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Opioids are among the most effective drugs to treat severe pain. They produce
their analgesic actions by specifically activating opioid receptors located along the
pain perception pathway where they inhibit the flow of nociceptive information. This
inhibition is partly accomplished by activation of hyperpolarizing G protein-coupled
inwardly-rectifying potassium (GIRK or Kir3) channels. Kir3 channels control cellular
excitability in the central nervous system and in the heart and, because of their ubiquitous
distribution, they mediate the effects of a large range of hormones and neurotransmitters
which, upon activation of corresponding G protein-coupled receptors (GPCRs) lead to
channel opening. Here we analyze GPCR signaling via these effectors in reference to
precoupling and collision models. Existing knowledge on signaling bias is discussed in
relation to these models as a means of developing strategies to produce novel opioid
analgesics with an improved side effects profile.
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Opioids produce their actions via the activation of μ (MOR), δ

(DOR), and κ (KOR) receptors (Pert and Snyder, 1973; Simon
et al., 1973) all of which couple to heterotrimeric Gi/o proteins.
As such they share adenylyl cyclase, Phospholipase Cβ [PLCβ,
N-type Ca2+ (Cav2.2)] channels and G-protein coupled inward
rectifier K+ channels (GIRKs or Kir3 channels) as canonical Gα

and Gβγ effectors. The two channel effectors prominently medi-
ate analgesic effects of opioids. For example, studies in rodents
have shown that activation of MORs on small, unmyelinated
nociceptors (Scherrer et al., 2009; Heinke et al., 2011; Bardoni
et al., 2014) contribute to the analgesic effects of morphine (Wei
et al., 1996; Andrade et al., 2010), and this is done via inhibition
of N-type Ca+2 channels that control neurotransmitter release
from these primary afferents (Glaum et al., 1994; Wrigley et al.,
2010). Kir3 channel contribution to opioid analgesia has also
been demonstrated in animal models (Ikeda et al., 2000; Mitrovic
et al., 2003; Marker et al., 2005), and their relevance in the clin-
ical response to opioid analgesics has been further confirmed by

Abbreviations: GIRK, G protein activated inward rectifier K+; GPCRs, G
protein-coupled receptors; DORs, Delta opioid receptors; MORs, Mu opi-
oid receptors; KORs, Kappa opioid receptors; PLC, Phospholipase C; GABA,
Gamma-aminobutyric acid; DRG, dorsal root ganglion; DAMGO, [D-Ala(2),N-
Me-Phe(4),Gly(5)-ol]-enkephalin; KCNJ6, Inwardly-rectifying potassium channel,
subfamily J, member 6; KCNJ3, Inwardly-rectifying potassium channel, subfam-
ily J, member 3; 5-HT, 5-hydroxytryptamine; MAPK, Mitogen-activated protein
kinases; βarr, βarrestin; cAMP, Cyclic adenosine monophosphate; VTA, Ventral
tegmental area; PIP2, Phosphatidylinositol 4,5-bisphosphate; GDP, Guanosine
diphosphate; GTP, Guanosine triphosphate; PSD95, Postsynaptic density protein
95; SAP97, Synapse-associated protein 97; FRET, Fluorescence resonance energy
transfer; BRET, Bioluminescence resonance energy transfer; PC12, Neuron-like
pheochromocytoma.

gene linkage analyses (Nishizawa et al., 2009; Lotsch et al., 2010;
Bruehl et al., 2013). In addition, the use of genetically modified
mice lacking different channel subunits has further established
activation of Kir3 channels as a pervasive analgesic mechanism
which, in addition to opioids, also mediates pain modulation
by α2 adrenergic, muscarinic, GABAB and cannabinoid receptor
ligands (Blednov et al., 2003; Mitrovic et al., 2003). From this per-
spective the development of direct Kir3 channel activators may
be considered a promising strategy for the development of novel
analgesics. However, enthusiasm for this particular approach has
remained limited given the possibility of widespread side-effects
associated with administration of direct channel openers (Lujan
et al., 2014). Indeed, these would result from the great variety
of physiological responses mediated by Kir3 channels, includ-
ing heart frequency control (Wickman et al., 1998; Bettahi et al.,
2002), memory (Wickman et al., 2000), learning (Wickman et al.,
2000; Cooper et al., 2012), as well as their participation in dif-
ferent pathological conditions including development of seizures
(Signorini et al., 1997), generation of anxiety states (Blednov
et al., 2001; Pravetoni and Wickman, 2008) and contribution
to abnormal plasticity by drugs of abuse (Padgett et al., 2012;
Hearing et al., 2013). Consequently, the prevailing strategy for
engaging Kir3-mediated analgesia has remained the activation
of pain-modulating GPCRs (McAllister et al., 1999; Lujan et al.,
2014). Among them MORs, DORs and KORs all three mediate
effective analgesia but display different side effects that distinc-
tively limit their therapeutic use (Kieffer and Gaveriaux-Ruff,
2002; Bruchas and Chavkin, 2010; Gaveriaux-Ruff and Kieffer,
2011). Here we will summarize Kir3 channel contribution to
desired and undesired responses of opioid analgesics and address
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the question of whether biasing opioid signaling toward these
effectors could help develop better opioid analgesics with a
reduced side effects profile.

