ATF3 protein to activate the TGF-31/Smad2
signaling pathway, supporting the ongoing self-renewal
of GSCs (54). Certain circRNAs have been identified that
regulate gene transcription or protein translation to enhance
CSCs' self-renewal capabilities. CircIPO11 and circCTICI,
for instance, are involved in promoting the transcription
of key oncogenes GLI1 and ¢c-MYC by interacting with the
proteins TOP1 and BPTF, respectively (128,186). In addition,
Circ-MALAT1 has been shown to bind both ribosomes and
PAX5 mRNA, inhibiting the translation of PAX5 mRNA and
thereby promoting the self-renewal of CSCs (55). There is
increasing evidence that certain circRNAs can be translated
into functional peptides that contribute to CSC regulation.
For instance, circGprcSa has been reported to translate into
a peptide that supports the self-renewal of bladder CSCs
(circRNAs involved in the regulation of CSC self-renewal are
shown in Fig. 2).

In summary, self-renewal is a critical trait of CSCs.
CircRNAs modulate this process by acting as miRNA
sponges, interacting with RBPs, regulating transcription or
translation, and even translating into proteins. Dysregulation
of circRNA-mediated self-renewal regulation is implicated
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Lung CSCs
hsa-circ-0003222

Liver CSCs

CDR1as, circ-MALAT1
circlPO11, Cia-MAF
rtcisE2F, mcPGK1

GSCs

circPTN, circPTPRF

circKIF4A,circNDC80

circMELK, circGNB1
circKPNB1,circRPPH1
circNCAPG, circRNF10

—

Gastric CSCs
hsa-circ-0051246

Colorectal-TICs
circ-CTICA

Figure 2. CircRNAs are involved in the regulation of CSC self-renewal. CSCs, cancer stem cells; circRNA, circular RNA; GSC, glioma stem cell; LCSC,
liver CSC; TIC, tumor-initiating cell. CDR1as, cerebellar degeneration-related protein 1 antisense RNA; circ-MALATI, circRNA of metastasis associated
lung adenocarcinoma transcript 1; circIPO11, circRNA of importin 11; circPTN, circRNA of pleiotrophin; circPTPRF, circRNA of protein tyrosine phos-
phatase receptor type F; circKIF4A, circRNA of kinesin family member 4A; circNDC80, circRNA of NDC80 kinetochore complex component; circKPNBI,
circRNA of karyopherin subunit beta 1; circRPPH1, circRNA of ribonuclease P RNA component H1; circNCAPG, circRNA of non-SMC condensin I complex

subunit G; circRNF10, circRNA of ring finger protein 10.

in cancer progression and therapy resistance. Targeting
circRNAs involved in self-renewal regulation could offer
novel therapeutic approaches to disrupt CSC populations and
enhance the efficacy of cancer treatments.

Potential therapeutic targets for CSC-directed therapies.
Research has identified specific circRNAs that are differen-
tially expressed in CSCs compared to non-CSC populations
within tumors. These CSC-associated circRNAs are impli-
cated in crucial functions such as tumor initiation, metastasis
and therapy resistance. Modulating the expression of these
circRNAs through RNA interference, lentiviral vector infec-
tion, plasmid transfection or CRISPR/Cas9 editing may prove
to be an effective strategy for influencing tumor progres-
sion. For instance, administering small interfering RNAs
targeting circPTPRF has been shown to inhibit tumor growth
and prolong the median survival time in a tumor xenograft
model, suggesting that circPTPRF may serve as a viable
therapeutic target in GSCs (97). Hu et al (201) conducted an
orthotopic xenograft study to verify the role of circGNBI in
GSC tumorigenesis. They observed that mice treated with
circGNBI knockdown exhibited significantly smaller tumor
volumes and longer survival times compared to the control
group. Similarly, Gu et al (128) used lentivirus-mediated
short hairpin RNA to deplete circIPO11 in liver CSCs and
found that this significantly suppressed tumor growth in
xenografts. Using a CRISPR/Cas9 approach, Chen et al (129)
created cia-MAF knockdown cells and discovered that this
modification hindered tumor growth and initiation capacities
in liver cancer. Of note, they also found that cia-MAF anti-
sense oligonucleotide enhanced the efficacy of 5-fluorouracil

by eliminating TICs. Furthermore, targeting circRNAs
associated with therapy resistance in CSCs can increase the
sensitivity of these cells to treatments and help overcome
drug resistance. For instance, Li er al (156) demonstrated that
circ-FBXW7 suppresses CSC renewal and drug resistance,
and that overexpressing circ-FBXW7 could re-sensitize
drug-resistant lung adenocarcinoma cells and CSCs to
osimertinib, providing a potential therapeutic avenue for
treating osimertinib-resistant lung adenocarcinoma.

