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Abstract: Cholinesterases, involved in acetylcholine catabolism in the central and peripheral nervous
system, have been strongly linked with neurodegenerative diseases. Current therapeutic approaches
using synthetic drugs present several side effects. Hence, there is an increasing research interest in
naturally-occurring dietary polyphenols, which are also considered efficacious. Food processing
by-products such as brewer’s spent grain (BSG) would be a potential bio-source of polyphenols.
In this study, polyphenol-rich BSG extracts using 60% acetone and 0.75% NaOH solutions were
generated, which were further subjected to liquid–liquid partitioning using various organic solvents.
The water-partitioned fractions of the saponified extracts had the highest total polyphenol content
(6.2 ± 2.8 mgGAE/g dw) as determined by Folin–Ciocalteu reagent, while the LC-MS/MS showed
ethyl acetate fraction with the highest phenolics (2.9 ± 0.3 mg/g BSG dw). The best inhibitions
of acetyl- (37.9 ± 2.9%) and butyryl- (53.6 ± 7.7%) cholinesterases were shown by the diethyl
ether fraction of the saponified extract. This fraction contained the highest sum of quantified
phenolics (99 ± 21.2 µg/mg of extract), and with significant (p < 0.01) inhibitory contribution of
decarboxylated-diferulic acid. Amongst the standards, caffeic acid presented the highest inhibition for
both cholinesterases, 25.5 ± 0.2% for acetyl- and 52.3 ± 0.8% for butyryl-cholinesterase, respectively,
whilst the blends insignificantly inhibited both cholinesterases. The results showed that polyphenol-
rich BSG fractions have potentials as natural anti-cholinesterase agents.

Keywords: brewer’s spent grain; polyphenols; acetylcholinesterase; butyrylcholinesterase.

1. Introduction

Evidence in the current literature suggests a strong link to the protective effects of
dietary polyphenols towards the prevention of so called “diseases of civilization”, i.e.,
chronic non-communicable diseases, and protective effects justified via the “biochemical
scavenger theory” [1,2]. Not only being the most abundant antioxidants present in human
diet, researchers, food companies as well as consumers, consider dietary polyphenols to be
one of the core groups of dietary preventive agents [3].

Alzheimer’s disease (AD), the most common type of dementia, is a progressive
neurodegenerative disease that is commonly characterized by the presence of amyloid-β
deposits, τ-protein aggregation, low level of acetylcholine and oxidative stress [4]. More
than 115 million people worldwide are estimated to be affected by this disease by 2050
with most of individuals aged over 65 years [4]. Even though the AD pathogenesis has
not been fully understood, the main mechanistic theory proposed is the “cholinergic
hypothesis” [5]. Choline is an important quaternary amine responsible for the structural
integrity and signaling functions of cell membranes, which directly affects the cholinergic
neurotransmission [6]. Acetylcholine and butyrylcholine are important metabolites of
choline; acetylcholine is the main neurotransmitter at autonomic preganglionic nerve

Foods 2021, 10, 930. https://doi.org/10.3390/foods10050930 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-2001-4066
https://orcid.org/0000-0002-8073-4981
https://www.mdpi.com/article/10.3390/foods10050930?type=check_update&version=1
https://doi.org/10.3390/foods10050930
https://doi.org/10.3390/foods10050930
https://doi.org/10.3390/foods10050930
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10050930
https://www.mdpi.com/journal/foods


Foods 2021, 10, 930 2 of 20

terminals and mostly prevalent in cholinergic synapses of the central and peripheral
nervous system [7,8]. A decrease of acetylcholine levels in the cholinergic synapses in the
brain regions seems to be a critical element in the development of AD. Cholinesterases, i.e.,
acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are enzymes that hydrolyze
acetylcholine and butyrylcholine, respectively, and their inhibition is a current therapeutic
target [4]. Synthetic drugs prescribed to inhibit cholinesterase’s activity have known to
have side effects including nausea, vomiting, headache, etc. However, some plant-derived
alkaloids such as galantamine, tacrine and physostigmine are also used and have shown
symptomatic improvement in AD [5].

Research studies in recent years have led to belief that the polyphenols, as natural
antioxidants, play a role in prevention and management of numerous degenerative diseases
by reducing the oxidative stresses generated by free radicals and oxidants [9,10]. Several
studies have shown a solid association between foods rich in polyphenols and the reduction
of oxidative stress and amyloid accumulation in AD patients [11–13]. Specific phenolic
acids such as ferulic acid, caffeic acid, p-coumaric acid, and 4-hydroxybenzoic acid among
others have received considerable attention as anti-inflammatory agents in the pathogene-
sis of chronic diseases including cancer and cardiovascular diseases [14–18]. Coincidently,
the aforementioned phenolic acids are present in high abundance in brewer’s spent grains
(BSG) [19–21]. The main hurdle in BSG is that these phenolic acids are generally bound
to other cell wall components requiring hydrolysis by chemical or enzymatic methods
for their extraction [22–24]. In essence, BSG is a lignocellulosic material comprising ap-
proximately 80% cell wall material and the remaining 20% consists mainly of proteins [25].
Saponification with sodium hydroxide (NaOH) at different concentrations is an efficient
method for liberation of ester and ether-linked phenolics from xylan, hemicelluloses and
lignin components [26]. Such extraction processes are necessary to generate extracts with
high polyphenol yield. Solid–liquid extraction and subsequent liquid–liquid extraction
are the most frequently used procedures for this purpose due to ease of use, efficiency and
broad applicability [27].

Further separation and enrichment of these hydrolyzed constituents depend greatly
on the suitability of the extraction process, phase separation of the initial solvents besides
other extraction parameters (temperature, time, pH, etc.) However, a great influence on the
recovery of the constituent compounds is the choice of solvent used. Laws of similarity
and miscibility suggest that it is more likely for a solute to dissolve in a solvent close to
its polarity. Phenolic acids are categorized as hydrophilic or polar compounds and have
been successfully fractionated and purified from complex mixtures by using mid-polar
range solvents, i.e., ethyl acetate. Although previous research studies have shown several
extraction techniques for the recovery of bound polyphenols from cereal and cereal-based
products, a limited information exists for the BSG polyphenols as the majority have focused
only on using organic solvents or water to extract free phenolics [22,28–31].

With a hypothesis that phenolic rich extracts from BSG could be efficient inhibitors
against AChE and BChE activities, this study aimed: (1) To extract free phenolics using
60% acetone, and bound phenolics using saponification with 0.75% NaOH from BSG;
(2) to assess the efficiency of four different organic solvents (hexane, diethyl ether, ethyl
acetate, butanol) in recovery of phenolic compounds from the two extracts; (3) to determine
the total phenolic content and quantify the major phenolic compounds in the extracts
and organic solvent fractions; and (4) to determine the anti-cholinesterase activities of
the extracts and fractions along with the individual and mixtures of quantified phenolic
compounds detected.

2. Materials and Methods
2.1. Materials and Chemicals

BSG was provided by Diageo Dublin, Ireland, which was directly transported to the
research centre within 30 min, oven-dried (Binder E28 oven, 72 h, 60 ◦C), milled (<1 mm),
vacuum packed and stored at −28 ◦C until required.
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The organic solvents, methanol, ethanol (EtOH), acetone (Ace), n-hexane (Hex), diethyl
ether (DE), ethyl acetate (EtOAc), n-butanol (BuOH), acetonitrile, formic acid, hydrochlo-
ric acid (HCl), and sodium hydroxide (NaOH) were purchased from Merck (formerly
Sigma Aldrich, Arklow, Co. Wicklow, Ireland). Polyphenol standards, p-coumaric acid
(p-CA), ferulic acid (FA), caffeic acid (CafA), protocatechuic acid (ProA), 4-hydroxybenzoic
acid (4-HBA) and +(-)catechin (Cat), chemicals (sodium carbonate, sodium chloride, mag-
nesium chloride, tris hydrochloride, tris base), reagents (Folin Ciocalteu, Ellman’s or
5,5′-Dithiobis(2-nitrobenzoic acid)( DTNB), inhibitor standard (galantamine hydrobro-
mide from Lycoris sp.), proteins (bovine serum albumin), substrates (acetylthiocholine
iodide, s-butyryl thiocholine iodide) and enzymes (acetylcholinesterase from electric eel,
butyrylcholinesterase from equine serum) necessary to determine in vitro the total pheno-
lic content and cholinesterase inhibitory activities were purchased from Merck (formerly
Sigma Aldrich, Arklow, Co. Wicklow, Ireland). All chemicals used were of analytical grade
and all solutions were prepared with milli-Q water.