Kir3 CHANNEL SIGNALING AND OPIOID-DEPENDENT
ANALGESIA
Kir3 channels are formed by tetrameric association of four differ-
ent subunits (Kir3.1-3.4). Although all four of them are expressed
in peripheral (Gao et al., 2007) and central nervous system
(Wickman et al., 2000; Saenz Del Burgo et al., 2008; Fernandez-
Alacid et al., 2011), neural channels are most frequently formed
by association of Kir3.1, 3.2 and 3.3 subunits (Liao et al., 1996;
Hibino et al., 2010; Luscher and Slesinger, 2010). The subunit
combination that forms the channel will depend on the neu-
ronal population involved (Inanobe et al., 1999; Cruz et al., 2004)
and the cellular compartment (Koyrakh et al., 2005; Fernandez-
Alacid et al., 2009) in which channels are found. Nonetheless,
Kir3.1/3.2 heterotetramers are considered prototypical neuronal
channels.

Kir3 channel contribution to opioid analgesia was initially sug-
gested by the fact that mice carrying a missense mutation which
renders Kir3.2 subunits insensitive to G protein activation (Patil
et al., 1995; Navarro et al., 1996) displayed reduced analgesic
responses to morphine (Ikeda et al., 2000, 2002). These observa-
tions were subsequently confirmed using null mice for different
subunits (Mitrovic et al., 2003; Marker et al., 2005), which allowed
to also implicate Kir3.1 (Marker et al., 2004) and Kir3.3 (Marker
et al., 2002) in pain modulation. Knock-out of Kir3.2 and 3.3
was shown to interfere with morphine’s ability to prolong avoid-
ance behavior in the hot plate test. Since this response involves
supraspinal integration, it can be concluded that both subunits
contribute to mechanisms of opioid analgesia at this level (Marker
et al., 2002; Mitrovic et al., 2003). Possible sites of supraspinal
Kir3-mediated analgesia may include thalamus and limbic cor-
tex, both of which express Kir3.1, 3.2 and 3.3 subunits (Saenz
Del Burgo et al., 2008; Fernandez-Alacid et al., 2011) as well as
opioid receptors (Le Merrer et al., 2009). The midbrain periaque-
ductal gray seems less likely since in this nucleus opioid actions
are primarily presynaptic reducing neurotransmitter release via a
mechanism that involves phospholipase A2, arachidonic acid and
12-lipoxygenase, which leads to modulation of voltage-dependent
potassium channels (Vaughan and Christie, 1997; Vaughan et al.,
1997).

Genetically engineered mice lacking Kir3.1 or Ki3.2 subunits
also display reduced responses to intrathecal administration of
morphine in the tail flick test (Marker et al., 2004, 2005) impli-
cating both subunits in spinal mechanisms of opioid analgesia.
This interpretation is supported by reports locating Kir3.1 and
Kir3.2 subunits to lamina II interneurons that co-express μ opioid
receptors (Marker et al., 2006). Functional studies also indi-
cated that silencing of Kir3.1 or Kir3.2 subunits, or intrathecal
infusion of Kir3 channel blocker tertiapin-Q interfered with the
analgesic response by MOR and DOR agonists administered by
the same route (Marker et al., 2005). In contrast, Kir3.3 abla-
tion was without effect on the analgesic response elicited by
intrathecal morphine (Marker et al., 2004), arguing against its sig-
nificant contribution at this level. The latter observation is also in

keeping with immunohistological studies which reported absence
of Kir3.3 labeling in the dorsal horn (Marker et al., 2004).