In addition, circRNAs that influence signaling pathways
known to affect CSC biology, such as Wnt (99), Notch (168),
NF-kB (104), JAK/STAT (55), TGF/SMAD (106) and Hh
signaling (128), can be modulated to alter CSC behavior and
enhance their response to anticancer therapies (circRNA-asso-
ciated signaling pathways in CSCs are shown in Fig. 3).
However, research into the role of circRNAs in regulating
CSCs is still nascent. Further studies are required to eluci-
date the precise mechanisms by which circRNAs influence
CSC biology and to develop efficient, specific therapeutic
interventions.

5. Conclusions

In conclusion, while existing studies emphasize the signifi-
cant role of circRNAs in CSCs, a comprehensive exploration
into the functions of circRNAs in tumor stem cells and the
elucidation of their underlying mechanisms are paramount.
These in-depth investigations are expected to unveil novel
circRNAs that hold potential as promising therapeutic targets.
To advance this field, it is essential to identify CSC-specific
circRNAs across diverse cancer types using advanced
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Figure 3. Signaling pathway-associated circRNAs in CSCs. Examples of circRNAs regulating signaling to modulate the biology (e.g., self-renewal, prolifera-
tion, invasion, angiogenesis and tumorigenesis) of the CSCs. CSCs, cancer stem cells; circRNA, circular RNA; circSLC4A7, circRNA of solute carrier family 4
member 7; circKIF4A, circRNA of kinesin family member 4A; circIPO11, circRNA of importin 11; circNCAPG, circRNA of non-SMC condensin I complex
subunit G; circRPPHI, circRNA of ribonuclease P RNA component H1; circ-MALATI, circRNA of metastasis associated lung adenocarcinoma transcript 1;
circGNBI, circRNA of G protein subunit beta 1; circKPNBI, circRNA of karyopherin subunit beta 1; circCHAF1A, circRNA of chromatin assembly factor 1
subunit A; JAK?2, Janus kinase 2; HSP90, heat shock protein 90; IGF2BP2, insulin-like growth factor 2 mRNA-binding protein 2; E2F3, E2F transcription
factor 3; Wnt5a, Wnt family member 5A; PGK1, phosphoglycerate kinase 1; PHF21B, PHD finger protein 21B; ISL2, ISL LIM homeobox 2; TOP1, topoisom-
erase 1; GLII, GLI family zinc finger 1; RREBI, ras responsive element binding protein 1; ATF3, activating transcription factor 3; HOXBS5, homeobox BS;
XPRI1, xenotropic and polytropic retrovirus receptor 1; SPI1, Spi-1 proto-oncogene.

technologies like high-throughput sequencing and bioin-
formatics tools. These efforts will facilitate the discovery
of circRNAs specifically enriched or dysregulated in CSCs,
shedding light on their unique regulatory roles. Furthermore,
delving deeper into the functions of circRNAs in CSCs is
crucial. While current knowledge highlights their involve-
ment in self-renewal, proliferation, metastasis and drug
resistance, additional research is needed to elucidate their
impact on processes such as drug resistance, vascularization
and cellular metabolism, including mechanisms like ferrop-
tosis and glycolysis. In addition, gaining mechanistic insights

into how circRNAs modulate signaling pathways, interact
with miRNAs or proteins and influence gene expression in
CSCs will provide a clearer understanding of the intricate
regulatory networks governing CSC biology. Ultimately,
exploring circRNAs as potential therapeutic targets offers a
promising avenue for developing targeted therapies that could
specifically disrupt CSC populations and surmount treatment
resistance in cancer. By integrating these research endeavors,
we can not only advance our understanding of CSC biology,
but also pave the way for innovative approaches to combat
cancer more effectively.
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