2.2. Solid–Liquid Extraction of Free and Bound Phenolics

Extraction of free- (FP) and bound-phenolic (BP) compounds from BSG was done
by maceration in combination with 60% acetone and 0.75% NaOH solution, respectively,
following the methods of [32,33] with small changes. Briefly, 7 g milled BSG was mixed
with 140 mL of solvent (1:20 w/v) in a sealed amber glass bottle and kept in a water-bath at
60 ◦C (free phenolic extraction) and at 80 ◦C (bound phenolic extraction) for 30 min with
constant stirring.

After the treatment time, all the extracts were left to cool at room temperature followed
by centrifugation at 9484 g for 10 min (Sigma 2–16KL, Osterode am Harz, Germany). The
supernatants were pooled, syringe filtered through 0.45 µm PTFE filters for FP extracts,
whereas the BP extracts were neutralized to pH 6.5 and paper-filtered under vacuum.
The FP and BP extracts were stored at −28 ◦C until required. The extraction of FP and
BP from BSG was carried out in quadruplicates, from which three were used further for
liquid–liquid partitioning (fractions) and one as control (crude) as illustrated in (Figure 1).

Figure 1. Extraction process of free and bound phenolic compounds from BSG followed by their partitioning using
different organic solvents. FP—free phenolics, BP—bound phenolics, WR—water residue, Hex—hexane, DE—diethyl ether,
EtOAc—ethyl acetate, BuOH—butanol, Ctrl—control.

2.3. Liquid–Liquid Partitioning of Free and Bound Phenolic Extracts

The fractionation of the FP and BP extracts with different solvents of polarity was
adapted from Tu et al., 2013 [34] with some modifications. Both the FP and BP extracts
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were fractionated by using solvents with increasing polarity (empirical parameters of
normalized solvent polarity shown in brackets after each solvent) as follows: n-hexane
(0.009), diethyl-ether (0.117), ethyl acetate (0.228), n-butanol (0.586) saturated by water (1.0),
and the residual water as the remaining fraction [35]. The FP extract was concentrated
under vacuum (Rotavapor R-100, Buchi, Switzerland) to evaporate the acetone and the
remaining water part (~50 mL) was used for liquid–liquid partitioning (Figure 1). The
recovered volumes of aqueous FP and BP extracts were sequentially pooled three times
with each organic solvent in equal volumes of water. The organic layer was recovered and
concentrated under vacuum (38 ◦C), whereas the remaining residual water fraction (WR)
was freeze dried. The recovered dried material was reconstituted in a minimal volume of
ethanol (98%, v/v) and further diluted with double distilled water to a final concentration
of 20 mg/mL, which served as stock solution. The final fractions were syringe filtered as
above and stored in a freezer at −28 ◦C until further use.

2.4. Determination of Polyphenolic Content

Total phenolic content was estimated by Folin–Ciocalteu and quantification of BSG
polyphenols in the FP and BP extracts and fractions was performed by LC-MS/MS as
described previously [21].

2.4.1. Total Phenolic Content (TPC) by Folin–Ciocalteu (FC)

Briefly, in a 1.5 mL Eppendorf tube, 100 µL of extract, 100 µL of ethanol (for Hex, DE,
EtOAc and BuOH fractions) or milli-Q water (for WR fraction), 100 µL of FC reagent and
700 µL of 20% sodium carbonate solution were added, vortexed, and incubated for 20 min.
in darkness at room temperature. The reaction mixture was then centrifuged (13,000 rpm,
3min) from which 200 µL was transferred onto 96-well micro plate and measured for
absorbance at 735 nm using a spectrophotometer (FLUOstar Omega, BMG Labtech, Ger-
many). Gallic acid was used as standard at various concentrations (10–300 µg/mL in 50%
ethanol) to prepare a calibration curve (y = 0.0095x − 0.0124, r2 = 0.998). The results are
expressed in milligrams of gallic acid equivalent per gram (mg GAE/g) of BSG extract
or fraction.

2.4.2. Individual Polyphenol Quantification by UPLC-MS/MS

Ultra-high performance liquid chromatography coupled to tandem quadrupole (UPLC-
TQD) mass spectrometer (Waters Corp., Milford, MA, USA) was used to quantify the most
abundant and identified polyphenols as described previously [21].

For the quantification of polyphenols, appropriate dilutions (0.098 to 50 ppm) of
each standard (FA, p-CA, Cat, CafA, 4-HBA, ProA) were prepared to obtain a standard
calibration curve. TargetlynxTM (Waters Corp., Milford, MA, USA) software was used to
quantify the compounds in the various extracts. The ferulic acid dimers and trimers were
quantified using the standard curve from FA (y = 1064.59x + 12.24, r2 = 0.99).

2.5. Preparation of Polyphenol Blends

In order to associate the anti-cholinesterase activity of the BSG fractions to their
polyphenol content, blends that mimic the polyphenol content in the BSG fractions were
prepared and tested separately. Thus, six polyphenols were used in combination to prepare
three blends that mimic their abundance in BSG fractions. The blends were prepared at
a specific polyphenol ratio as calculated by their UPLC-MS/MS quantification to a final
concentration of 1000 µg/mL. For this purpose, the fractions that presented the highest
content of quantified polyphenols were selected, namely Blend FP1 EtOAc, Blend BP1 DE,
Blend BP3 EtOAc; the number 1 or 3 following Blend FP or BP represents the replicate
fraction number that was used to prepare the blend. The specific polyphenols combinations
are presented in Supplementary Table (Table S1).
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2.6. Anti-Cholinesterase Assays

The inhibitory potential of BSG extracts, fractions, blends and individual polyphenol
towards anti-AChE and anti-BChE activities was determined in vitro by Ellman’s colori-
metric method [36] and adapted to cuvettes following the procedure of Faraone et al.,
2019 [37]. The ethanol content of the samples was lower than 5% (v/v) in the final as-
say mixture and the interference on the enzyme activity was subtracted from the final %
inhibition calculations.