In addition to their participation in acute opioid analge-
sia, spinal Kir3 channels seem to mediate neuroadaptations that
modulate responsiveness to opioids in conditions such as inflam-
matory or cancer-related pain. This possibility is particularly
suggested by reports indicating that carrageenan-inflammation
(Gonzalez-Rodriguez et al., 2010) and bone cancer (Gonzalez-
Rodriguez et al., 2012) enhance the inhibitory effect of Kir3
channel blocker tertiapin-Q on analgesia induced by intrathecal
administration of morphine.

Apart from brain and spinal cord, opioid receptors are also
present in sensory neurons of the dorsal root ganglion (DRG)
(Li et al., 1998; Gendron et al., 2006; Wu et al., 2008; Wang
et al., 2010) and are transported to peripheral terminals where
they mediate analgesic actions of peripherally injected opioids
(Hassan et al., 1993; Obara et al., 2009; Vadivelu et al., 2011).
Transcripts for Kir3.1/3.2 subunits have been detected in human
DRGs and in rat nociceptors, but not in mice (Gao et al., 2007;
Nockemann et al., 2013). This distribution parallels differences
in species sensitivity to peripheral administration of opioids sug-
gesting that when expressed, DRG Kir3 subunits actively partic-
ipate in opioid analgesia. Indeed, intraplantar injection of MOR
agonists does not produce analgesia in mice (Nockemann et al.,
2013) but effectively mitigates pain in inflammatory or neuro-
pathic rat models (Stein et al., 1989; Obara et al., 2009; Chung
et al., 2013; Nockemann et al., 2013) as well as postoperative and
arthritic pain in humans (Kalso et al., 2004; Vadivelu et al., 2011).
Moreover, the active contribution of Kir3.2 channels to peripheral
opioid analgesia has now been experimentally established using
transgenic mice genetically engineered to express these subunits
in sensory neurons. Unlike their wild-type counterparts, the lat-
ter display an analgesic response to plantar application of MOR
agonist DAMGO (Nockemann et al., 2013).

It is important to bear in mind that most of the evidence ana-
lyzed thus far links Kir3 channel function to opioid analgesia in
animal models. However, the latter have shown somewhat limited
success in identifying and validating analgesic targets of clinical
relevance (Mogil, 2009). Hence, from this perspective, any evi-
dence linking Kir3 channels to therapeutic response in humans
is of specific interest. At least three studies have now shown that
variations in the gene coding for Kir3.2 subunits (KCNJ6) influ-
ence opioid dose requirements for both acute management of
postoperative pain (Nishizawa et al., 2009; Bruehl et al., 2013) and
for pain control in chronic patients (Lotsch et al., 2010). Similar
assessment of Kir3.1 (KCNJ3) variations showed no effect (Bruehl
et al., 2013).