For the AChE assay, 75 µL of sample (1 mg/mL extract in final assay mixture), 150 µL
of 50 mM Tris HCl buffer (pH 8 with 0.1% bovine serum albumin), 375 µL of 3mM DTNB
reagent and 75 µL of 15mM acetylcholine iodide substrate were added in a cuvette and
pipette mixed. The reaction was initiated by adding 75 µL of 0.18 U/mL AChE enzyme
solution and pipette mixed. A blank solution containing 75 µL of 50 mM Tris HCl buffer
instead of enzyme solution for each individual sample was used to zero the spectropho-
tometer prior to reaction initiation. Similar steps were followed for BChE assay, where the
substrate (75 µL of 15 mM S-butyrylthiocholine chloride) and the enzyme (0.1 U/mL of
BChE) were used instead. The change in absorbance at 405 nm was recorded for every
minute up to 5 min using Shimadzu PharmaSpec UV-1700 spectrophotometer (Shimadzu
Scientific Instruments, Columbia, MD, USA). Galantamine, a cholinesterase inhibitor and a
commonly prescribed drug for treating AD, was used at different concentrations (1.56 to
50 µg/mL for AChE and BChE in 50% ethanol) as positive control, and the required con-
centration to inhibit the activity of AChE and BChE by 50 percent (IC50) was calculated by
nonlinear regression analysis. The rate of reaction over time (slope) was calculated for each
recorded sample in duplicate against negative control (NC, 50 mM Tris HCl buffer instead
of sample/inhibitor), and the final results were expressed as percentage of inhibition:

%Inhibition = (1−AbsSlope(Sample)/AbsSlope(NC)) × 100. (1)

2.7. Statistical Analysis

Results are expressed as means of the triplicates ± standard deviation (SD). The
datasets were evaluated for normality and homogeneity of variance by Shapiro–Wilk and
Levene’s test. Normally distributed data sets were evaluated using one-way ANOVA and
Tukey’s post hoc tests, whereas non-normal distribution by nonparametric Kruskal–Wallis
and Dunn’s post hoc test (p < 0.05). Welch analysis followed by Games-Howell post hoc test
were performed when Levene’s test (homogeneity of variance) was significant (p < 0.05).
The correlation coefficients between the measured variables were calculated using Pearson
correlation (p < 0.05), and the relation was assessed by regression model (dependent
variables: AChE and BChE, independent variables: quantified phenolic compounds and
their quantification methods, i.e., TPC by FC and SQP by UPLC-MS/MS). The statistical
analytical steps were followed as proposed by Granato et al., 2014 [38]. Principal component
analysis (PCA) was carried out with the standardized data sets to disclose any association
between the quantified phenolic compounds in the extracts and the enzymatic assays.
Statistical analysis, Pearson’s correlation and linear regression were carried out using SPSS
v.25 (IBM corp.), while PCA using Minitab v.17 (Minitab, Inc., Coventry, UK).

3. Results and Discussion
3.1. Extraction Yield

The extraction yields were measured first for the crude extracts with and without
saponification, and then for the different solvent fractions employed in liquid–liquid
partitioning (Table 1). Extraction yield defined as “Total” yield in (Table 1) was determined
by summing yield of each of the various liquid–liquid fractions. As exemplified by the 60%
acetone extract, the yield of total fractions (80.2 ± 3.4 mg/g BSG dw) was lower than that
of the crude extract (94.9 ± 9.2 mg/g BSG dw) indicating the occurrence of losses during
the liquid–liquid partitioning, such as emulsion formation, through the filtration process
as well the variation of the sample material, particle size, solubility of the immiscible
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solvent, when extractions were done in replicates [39]. The extraction yield of total fraction
following saponification (0.75% NaOH) showed a 5-fold higher yield (424.2 mg/g BSG
dw) than the unsaponified (60% acetone, 80.2 mg/g BSG dw). More than 80% of the
saponified material was recovered in the WR fraction followed by 9% in EtOAc and 6% in
BuOH fractions. On the other hand, for the unsaponified (60% acetone) extract, recovery
in the Hex, DE and WR fractions were in similar range amounting to 32%, 28%, and 25%,
respectively of the total recovered material.

Table 1. Extraction yield (means ± SD) of free phenolics (FP) using 60% acetone and bound phenolic (BP) using 0.75%
NaOH expressed in milligram per gram of BSG dry weight (mg/g BSG dw).

Samples
Extraction Yield

(mg/g BSG)
TPC

(mg GAE/g BSG)
SQP

(mg/g BSG)
FP BP FP BP FP BP

Hex F. 19.4 ± 16.8 a 12.2 ± 7.1 b 0.09 ± 0.09 a 0.02 ± 0.0 b n.d. b <0.01 c

DE F. 25.8 ± 14.2 a 8.3 ± 1.2 b 0.23 ± 0.09 a 0.67 ± 0.02 b <0.01 a 0.8 ± 0.0 a b

EtOAc F. 6.6 ± 4.0 a 34.6 ± 6.9 a 0.12 ± 0.07 a 3.5 ± 0.5 a <0.01 a 2.9 ± 0.3 a

BuOH F. 6.2 ± 4.4 a 23.8 ± 8.3 a b 0.09 ± 0.004 a 1.0 ± 0.4 a b <0.01 a b 0.07 ± 0.03 b c

WR F. 22.2 ± 7.8 a 345 ± 162.5 a 0.11 ± 0.02 a 6.2 ± 2.8 a n.d. b 0.03 ± 0.04 c

Total 80.2 ± 3.4 424.2 ± 179.9 0.64 ± 0.07 11.3 ± 3.6 0.013 ± 0.02 3.80 ± 0.2
Crude (Control) 94.9 ± 9.2 n.t. 1.7 ± 0.2 n.t. <0.02 n.t.

Total represents the sum of each solvent fraction (F.) in the column. Fractions generated by Hex—hexane, DE—diethyl ether, EtOAc—ethyl
acetate, BuOH—butanol and WR (water residue); “n.t.” means not tested, “n.d.” means not detected. The corresponding polyphenols
content in FP and BP samples represented by Total Phenolic Content (TPC) by Folin–Ciocalteu in mg of gallic acid equivalent per gram of
BSG (mg GAE/g BSG), and sum of quantified polyphenols (SQP) by UPLC-MS/MS in mg/g BSG. Values in the same column for each type
of extracted phenolics (FP and BP) with each solvent fraction (Hex, DE, EtOAc, BuOH, WR) bearing different letters (a, b, c) are significantly
different (p < 0.05) from each other.

The results presented in (Table 1) were generated by solid–liquid and liquid–liquid
extractions, followed by paper filtration and concentrated under vacuum or freeze-dried.
As the extractions were carried out in triplicate, the steps of washing the solid extraction
residue (crude extracts) and separation of the immiscible solvents (Hex, DE, EtOAc, BuOH,
and water) had influenced the extraction yield levels. Other parameters that may influence
the variations in the extraction yield include extraction time, temperature, solvent-to-
sample ratio, the number of extractions of the samples and the solvent type [40]. BSG is
comprised of about 80% lignocellulosic material mainly consisting of polymers, such as
cellulose, hemicellulose and lignin, originating from the cell wall material, whereas the
remaining 20% comprises mainly proteins [25,41]. Saponification with NaOH facilitates
the delignification of BSG and degradation of other constituents including hemicellulose
and proteins [42,43], and thereby solubilizing between 23% and 60% of the current total
BSG constituents (Table 1, BP total extraction yield).

Solvent extraction is a suitable method for pooling free base forms of non-saccharide
components such as phenolics and other components [22], where a recovery of up to 9%
of total BSG constituents was observed in this study (Table 1, FP total extraction yield).
Several authors have also showed alkaline treatment is more effective than organo-solvent
method in populating high extraction yields [22,44,45]. Beside delignification, dilute alkali
solutions are predominantly used to hydrolyze hemicelluloses to mono-sugars/oligomers
or proteins into its constituent amino acids and peptides, which can be recovered in the
water phase [44]. The presence of such non-polyphenolic molecules could explain for
the high variation in the standard deviation and the data is being skewed by the water
fraction as it contains all the precipitates of polysaccharides, proteins, etc. Values on the
extraction yield in this study are similar to those reported by other authors [46,47]. It is
essential to obtain a consistent extraction yield so that the extraction process is economically
feasible [48].
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3.2. Total Polyphenol Content

Two different methods had been used to determine the total polyphenols, i.e., colori-
metric method for total phenolic content (TPC) using FC reagent, and sum of quantified
polyphenols (SQP) by UPLC-MS/MS method (Table 1). The results revealed a considerable
variability in the TPC and SQP values, where TPCs were always higher than SQP, among
the BSG extracts and various solvent fractions. Interestingly the total bound phenolics
(BP) presented almost 20 times higher TPC than free phenolics (FP), which was further
supported by the SQP values. Overall, the highest TPCs were observed in the WR and
EtOAc fractions of the alkali-hydrolyzed extracts with 6.2 ± 2.8 and 3.5 ± 0.5 mg GAE/g
BSG dw, respectively. Amongst the FP fractions, the highest TPC was in the DE fraction
(0.23 ± 0.09 mg GAE/g BSG dw) and the TPC values below 0.12± 0.07 mg GAE/g BSG dw
were observed for the other solvent fractions. On contrary, the highest SQP was found in the
EtOAc and lesser in DE fractions with 2.9 ± 0.3 and 0.8 ± 0.05 mg/g BSG dw, respectively.
The FP fractions presented a very low SQP (<0.04 mg/g BSG dw) or at not-detectable levels
in the Hex and WR fractions. In the authors’ previous work [21], the TPC values of BSG
EtOAc fraction generated by maceration were about 33% higher than the values reported
in this study even though the substrate supplier was the same but from a different malted
batch. The different sample-type would factor in TPC variation alongside its background
such as barley variety, harvesting time, brewing process, extraction process, etc. [22]. A
significant (p < 0.01) correlation has been observed between the extraction yield and TPC
(r = 0.896) using both FP and BP methods of extraction with their independent fractions.

There was a high variation (~33 fold) between the TPC values reported in the literature
by numerous authors either in BSG extracts or fractions generated using alkali hydrolysis
or organic solvents; the TPC values varying between 0.6 to 10 mg GAE/g dw when using
organic solvents and up to 20 mg GAE/g dw when using alkali hydrolysis [22,49]. Results
from this study fall within this range (Table 1). EtOAc is a commonly used organic solvent
as an extractant, and is also generally recognized as safe for food application by US-FDA
and EFSA to recover phenolic compounds. Meneses et al., 2013 extracted antioxidant
phenolic acid from BSG using different organic solvents and/or in combination with water
and showed that all the extracts presented TPC along with lower amounts of proteins and
reducing sugars [32]. Meneses et al., 2013 also showed that the antioxidant activity of the
extracts correlated with the total phenols and flavonoids, and acknowledged that some
antioxidant activity contribution came from compounds that were not identified. Similarly,
Kähkönen et al., 1999 reported that TPC can be influenced by specific compounds present
in mixtures, and therefore can result in a false prediction of the antioxidant activity based
only on TPC values [50].

LC-MS/MS quantification of individual phenolics, expressed as Sum of Quantified
Phenolics (SQP), in the bounds phenolic (BP) extracts showed that DE and EtOAc ex-
tracts accounted for approximately 21% and 76% of the Total SQP, respectively, which
corresponded to 6% and 30% of the total TPC values, respectively. In addition, DE and
EtOAc fractions of BP extracts showed similar TPC and SQP trends suggesting both organic
solvents were able to efficiently extract phenolic compounds from aqueous solutions. For
the BP (Hex, BuOH, and WR) fractions, the SQP values were extremely low, which were
also noted low in the corresponding FP fractions for both the SQP and TPC values (Table 1).

The overestimation of the spectrophotometric over chromatographic method on total
polyphenol content is a well-known phenomenon as the former crudely estimates end-
products by both phenolic and non-phenolic compounds [21]. One must use organic
solvents such as DE or EtOAc or in combination to pool phenolic compounds from aqueous
extracts, which further can be more accurately determined by spectrophotometry (TPC)
and liquid chromatography-tandem mass spectrometry (LC-MS/MS).

3.3. UPLC-MS/MS Quantification of BSG Free and Bound Polyphenols

As previously described [21], 14 different polyphenols were tentatively identified
in the EtOAc fraction of the saponified BSG extract, of which 8 were confirmed using
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commercially available standards in the UPLC-MS/MS method. In the current work, a total
of 9 different polyphenols were quantified, five phenolic acids (ferulic acid, p-coumaric acid,
caffeic acid, 4-hydroxybenzoic acid, and protocatechuic acid) and a flavonoid (catechin),
along with two ferulic acid oligomers, (decarboxylated diferulic acid (DeCa-DiFA), diferulic
acid (DiFA), and a trimer, triferulic acid (TriFA)), as ferulic acid equivalents (Table 2).

The most predominant phenolic acid, i.e., ferulic acid, was measured in the BP frac-
tions, specifically in the DE and EtOAc fractions constituting in excess of 42% and 48%,
respectively of the total polyphenols. The next abundant phenolic acid was p-coumaric
acid with 26% and 19% in the DE and EtOAc fractions, respectively. DeCa-DiFA was the
most abundant ferulic acid dimer in the BP DE fraction (31% of the total polyphenols),
whereas it was present in traces in the rest of fractions. DiFA and TriFA were found in
similar quantities in the BP EtOAc fraction constituting approximately 15% of the total
polyphenols, but very low or not detected in the other BP solvent fractions. Catechin was
the most abundant polyphenol in FP fractions, representing more than 72% and 61% of the
total polyphenols in the EtOAc and DE fractions, respectively. DE and EtOAc showed to
be the best solvents to recover phenolic (FP and BP) compounds from BSG. Both DE and
EtOAc, due to their ability to form biphasic with water, where the extraction of mid-polar
to non-polar BSG polyphenols is facilitated. Almost 98% of the total phenolic compounds
in BSG, as quantified by the UPLC-MS/MS, were present in bound form, whereas the
rest 2% were in the free form. These results are in similar range with previous published
papers [21,45].

Stalikas 2007 comprehensive review on general polyphenols and flavonoids noted
several authors had successfully used DE and EtOAc to extract phenolic compounds from
aqueous solutions [27]. de Simon et al., 1990 showed there was not a very large difference in
the extraction rate of EtOAc compared to DE [51]. EtOAc presented a greater extraction rate
for acids and aldehydes of low and high molecular mass, such as catechin (dimers, trimers
of catechins), hydroxycinnamic esters, whereas DE showed a superior reproducibility for
the extraction of aldehydes and phenolic acids, i.e., 4-HBA aldehyde, p-CA [51]. It is for
this reason some authors used a ratio of 1:1 (EtOAc:DE) to fractionate phenolic compounds
from aqueous solutions [52]. Meneses et al., 2013 showed that hexane was able to extract
flavonoids from BSG in low amounts [32], although hexane is mainly used to extract highly
nonpolar compounds such as waxes, oils, sterols or for delipidation purposes [22]. Socaci
et al., 2018 had shown hexane to be a possible selective solvent for other classes of bioactive
called terpenoids and aroma compounds [29]. n-butanol and water are usually used to
extract polar compounds such as phenolic glucosides, peptides and sugars [53].
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Table 2. Individual polyphenols quantified by UPLC-MS/MS in microgram/milligram (µg/mg) BSG extract.