OPIOID SIDE EFFECTS AND Kir3 CHANNEL SIGNALING
In spite of the established analgesic efficacy of MOR, DOR, and
KOR agonists, activation of the different receptor subtypes results
in a distinct set of side effects which limit therapeutic application
of their agonists. Constipation, nausea, respiratory depression,
tolerance, dependence, and abuse are among the most common
undesired effects of clinically available MOR agonists (Ballantyne
and Shin, 2008; Morgan and Christie, 2011). Many of these unde-
sired actions, particularly respiratory depression (Cheng et al.,
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1993; Gallantine and Meert, 2005), gastrointestinal side effects
(Tavani et al., 1990; Gallantine and Meert, 2005; Feng et al., 2006)
and physical dependence (Cowan et al., 1988; Codd et al., 2009)
are less severe or absent with DOR agonists. Moreover, although
DORs and MORs are both involved in reward response to phys-
iological stimuli (Charbogne et al., 2014), DORs are not directly
involved in assigning reward value to stimuli but instead facilitate
predictive learning and influence the choice of action in face of
contingencies that involve reward (Laurent et al., 2012). In keep-
ing with this functional profile, DOR agonists do not facilitate
intracranial self-stimulation (Do Carmo et al., 2009), are not dis-
criminated as morphine substitutes (Gallantine and Meert, 2005)
and do not display reinforcing properties in non-human primates
(Banks et al., 2011). Nonetheless, despite these advantages, poten-
tial for tolerance (Pradhan et al., 2010; Audet et al., 2012) remains
a limitation for long-term use of DOR agonists, as does their
propensity to produce hippocampal hyperexcitability that may
lead to seizures. The latter are produced both by DOR (De Sarro
et al., 1992; Broom et al., 2002; Jutkiewicz et al., 2005) and MOR
agonists (Drake et al., 2007). In the specific case of DOR ago-
nists, hyperexcitability is brief and non-lethal. Moreover, seizures
are rare at analgesic doses (Jutkiewicz et al., 2006), they do not
appear with all ligands (Le Bourdonnec et al., 2008; Saitoh et al.,
2011) and can be suppressed by controlling the rate of agonist
administration (Jutkiewicz et al., 2005). Thus, overall, side effects
of DORs agonists are considerably milder as compared to those
of MORs, and their proven efficacy in chronic pain management
make DORs especially attractive as targets for the development of
novel analgesics (Gaveriaux-Ruff and Kieffer, 2011). This notion
is further reinforced by the fact that DOR agonists display antide-
pressant properties (Chu Sin Chung and Kieffer, 2013) which
could be of additional benefit in controlling negative affect, fre-
quently associated with prolonged pain syndromes (Goldenberg,
2010). Unlike DOR agonists, KOR-mediated analgesia is typically
associated with stress, depression, and dysphoria (Bruchas and
Chavkin, 2010; Van’t Veer and Carlezon, 2013) which, together
with their tendency to induce tolerance (McLaughlin et al., 2004;
Xu et al., 2004), would make these ligands less attractive for the
treatment of chronic pain.

Kir3 channel function has been associated with some of the
undesired effects of opioid analgesics. For example, reduced
GABAergic activity in hippocampal dentate gyrus increases the
excitability of glutamatergic granule cells and may reduce the
threshold for seizures (Drake et al., 2007). MORs and DORs
agonists silence hippocampal GABAergic interneurons by a
mechanism that involves both Kir3 (Luscher et al., 1997) and
voltage-dependent K+ channels (Wimpey and Chavkin, 1991;
Moore et al., 1994), explaining their documented tendency to
produce seizures (Drake et al., 2007). MORs agonists also enhance
excitability and firing activity of dopaminergic neurons of the
ventral tegmental area (Gysling and Wang, 1983), and do so
by hyperpolarization of local interneurons (Johnson and North,
1992; Bonci and Williams, 1997). Like in hippocampus, disinhibi-
tion is mediated through Kir3 channel activation (Luscher et al.,
1997) and its consequence is the enhanced release of dopamine
in corticolimbic areas which is thought to facilitate compulsive
behaviors characteristic of addiction (Luscher and Ungless, 2006).

Finally, Kir3 channel activation by KORs modulates firing activ-
ity of dorsal raphe 5-HT neurons (Bruchas et al., 2007; Lemos
et al., 2012). Dynorphin release during repeated stress exposure
produces sustained activation of these receptors driving p38α-
MAPK activity and subsequent Kir3.1 subunit phosphorylation
(Lemos et al., 2012). As a consequence 5-HT neuron firing activity
becomes deregulated, possibly contributing to dysphoric effects
of uncontrollable stress and to aversive actions of KOR agonists
(Bruchas et al., 2007).

Additional undesired actions of opioids analgesics involve
signaling effectors other than Kir3 channels. For example, con-
stipation and respiratory depression have been associated with
βarrestin (βarr)-mediated signaling by MOR agonists (Raehal
et al., 2005; Dewire et al., 2013). The use of βarr-knockout mice
has also suggested that DOR agonist tendency to induce seizures
may involve this regulatory protein, and biased agonists that fail to
recruit βarrs are being developed as a means of further improving
the side effects profile of analgesics acting at this receptor subtype.
Kir3-independent side effects also include compensatory changes
in the cyclase pathway (cyclase superactivation). These are trig-
gered by sustained inhibition of cAMP production (Christie,
2008) and have been shown to contribute to physical dependence
(Han et al., 2006; Cao et al., 2010; Yang et al., 2014) and analgesic
tolerance of opioid agonists (Javed et al., 2004; He and Whistler,
2007; Bobeck et al., 2014).