Samples
(µg/mg)

FA p-CA Cat CafA 4-HBA ProA DeCa-DiFA DiFA TriFA Total

FP BP FP BP FP BP FP BP FP BP FP BP FP BP FP BP FP BP FP BP

Hex F. n.d. 0.04 ± 0.07 b n.d. 0.05 ± 0.06 c n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.08 ± 0.08 b n.d. n.d. n.d. n.d. n.d. 0.15 ± 0.2 c

DE F. 0.053 ± 0.03 a 41.5 ± 15.3 a 0.03 ± 0.02 a 25.9 ± 6.3 a 0.33 ± 0.10 a n.d. 0.02 ± 0.01 a 0.50 ± 0.2 a b 0.05 ± 0.05 a 0.30 ± 0.1 a b 0.06 ± 0.03 a b 0.04 ± 0.00 a b n.d. 30.62 ± 0.8a n.d. 0.04±0.01 b n.d. n.d. 0.5 ± 0.3 a 99.0 ± 21.2 a

EtOAc
F. 0.054 ± 0.03 a 40.6 ± 7.7 a n.d. 16.1 ± 1.9 a b 0.88 ± 0.67 a n.d. 0.03 ± 0.02 a 1.04 ± 0.3 a 0.04 ± 0.03 a 0.33 ± 0.05 a 0.21 ± 0.04 a 0.24 ± 0.06 a n.d. 0.95 ± 0.6 a b n.d. 12.91±2.4 a n.d. 12.76 ± 2.3 a 1.0 ± 0.9 a 84.9 ± 14.6 a b

BuOH
F. n.d. 1.2 ± 1.0 a b n.d. 0.44 ± 0.4 b 0.06 ± 0.06 a n.d. n.d. 0.03 ± 0.02 b c n.d. 0.02 ± 0.01 b 0.03 ± 0.03 a b 0.03 ± 0.01 b n.d. 0.08 ± 0.04 b n.d. 0.92±0.6 a b n.d. 0.70 ± 0.7 a b 0.07 ± 0.1 a 3.3 ± 2.8 b c

WR F. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.09 * b n.d. 0.11*b n.d. 0.1 ± 0.1 c

Crude
Ctrl n.d. 5.33 * n.d. 2.28 * 0.15 * n.d. n.d. 0.08 * 0.01 * 0.03 * 0.02* 0.02* n.d. 0.58 * - 1.09 * n.d. 0.78 * 0.19 * 10.2 *

Individual phenolic compounds represented by ferulic acid (FA), p-coumaric acid (p-CA), catechin (Cat), caffeic acid (CafA), 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (ProA), decarboxylated diferulic
acid (DeCa-DiFA), diferulic acid (DiFA) and triferulic acid (TriFA), in BSG Free Phenolic (FP) and Bound Phenolic (BP) extracts and their organic solvent fractions (F.), hexane (Hex), diethyl ether (DE), ethyl
acetate (EtOAc), butanol (BuOH), water residue (WR), and Crude control (Ctrl). “n.d.”—not detected, “*”—identified in one of the extracts. The values reported for each individual polyphenols and Total in FP
and BP extracts with their solvent fractions bearing different letters (a, b, c) are significantly different (p < 0.05) from each other.
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BSG is a good source of phenolic acids, such as hydroxycinnamic acids (FA, p-CA)
and hydroxybenzoic acids (4-HBA), and smaller amounts of flavan-3-ols such as cate-
chin [32,33,41,54]. Among the phenolic compounds present in BSG, hydroxycinnamic
acids, namely FA and p-CA, are the most abundant phenolics as observed in this study and
by several other authors [54,55]. The highest yield of 1.31 ± 0.04% of BSG dw has been
reported for FA, and a 10 fold lower values were reported by the same authors in their later
published article following saponification with NaOH [33,56]. The latter FA values are in
accordance with our presented results and with most of the other authors [57,58]. p-CA has
been reported in levels of 2 to 3 fold lower than FA [56], in close range to FA [41,59] and
sometimes only traces were observed [60]. Catechin, the most common flavonoid reported
in BSG, can be extracted by using organic solvents without the need of saponification,
and its content is reported to be below 10 mg/g BSG dw [49,61], which are in similar
levels in this study. The remaining phenolic acids (caffeic acid, 4-hydroxybenzoic acid and
protocatechuic acid) were mostly reported in literature at very low levels compared to FA
or p-CA [54,62]. It can be clearly seen (Table 2) that DE and EtOAc were the best solvents
to recover the above-mentioned variety of polyphenols, either using extraction with 60%
acetone or saponification with NaOH, whereas only traces or low amounts could be found
in Hex, BuOH, and WR, respectively. Several authors observed the loss of phenolic acids
during harsh alkali hydrolysis (2–4M NaOH solution), but not beyond 10% of the initial
values of ferulic and p-coumaric acids. However, a stronger alkali condition led to 67% and
36.5% losses of caffeic and sinapic acids, respectively [52,63]. Beside the above quantified
polyphenols, procyanidin B, and chlorogenic acid have been detected in FP EtOAc and
BuOH fractions, and sinapic acid in BP and EtOAc fractions. Martín-Garcia et al., 2019
extracted high yield of proanthocyanidin compounds (catechins, procyanidins) from BSG
using aqueous acetone, where up to 0.1% BSG dw proanthocyanidins was extracted [61].
Therefore, depending on the bioactive compounds of interest, different optimized extrac-
tions and a variety of organic solvents are required to obtain high extraction yields of the
targeted compounds.

3.4. Anti-AChE and -BChE Activities

The inhibitory activities of BSG free and bound phenolic extracts along with their
various solvent fractions on AChE and BChE were evaluated in-vitro. The inhibition results
are summarized in (Table 3) along with the TPC and SQP (µg GAE/mg and µg/mg of
BSG extract or fraction) contents of the tested samples with their corresponding inhibitory
potential (in %) of AChE and BChE activities. Samples were tested at a concentration of
1 mg/mL BSG extract in the final assay mixture, unless otherwise stated. It is worth to
mention that the sum of quantified polyphenols in FP1 EtOAc, BP1 DE and BP3 EtOAc
fractions (fractions chosen for blend preparation) represented 2.08, 123.4, and 96.5 µg/mg of
BSG fraction respectively, whereas by difference to 1000 µg comprises of other unidentified
compounds. All the tested samples exhibited some degree of inhibition on both AChE and
BChE with the overall highest inhibitions coming from the BP fractions. FP WR fraction
was the only fraction that did not present BChE inhibition. BP DE fractions showed the
highest and similar TPC and SQP values with BP EtOAc fraction, while showing 4 and
2-fold higher inhibitions for AChE and BChE activities, respectively. In contrast, FP BuOH
fraction showed significantly lower TPC and SQP compared to BP DE, whilst presenting
similar inhibitory activities for both AChE and BChE. BP DE fraction presented similar
levels of individually quantified phenolic acids with BP EtOAc fraction, with the exception
of ferulic acid dimers. DeCa-DiFA was the most abundant polyphenol in BP DE fractions,
whereas DiFA and TriFA were present only in BP EtOAc (Table 2). The presence of DeCa-
DiFA only in BP DE fraction may be responsible for the higher inhibitory potential of this
fraction towards AChE and BChE activity. This is supported by a significant correlation
observed between DeCa-DiFA and anti-AChE/BChE activities (Table S3). Pure FA standard
was tested individually for anti-AChE and BChE activity (Table 4), but neither the dimers
nor trimers of FA could be tested individually as they are not commercially available.
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Adelakun et al., 2012 showed that ferulic acid dimers have higher antioxidant capacity
than the ferulic acid [64]. The FA dimers have four free hydroxyl groups compared to FA
(two groups) which could contribute to antioxidant efficacy [65]. Even though multiple
hydroxyl groups in the phenolic compounds are thought to boost the inhibitory action of
AChE through strong ionic binding capacity, unfortunately not all follow the same mode
of action due to conformational variation [66].

Table 3. Total phenolic content (TPC), sum of quantified polyphenols (SQP) of free phenolic (FP)
and bound phenolic (BP) extracts and their anticholinesterase activities in different solvent fractions
tested at 1 mg/mL.

Samples
1 mg/mL

TPC
µgGAE/mg

Extract

SQP
µg/mg
Extract

AChE
%Inhibition

BChE
%Inhibition

FP

Hex F. 4.1 ± 0.6 e n.d. 11.7 ± 1.3 b 17.5 ± 1.8 c d

DE F. 9.8 ± 1.9 e 0.5 ± 0.3 b 10.7 ± 3.6 b 16.4 ± 3.1 c d

EtOAc F. 20.3 ± 3.4 d e 1.0 ± 1 b 8.7 ± 0.6 b 15.7 ± 2.9 c d

BuOH F. 11.4 ± 2.5 e 0.07 ± 0.1 b 34.9 ± 6.4 a 40.5 ± 11.2b

WR F. 5.1 ± 1.1 e - 12.8 ± 0.7 b -
Crude Ctrl 17.3 ± 0.7 d e 0.19 * b 20.8 ± 2.2 b 17.2 ± 1.2 c d

BP

Hex F. 1.8 ± 0.4 e 0.15 ± 0.2 b 13.8 ± 3.5 b 25.1 ± 1.5 c

DE F. 82.9 ± 13.2 b 99.0 ± 21.2 a 37.9 ± 10.4 a 53.6 ± 7.7 a

EtOAc F. 102.3 ± 14.1 a 84.9 ± 14.6 a 10.3 ± 2.9 b 25.3 ± 3.3 c

BuOH F. 40.7 ± 1.6 c 3.3 ± 2.8 b 14.3 ± 2.9 b 16.9 ± 3.1 c d

WR F. 18.0 ± 0.9 d e 0.1 ± 0.1 b 11.6 ± 1.3 b 9.4 ± 3.8 d e

Crude Ctrl 31.7 ± 0.8 c d 10.2 * b 10.2 ± 1.4 b 11.4 ± 0.4 d e

Hex—hexane, DE—diethyl ether, EtOAc—ethyl acetate, BuOH—butanol, WR—water residue, F- fraction, Crude
Ctrl—crude control, n.d.—not detected. TPC by Folin–Ciocalteu; SQP by UPLC-MS/MS; Acetyl -, Butyryl-
cholinesterase (AChE, BChE) inhibition activity expressed as % inhibition and compared to galantamine at IC50
(50% inhibition by 3.4 ± 0.23µg/mL for AChE and 11.9 ± 1.67 µg/mL for BChE). The data with an * in the SQP
column is given as a single result. The values reported on the column for each TPC, SQP, AChE and BChE in FP
and BP crude extracts with their solvent fractions bearing different letters (a–e) are significantly different (p < 0.05)
from each other.

Table 4. The potential of six individual polyphenols at 0.1 and 1 mg/mL towards the inhibition (%)
of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities.

Standards
AChE % Inhibition BChE % Inhibition

0.1 mg/mL 1 mg/mL 0.1 mg/mL 1 mg/mL

Ferulic A. 1.0 ± 0.9 b 15.4 ± 0.1 a b 14.6 ± 1 a b 27.2 ± 0.9 a b

p-Coumaric A. 5.2 ± 0.4 a 14.4 ± 0.5 b c 6.4 ± 0.6 b 22.1 ± 1.3 b c

Catechin 3.8 ± 1.1 ab 14.9 ± 0.2 a b 12.2 ± 0.6 a b 31.6 ± 0.4 a b

4-Hydroxybenzoic A. 1.0 ± 0.2 b 5.2 ± 0.9 c n.d. 11.9 ± 0.6 b c

Caffeic A. 3.3 ± 0.4 a b 25.5 ± 0.2 a 15.4 ± 1.3a 52.3 ± 0.8 a

Protocatechuic A. n.d. 13.8 ± 0.7 b c n.d. 7.6 ± 2.4 c

Blends TPC
µgGAE/mg

SQP
µg/mg

AChE
%Inhibition

BChE
%Inhibition

FP EtOAc1 260.6 ± 11.9 a b 1000 n.d. 16.7 ± 1.5 a

BP DE1 243.8 ± 1.4 b 1000 11.1 ± 0.6 a 9.9 ± 0.2 b

BP EtOAc3 267.4 ± 8.4 a 1000 8.3 ± 0.1 a 11.2 ± 1.1 a b

Three blends (FP EtOAc1, BP DE1, BP EtOAc3), that mimic the polyphenol content in the BSG fractions with the
highest Total phenolic content (TPC) and sum of quantified polyphenols (SQP) were tested as well. The values
reported for each AChE and BChE at specific concentrations with their individual polyphenols bearing different
letters (a, b, c) are significantly different (p < 0.05) from each other. n.d. = not detected.

Even though various structural isomers of ferulic acid dimers and trimers obtained
from several sources had been described in the literature, there is a lack of information on
their antioxidant capacity or as potential enzyme inhibitors, especially of DeCa-DiFA [67].
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Jia et al., 2018 synthetized and evaluated several diferulic acids for antioxidant activity
and showed DeCa-DiFA as the best antioxidant among other ferulate dimers examined.
Unfortunately, no conclusive explanation for the higher inhibitory capacity of DeCa-DiFA,
and rather a mix of associated structural characteristics and physiochemical properties of
the compounds [68]. Furthermore, decarboxylation of ferulic acid changes the antioxidant
capacity of ferulic acid, and the product formed (4-vinylguaiacol) is a potent antioxidant
comparable to α-tocopherol [69]. It has been demonstrated that in homogenous polar
mediums, ferulic acid presents a greater antioxidant capacity compared to its vinyl derivate
4-vinylguaiacol, whereas in emulsion systems the antioxidant capacity of 4-vinylguaiacol
is much greater [70]. Further investigations are needed as to understand how DeCa-DiFA
present a higher inhibitory capacity against both AChE and BChE activities compared to
other related compounds.

Ouattara et al., 2013 showed that inhibitions of AChE activity decreased in the order
BuOH > EtOAc fractions of Nelsonia canescens, even though the EtOAc fraction presented
considerable higher polyphenol content (hydroxycinnamic acids) as well as antioxidant
activity [71]. Due to low recovery in one of the FP BuOH replicate fractions, a solution
of 0.1 mg/mL fraction was tested that showed an AChE inhibition of 11.1 ± 0.95% and
12.1 ± 1.25% for BChE inhibition. Another fraction, i.e., BP DE was tested at 0.5 mg/mL
and showed an inhibition of 9.5 ± 2.05% towards AChE and 38.95 ± 3.94% for BChE
inhibitions. This fraction presented the highest SQP content and was tested at a 2-fold
dilution to check if the % inhibition is concentration dependent.

Several authors have showed that extracts with considerable higher polyphenols
content and antioxidant activity (EtOAc extracts), obtained from different plant sources
did not exhibit higher inhibitory potential for AChE and BChE activities [71,72]. It may be
that the contribution of other unidentified bioactive compounds that constitute up to 99%
and 90% of FP BuOH and BP DE fractions, respectively, account for the inhibition of AChE
and BChE activities. Therefore, further separation of these fractions is required to assign
their individual involvement in inhibition of AChE and BChE activities, which is beyond
the scope of this study. In an earlier study on extracts rich in hydroxycinnamic acids from
26 medicinal plants of the Lamiaceae family were tested at 0.25, 0.5, and 1 mg/mL against
AChE activity have shown above 75% inhibitions at 1 mg/mL, but decreased to <25% for
most extracts at 0.25 mg/mL [73].

The BSG fractions and extracts tested for anti-AChE and BChE activities showed
high and low inhibitory potential and corresponded to high or low contents of TPC and
SQP (Table 3). This suggested that the phenolic compounds are possible effective natural
inhibitors against AChE and BChE activities. Hence, the individual polyphenol and their
blends were investigated for the enzyme inhibition studies.