Data summarized thus far indicate that undesired actions
of opioid ligands segregate according to receptor subtype, and
within each subtype, desired and unwanted effects are not all nec-
essarily mediated by the same effectors. Thus, undesired actions
of DOR and KOR-activating analgesics are less than those of
MOR ligands, and among the former, the presence of antide-
pressant properties and lack of dysphoric actions makes DOR
specifically interesting as putative targets for the management
of chronic pain syndromes (Gaveriaux-Ruff and Kieffer, 2011;
Pradhan et al., 2011). Tolerance however, remains a drawback
that limits further development of DOR-acting analgesics. This
limitation could be, at least, partly addressed by taking advantage
of biased signaling since effectors that mediate cellular tolerance
and analgesia seem partly segregated. Indeed, as detailed above,
while analgesic actions are generally mediated via modulation
of channel effectors, adaptations of the cAMP cascade seem to
account for at least some of the manifestations of tolerance (Javed
et al., 2004; He and Whistler, 2007; Bobeck et al., 2014). Based
on these observations, opioid ligands that specifically bias their
pharmacological stimulus toward channel effectors could con-
ceivably conserve analgesic properties while displaying reduced
potential for tolerance, particularly the component that depends
on cyclase adaptations. In the following sections, we will consider
possible strategies to direct opioid signaling toward Kir3 channels.
However, before doing so it is worth revising the events that lead
to channel activation.

Kir3 CHANNEL ACTIVATION VIA GPCRS
It is now well established that Kir3 channels open via direct
interaction with Gβγ dimers that are released from pertussis
toxin sensitive heterotrimeric Gi/o proteins upon receptor acti-
vation (Logothetis et al., 1987; Wickman et al., 1994; Raveh

Frontiers in Cellular Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 186 | 3

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Nagi and Pineyro Kir3 channels in opioid analgesic

et al., 2009). Gβγ activates the channel as long as the surface
that contacts Kir3 subunits does not re-associate with Gαi/o-GDP,
which results in signal termination (Schreibmayer et al., 1996).
Biochemical, mutational and nuclear magnetic resonance studies
have mapped several interaction sites for Gβγ on all four chan-
nel subunits. These sites are summarized in Table 1 and those
in the C-terminal cytosolic domain have been largely confirmed

in recent crystallization of a complex formed by Gβ1γ2 and the
Kir3.2 homotetramer (Whorton and MacKinnon, 2013). Crystals
of the complex revealed that the contact area between Gβ and the
channel is approximately 700A◦2. The contact zone on channel
subunits corresponds to the interface of two contiguous cytoso-
lic domains encompassing β sheets/loops βK, βL, βM, and βN
on one subunit and βD-βE elements from the adjacent one. The

Table 1 | Gβγ interaction sites on different Kir3 subunits.

Interaction sites Methodology References

Kir3.1

Kir3.2

Kir3.3

Kir3.4

N-TERMINAL

N-terminal hydrophobic domain Coaffinity precipitation Huang et al., 1995

Amino acids M1-N83 GST pull-down Kunkel and Peralta, 1995

Amino acids Q34-I86 Coprecipitation Huang et al., 1997

Gβ1γ2 binds N-terminal domain IP* and GST pull-down Kawano et al., 2007

Amino acids R45, F46, V47, N50, G51, N54 NMR* Yokogawa et al., 2011

C-TERMINAL

Amino acids V273-P462 Coaffinity precipitation Huang et al., 1995

Amino acids T290-Y356 GST pull-down Huang et al., 1995

Amino acids E318-P374 and D390-P462 Coprecipitation Huang et al., 1997

Amino acids M364-R383 Gβγ binding assay Krapivinsky et al., 1998

Amino acids F181-G254 and to a lesser extent G254-P370 GST pull-down Ivanina et al., 2003

Gβ1γ2 binds C-terminal domain IP* and GST pull-down Kawano et al., 2007

Cytoplasmic pore with a binding site composed by amino acids NMR* Yokogawa et al., 2011

A226, S235, R236, Q237, T238, E240, G241, E242, F243, L244, V253, G254,
F255, S256, A259, D260, Q261, S278, T290, G307, M308, T317, E318, D319,
E320, L333, E334, G336, F337, F338, K339, D341, Y342, S343, Q344, A347,
T348, E350, and V358