Table 4 shows the AChE and BChE inhibitory potential (%) of individual phenolic
compounds prepared at a specific concentration along with three blends that replicate
their concentrations in BSG fractions. The activity of the various standard polyphenols
at 1 mg/mL concentration was in the order: Caffeic acid > ferulic acid > p-coumaric
acid, catechin, protocatechuic acid > 4-HBA for AChE inhibition, whereas for BChE the
order of activity were caffeic acid > catechin > ferulic acid > p-coumaric acid > 4-HBA
> protocatechuic acid. All the tested polyphenols at a 10-fold lower concentration pre-
sented an insignificant inhibition activity of <5% for AChE and <15% for BChE with some
polyphenols expressing no inhibition at all. In general, the individual polyphenol showed
a stronger inhibition against BChE than AChE at 1 mg/mL. Caffeic acid showed the most
potent inhibitory activity with 52.3 ± 0.75% at 1 mg/mL against AChE and 25.5 ± 0.30%
against BChE activity. The prepared polyphenol blends presented insignificant inhibition
against both AChE and BChE activities at 1 mg/mL and lower inhibitions compared to
their actual counterparts.

The composition of blends mimicked only the quantified individual polyphenols in the
BSG FP EtOAc, BP DE, and BP EtOAc fractions, whereas these fractions could contain other
unidentified compounds, i.e., peptides, amino acids, lipids. The difference in composition
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together with the quantified ferulic acid dimers and trimers in the fractions may explain
the lower inhibitory potential of the BP DE and BP EtOAc blends against both AChE and
BChE activities. The FP EtOAc fraction presented very low quantifiable polyphenols with
catechin being the most abundant and representing 68% of the total quantified polyphenols.
The FP EtOAc blend contained the same % of catechin but at higher content when tested
against AChE and BChE activity. Both the fraction and blends showed similar inhibition for
BChE activity, whereas low or no inhibition detected against AChE activity. Additionally,
an explanation of the higher inhibitory potential of the fractions vs blends would be
that the identified and unidentified compounds might present a synergistic effect in the
fractions compared to blends, thus increasing their potency towards the inhibition of
cholinesterases’ activities.

3.5. Pearson Correlation, Multiple Regression Model of Variables and PCA

In order to understand whether there is an association between the above data sets
specifically among pairs of variables, i.e., enzymatic assays AChE vs BChE, polyphenols
quantification methods TPC vs SQP, or within sets of variables in particular FA versus
p-CA, or FA versus AChE etc., a number of statistical tests have been performed.

Correlation tests have been performed to identify any relationships between variables
(AChE, BChE, TPC, SQP, and individually quantified polyphenols) either in the BSG FP and
BP extracts, or individual polyphenols and their blends. Depending on the independent
variables used, the correlation values may increase or decrease. For example, the FP, BP
extracts, individual standards and blends were tested for both AChE and BChE, whereas
TPC and SQP were analyzed without the individual standard as no data was available. The
correlation between the individual phenolic standards was analyzed only in the BP extracts.

AChE and BChE enzymatic assays presented a significant (p < 0.01) correlation of
0.687 (n = 84) determined by FP and BP extracts, polyphenol standards and blends. The
quantification methods of polyphenols content in BSG extracts, TPC and SQP, presented
a significant (p < 0.01) correlation of 0.974 (n = 48) determined by FP, BP extracts and
blends. Furthermore, significant (p < 0.01) correlation has been observed in BP extracts
(n = 21) between individual polyphenols, i.e., FA and p-CA (0.958), 4-HBA (0.994) and CafA
(0.887), respectively. Moreover, the FA dimer, DeCa-DiFA presented significant correlation
(p < 0.01) with the enzymatic assays AChE and BChE of 0.754 and 0.896, respectively
(n = 21). Other related correlations are shown in (Table S2). The multiple correlation
coefficient R indicated a very high correlation of 0.842 and 0.984 between the response
variables, AChE and BChE, and the explanatory variables (TPC, FA, CafA, 4HBA, ProA, p-
CA, Cat, DeCa-DiFA, TriFA), with the BP extracts. Further, the coefficient of determination
(R2) indicates that the model fits the data reasonably well; where 70.9% (AChE) and 97.6%
(BChE) of the variation could be explained by the fitted model. The adjusted R2 value
of the dependent variable AChE considerably reduced the estimated proportion to 0.471
and slightly to 0.941 for BChE, respectively. A regression model has also been presented
using FA and p-CA (most abundant polyphenols) as variables to explain the anti-AChE
and BChE activity (Table S3).

Principle component analysis (PCA) was performed on standardized datasets to
explore a potential differentiation among BSG FP and BP extractions and their follow-up
fractions (Figure 2) based on individual polyphenol content (i.e., FA, p-CA, CafA etc.),
polyphenol quantification methods (TPC, SQP) and enzymatic assays (AChE and BChE).
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Figure 2. (a) Scree plot of BSG FP and BP extracts and fractions; (b) Score plot for the first two components (PC) separated
by the type of extractions FP and BP; (c) score plot for the first two components separated by the type of organic solvent
used for fractionation of the FP and BP extracts; (d) loading plot of the first two components.

PC1 retained about 59% of data variation, while PC2 explained an extra 22% of overall
variability leading to a total cumulative variation of 81%. Two score plots for PC1 and
PC2 are presented in (Figure 2), where the variables were separated according to the type
of extraction, FP and BP (Figure 2b), and further partitioning of the extracts by organic
solvents, Hex, DE, EtOAc, BuOH, and WR, respectively (Figure 2c). In (Figure 2b), it can
be observed the formation of a cluster close to the origin of the plot by both FP and BP
fractions, and part separation of several BP fractions, in the upper and lower right-hand
side of the plot. In (Figure 2c), the part separation is represented by the EtOAc BP fractions
in the lower right-hand side, and DE BP fractions in the upper side. These two BP fractions
seemed to have a stronger impact on the model as they are the furthest away from the
plot’s origin.

The loading plot (Figure 2d) shows the relations between the analyzed variables
including quantified phenolic acids, quantification methods and enzymatic assays, ex-
plained in combination with the eigen values (Table S4). Three sets of associations between
variables were observed in the loading plot (Figure 2d). PC1 positively differentiated
the BSG FP and BP fractions according to the contents of FA, p-CA, CafA, 4-HBA, and
the polyphenol quantifications methods, i.e., TPC and SQP. This positive association was
an expected result as a strong and significant Pearson correlation was observed between
these variables (Table S2). FA and p-CA were the most abundant polyphenols in the BSG
extracts and fractions, and with CafA and 4-HBA brought a higher contribution to TPC
and SQP quantification methods compared to catechin. PC2 differentiated the BSG FP and
BP fractions according to the contents of ProA, DeCa-DiFA, DiFA, TriFA, and the enzymatic
assays AChE and BChE. The positive association between DeCa-DiFA and the enzymatic
assays, AChE and BChE was an expected result too as among the quantified polyphenols,
DeCa-DiFA presented a strong and significant Pearson correlation with both enzymatic as-
says compared to DiFA, TriFA, and ProA. Moreover, DeCa-DiFA was present only in the DE
BP fraction, which presented the highest inhibition among the analysed fractions for both
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AChE and BChE activities. DiFA and TriFA were present only in EtOAc BP fraction, which
presented a 4- and 2-fold lower inhibitions for AChE and BChE activities, respectively.