N-TERMINAL

N-terminal domain Coprecipitation Huang et al., 1997

Amino acids I46-L96 GST pull-down Ivanina et al., 2003

Gβ1γ2 binds amino acids T2-L96 with W91-L96 as crucialresidues for Gβ1γ2
binding

IP* and GST pull-down Kawano et al., 2007

C-TERMINAL

C-terminal domain Coprecipitation Huang et al., 1997

Amino acids L310-E380 GST pull-down Ivanina et al., 2003

Amino acid L344 (βL-βM loop) Coaffinity precipitation Finley et al., 2004

Gβ1γ2 binds C-terminal domain IP* and GST pull-down Kawano et al., 2007

N-TERMINAL

N-terminal domain Coprecipitation Huang et al., 1997

C-TERMINAL

C-terminal domain Coprecipitation Huang et al., 1997

N-TERMINAL

N-terminal domain Coprecipitation Huang et al., 1997

Amino acids R41-V92 with H64 as a crucial residue in Gβγ binding GST pull-down He et al., 2002

Gβ1γ2 binds N-terminal domain IP* and GST pull-down Kawano et al., 2007

C-TERMINAL

C-terminal domain Coprecipitation Huang et al., 1997

Amino acids S209-R225 and N226-K245 with C216 as crucial residue for Gβγ

binding
Co-IP* Krapivinsky et al., 1998

C-terminal domain with L339 as crucial residue for Gβγ binding GST pull-down He et al., 1999

Amino acids N253- Y348 with L268 as a crucial residue for Gβγ binding GST pull-down He et al., 2002

Gβ1γ2 binds C-terminal domain IP* and GST pull-down Kawano et al., 2007

IP, Immunoprecipitation; NMR, Nuclear magnetic resonance spectroscopy.
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channel’s interaction surface on Gβ overlaps the Gα binding site
(Ford et al., 1998; Whorton and MacKinnon, 2013). The arrange-
ment of Kir3.2 and Gβγ subunits within the crystal corresponds
to a membrane-delimited signaling complex consisting of one
channel tetramer, four Gβγ subunits, four phosphatidylinositol
4,5-bisphosphate (PIP2) molecules and four Na+ ions bound
to corresponding regulatory sites on the channel (Whorton and
MacKinnon, 2011). This organization is compatible with Gβγ

binding to the channel to induce an intermediate active state that
is stabilized into the full open conformation by PIP2 and Na+
ions (Whorton and MacKinnon, 2011, 2013). Interaction sites for
Gαi/o have also been mapped to all four channel subunits, both
in GDP- and GTP-bound states and these sites as summarized in
Table 2.

Although structural determinants of channel activation are
matter of considerable consensus, the dynamics that govern the
process remain subject of active investigation. Originally, GPCRs,
G proteins and channels were conceived as isolated membrane
entities capable of conveying pharmacological stimuli from recep-
tors to effectors through a series of collisions which included the G
protein as intermediary (Orly and Schramm, 1976; Tolkovsky and
Levitzki, 1978). However, the perception that this original formu-
lation of the collision coupling model failed to account for the
specificity and temporal resolution of Kir3 channel signaling has
led to the proposal of alternative paradigms (Neubig, 1994). One

of such alternatives postulates that receptors and their signaling
partners may be precoupled in the absence of agonist (Wreggett
and De Lean, 1984; Tian et al., 1994) while another proposes that
receptors, their G proteins and effectors are compartmentalized
within microdomains (Neubig, 1994; Neer, 1995) where signaling
partners are present in high enough concentrations to allow rapid
interactions by collision (Gross and Lohse, 1991). In the case of
neurons, postsynaptic densities are typically specialized domains
where anchoring and scaffolding proteins control signaling part-
ners present within dendritic spines (Romero et al., 2011; Fourie
et al., 2014). Kir3.2c subunits directly interact with post synap-
tic density protein 95 (PSD95) and synapse-associated protein 97
(SAP97), two such proteins which not only regulate local concen-
tration of channel subunits but their responsiveness to G proteins
as well (Inanobe et al., 1999; Hibino et al., 2000; Nassirpour et al.,
2010).

The idea that receptors and channels may associate to form
a complex is supported by evidence obtained in native and
heterologous systems. Thus, in co-immunoprecipitations from
brain samples Kir3 subunits can be recovered with dopamine
D2 (Lavine et al., 2002) or GABAB receptors (Ciruela et al.,
2010). Functional evidence is also consistent with the notion that
native receptors and channels may associate. For example, immo-
bilization of MORs receptors expressed in cerebellar granule
cells does not alter the rate of Kir3 channel activation, implying

Table 2 | Gα interaction sites on different Kir3 subunits.

Interaction sites Methodology References

Kir3.1

Kir3.4

Kir3.2

N-TERMINAL

Gα-GDP binds N-terminal domain Coaffinity precipitation Huang et al., 1995

Gαi1-GDP binds N-terminal domain GST pull-down Ivanina et al., 2004

Gαq-GDP binds N-terminal domain IP* and GST pull-down Kawano et al., 2007

Gαi3-GDP and Gαi3-GTP bind N-terminal domain GST pull-down Berlin et al., 2010

C-TERMINAL

Gαi3-GDP binds amino acids F181-G254, G254-D319, and E320-P370 GST pull-down Ivanina et al., 2004

Gαi1-GDP binds amino acids G254-D319

Gαi3-GDP and Gαi3-GTP bind amino acids M184-E362 GST pull-down Berlin et al., 2010

Gαi3-GTP binds amino acids E242, V358, L365, L366, M367, S368, S369, L371,
I372, and A373

NMR* Mase et al., 2012

N-TERMINAL

Gαi3-GDP binds amino acids I46-L96 GST pull-down Ivanina et al., 2004

Gαo-GDP and Gαq-GDP bind to N-terminal domain Co-IP* and GST pull-down Clancy et al., 2005

Gαq-GDP binds amino acids T51-K90 with D81-K90 as crucial residues for
Gαq-GDP binding

IP* and GST pull-down Kawano et al., 2007

C-TERMINAL

Gαi3-GDP binds amino acids L310-E380 GST pull-down Ivanina et al., 2004

Gαi1-GDP binds amino acids M191-G414 GST pull-down Clancy et al., 2005

Gαo-GDP binds amino acids E314-S330 with G318, C321, A323, I328, T329, and
S330 as critical residues for Gαo-GDP binding

N-TERMINAL

Gαq-GDP binds N-terminal domain IP* and GST pull-down Kawano et al., 2007

C-TERMINAL

Gαi-GDP and Gαq-GDP bind C-terminal domain GST pull-down Rusinova et al., 2007

IP, Immunoprecipitation; NMR, Nuclear magnetic resonance spectroscopy.
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that neither species freely diffuses within the membrane during
signaling (Lober et al., 2006). More at a systems level, neuroadap-
tive changes induced by psychostimulants also suggests physical
association between receptors and Kir3 channels. In particular,
heterologous regulation of GABAB receptors causes them to co-
internalize with Kir3 subunits in the ventral tegmental area (VTA)
(Padgett et al., 2012) and in pyramidal neurons of the prelimbic
cortex (Hearing et al., 2013) following administration of cocaine
or amphetamines. Similar conclusions were drawn from studying
receptor trafficking in PC12 neurons where homologous desensi-
tization of native muscarinic M2 receptors drives internalization
and intracellular accumulation of Kir3 subunits (Clancy et al.,
2007). However, a limitation with this group of observations is
that native systems not always allow to rule out receptor activation
by endogenous ligands, making it difficult to ascertain whether
signaling complexes are spontaneously formed or if they result
from receptor activation.

Spectroscopic studies in overexpression systems have proven
valuable in assessing spontaneous interactions and in provid-
ing detailed kinetics of the steps involved in Kir3 activation.
In heterologous systems, fluorescence resonance energy transfer
(FRET) and bioluminescence resonance energy transfer (BRET)-
based approaches have both revealed spontaneous energy transfer
between channel subunits and G proteins (Riven et al., 2006;
Robitaille et al., 2009; Berlin et al., 2010, 2011) and between the
latter and receptors (Rebois et al., 2006; Audet et al., 2008). For
opioid receptors in particular, DORs were shown to organize into
multimeric arrays that also contain GαoAβ1γ2 and Kir3.1/Kir3.2
subunits (Richard-Lalonde et al., 2013). However, some of these
constitutive associations have not been consistently observed. For
example, BRET studies show that α2A-adrenergic receptors pre-
couple to Gαi1 (Gales et al., 2006) but FRET data indicate that
precoupling occurs with Gαo (Nobles et al., 2005) but not Gαi1
(Hein et al., 2005). These discrepancies have been explained by
different arguments: (a) differences in sensitivity between the two
techniques would allow BRET to detect lower basal levels of inter-
action than FRET; (b) receptors do not display the same affinity
for different Gα subunits, and (c) receptors with different levels of
constitutive activity have different levels of G protein precoupling
as reviewed in Lohse et al. (2012).