The statistical analysis showed significant correlations and strong associations between
the analyzed variables of BSG fractions. A clear differentiation between BSG BP polyphenol-
rich fractions and FP fractions was observed based on the performed statistical analysis
with the most abundant polyphenols (i.e., FA, p-CA) being associated with the polyphenol
quantification methods, and the decarboxylated FA dimer of BSG BP DE fraction associated
with the anti-AChE and BChE activities. Szwajgier et al., 2012 have associated phenolic
compounds from malt as potential cholinesterase inhibitors due to their similar structure
to the well-known anti-cholinesterase, in terms of molecular weight, phenol rings and
hydrophobic moieties. The highest anti-ChE activities was exhibited by p-coumaric acid
at 0.38 mM/L, whereas the second best ferulic acid presented a 120-fold lower inhibition
at 1 mM/L. In the same study, sinapic and 4-hydroxybenzoic acid (0.03 and 0.01 mM/L)
presented similar inhibitions to ferulic acid [74]. In a subsequent study by Szwajgier et al.,
2013, ferulic acid and p-coumaric acid showed similar level of anti-AChE and anti-BChE
activities at 0.2mM, whereas caffeic acid showed slightly higher inhibitory potential against
AChE and lower for BChE [75]. The work of Shahwar et al., 2010 have showed ferulic acid
to exhibit AChE inhibitions of 12.38 to 42.65% at varying concentrations (50 to 250 µg/mL)
and was found to be strongly dose dependent and with no significant change in inhibition at
concentrations above 250 µg/mL [76]. As it can be seen in (Table 4), FA and p-CA presented
similar levels of inhibitions towards both enzymes at 0.1 and 1 mg/mL, respectively.
Contrary to Szwajgier et al., 2012 study, Ouattara et al.2013 showed no inhibitory effect on
AChE activity by p-coumaric acid [71]. Interestingly, caffeic acid at 1 mg/mL showed no
inhibition against AChE or BChE in the study by Orhan et al., 2007 [77], whereas in this
work caffeic acid showed the highest activities against both cholinesterases. Caffeic acid has
been previously shown to present a higher antioxidant activity than other hydroxycinnamic
acids, i.e., FA, p-CA [78], thus may explain the higher inhibitory potential towards the
cholinesterases. Vladimir et al., 2014 have also examined individual hydroxycinnamic
acids, and they presented a stronger AChE inhibition than the hydroxycinnamic acid rich
plant extracts. For example, ferulic acid showed a ~50%, ~75%, and ~87% AChE inhibition,
and caffeic acid, like in our present study, showed a ~30%, ~85, and ~90%, at 0.25, 0.5 and
1 mg/mL concentrations, respectively [73].

The insignificant anti-AChE and BChE activities of prepared blends would need to be
investigated further as the interactions among phenolic compounds could be synergistic
or antagonistic, and those studies are sparse and lacking. As an example, the interaction
between p-coumaric and ferulic acid in respect to antioxidant capacity is additive, but
when caffeic acid is present, the type of interaction changes to antagonistic [79].

Galantamine, an alkaloid isolated from Galanthus Woronowii currently used in AD
treatment, is a centrally acting reversible and competitive inhibitor of cholinesterases.
Galantamine has shown a 53-fold greater inhibitory activity for AChE than BChE (IC50 val-
ues ranging from 0.1 to 5.3 µg/mL) [80]. High anti-AChE potency of alkaloids is attributed
to the binding of its quaternary nitrogen to an aspartate residue at AChE peripheral anionic
site [81], or the ability to build hydrogen bonds with Tyr130 [82], and also due to a hydroxyl
group at the alkaloid C-2 position [83]. On the other hand, polyphenols and terpenes
bind to the peripheral anionic site of AChE acting as non-competitive inhibitors [84]. San-
tos et al., 2018 have reviewed several papers related to anti-ChE activities in which a total
of 54 plants species with 36 isolated bioactive compounds were investigated; the authors
revealed that alkaloids and coumarins presented a higher potency (IC50 <20µg/mL) than
galantamine (IC50 of 5 µM), whereas flavonoids and phenolic acids presented low potency
(IC50 50–1000 µM) [84]. Furthermore, phenolic compounds with close molecular weights
(254.24–354.40 Da) have showed that the enzyme-inhibitory activity decreased by the
presence 3-hydroxyl group, whereas other hydroxyl groups, their position and number,
played a minor role in this context [85].
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Roasting temperatures (>150 ◦C) have shown to increase the levels of catechin and
proanthocyanidin hexamers and heptamers in cacao processing, which further improved
the inhibitory potential of extracts against enzyme activity [86]. High temperature roasting
(<232 ◦C) is also applied in barley malt to produce stout beer resulting in BSG dark
residues. Extracts obtained from BSG dark may possess increased levels of homogenous
and heterogenous oligomers of phenolic compounds, which may attribute to improve their
potential as enzyme inhibitors.

Another important observation in this study was that the EtOH at concentrations of
<10% in the final assay mixture interfered with the enzymes activity and resulted inhibitions
of up to 30% for AChE and less than 4% for BChE activity, respectively. As the tested
extracts had been reconstituted in 0 to 50% ethanol (0 to 5% in final assay mixture), the
observed EtOH inhibition was subtracted from the final calculations. Several authors have
presented numerous polar and non-polar organic solvents that might decrease or enhance
the cholinesterase activities [87,88], but this was not the purpose of the current study.

With regard to AD management, the AChE and BChE inhibition are still attractive
targets owing not only to the cholinergic hypothesis but as well to several functions in
pathogenesis and development of AD [89]. Approximatively 95% of the cholinesterase
activity is due to AChE in normal human brain, whereas its level decreases to 10–15% in
the brain of a person with AD, and interestingly BChE activity increases to 120% [89].

The molecular mechanism of interaction of alkaloids is similar to the currently used
drugs for this purpose, i.e., huperzine, galantamine, thus the high anti-AChE potency [84].
Phenolic compounds are currently considered as a noticeable agents of reduced risk and
management of AD due to their antioxidant, anti-inflammatory and anti-cancer capacities,
low toxicity and abundant sustainable natural sources [15,17,18].

4. Conclusions

BSG represent a clear opportunity to be exploited as a potential source of bioactive
compounds if processed in the right way, and further its corresponding polyphenolic
extracts be accepted and utilized in health and food processing.

In the current study, BSG extracts and their sub-fractions along with commercially
pure phenolic compounds and blends of identified BSG polyphenols were tested for their
potential to inhibit AChE and BChE activities in vitro. Saponification with NaOH (bound
phenolic extract) presented the highest polyphenol content per gram of BSG in DE and
EtOAc fractions as revealed by TPC (FC reagent) and SQP (UPLC-MS/MS). Ferulic- and
p-coumaric acids were the most abundant polyphenols, with the highest levels in the DE
and EtOAc bound phenolic fractions, whereas catechin was the most abundant in the
same solvent fractions but as free phenolics. These results indicate the necessity of using
alkali hydrolysis followed by liquid–liquid partitioning with DE and EtOAc to obtain high
polyphenol yields.

The in vitro enzymatic assays revealed that not only polyphenol rich fractions (BP DE
and BP EtOAc) significantly inhibited AChE and BChE activities, but low polyphenolic-
containing fractions (FP BuOH fraction) also had significant impact. Among the individu-
ally tested polyphenols, caffeic acid presented the highest inhibitory potential; however, its
content in BSG is low. There seems to be a synergistic interaction between polyphenols
and other co-extracted compounds in the BSG BP (DE and EtOAc) fractions, whereas little
or no synergistic effect between the selected polyphenols in the blend for cholinesterase
inhibition. The PCA analysis showed a strong inhibitory influence of the presence of a
single compound DeCa-DiFA in DE fractions. Significant correlations (p < 0.01) have been
observed between the enzymatic assays AChE and BChE, as well as between analysis meth-
ods TPC and SQP, normally used in concomitance in this type of research investigation and
between the individual polyphenols (FA and p-CA). The inhibitory effect of BSG extracts
and fractions, including their individual polyphenols, on AChE and BChE activity would
require further studies such as an additional separation of compounds to identify the most
potent compound(s).
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10050930/s1, Table S1: Blends of individual polyphenols at 1 mg/mL mimicking their
abundance in BSG fractions; Table S2: Correlation coefficients among analyzed variables of BSG BP
fractions; Table S3: Summary of multiple regression model of AChE and BChE; Table S4: The first
four factor loadings for illustrating the interpretation of (Figure 2).
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