Kinetic approaches have also addressed the question of
whether receptors and G protein precouple in the absence of lig-
and. For example, FRET assays have established that the time
course of conformational changes undergone by the receptor’s
third intracellular loop upon its activation (50 ms –1 s) (Vilardaga
et al., 2003) may be undistinguishable from the kinetics of recep-
tor conformational rearrangements with respect to the G protein
(Hein et al., 2005; Jensen et al., 2009). Although these findings
argue in favor of precoupling, other observations can be taken as
evidence of collision, particularly the fact that the speed of FRET
changes that were observed at the interface of the receptor with
the G protein varies with the concentration of agonist used to
activate the receptor (Hein et al., 2005) and with the amount of G
proteins expressed (Hein et al., 2005; Falkenburger et al., 2010).
Indeed, both findings are consistent with the essence of the col-
lision model, namely that activated receptors have free access to
a common pool of G-proteins. Nonetheless these observations

can also be accommodated by a precoupling model if one con-
ceives receptor signaling in terms of conformational ensembles
(Kenakin and Onaran, 2002). According to the latter model, a
FRET value can be considered representative of a macroscopic
state which arises from an ensemble of different receptor states.
Within this context, FRET changes corresponding to “receptor
activation” represent a multiplicity of states undergoing some
degree of conformational change which involves the displacement
of the third intracellular loop, not all of which necessarily achieve
the full conformational alteration that leads to G protein acti-
vation. As agonist concentrations increase and more receptors
become permanently occupied by the ligand, the ensemble is pro-
gressively constrained so that all states achieve the conformational
change that effectively modifies energy transfer between recep-
tors and downstream signaling partners. The increased efficiency,
with which higher concentrations of agonist allow the ensemble
to attain conformational changes that fully modify the receptor
G protein interface, may translate as an increase in the speed
with which the two signaling partners reach maximal FRET. This
enhanced efficiency to attain full activation may take place in a
receptor ensemble that is precoupled to the G protein. Converse
reasoning may be applied to explain how an increase in G pro-
tein concentrations may enhance the speed of FRET changes at its
interface with the receptor in the context of a precoupling model.
Indeed, when G proteins are a limiting factor, some receptors are
precoupled and others not. As recently demonstrated in crystallo-
graphic studies, agonist-occupied receptors will not become fully
activated unless coupled to a G protein (Rasmussen et al., 2011).
In such case enhanced precoupling that takes place upon higher
availability of the G protein will increase the probability of the
receptor ensemble of achieving a full active state which evokes an
effective conformational rearrangement vis a vis the G protein. As
above, the ensemble’s improved efficiency to achieve this activa-
tion state can be perceived as an increase in the speed with which
energy is transferred between activated receptors and G proteins.

FRET technology has also been used in combination with
total internal reflection to demonstrate that G protein subunits
and Kir3 channels may organize into a membrane-delimited pre-
formed complex (Riven et al., 2006). Constitutive association
between Kir3 and Gβγ subunits has also been observed by means
of BRET (Rebois et al., 2006; Robitaille et al., 2009; Richard-
Lalonde et al., 2013). Moreover, the fact that kinetics of Kir3
channel currents are concordant with conformational changes
undergone within the Gαβγ trimer upon activation (Bunemann
et al., 2003), has been taken as an additional argument favoring
pre-association between G proteins and channel effectors (Lohse
et al., 2012).

An aspect upon which BRET and FRET data consistently agree,
is the fact that G proteins remain associated with the recep-
tor at least during initial stages of signaling (Gales et al., 2005,
2006; Hein et al., 2005, 2006) implying that at one point in
time the receptor, the G protein and the effector are all part of
the same complex. This reasoning is also in line with evidence
summarized in the previous paragraph, which would place the
transducer in direct contact with the effector even before activa-
tion. This kind of “triple multimeric array” has been described
for DORs, GαoAβ1γ2 and Kir3.1/Kir3.2 subunits using BRET
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FIGURE 1 | Schematic representation of putative spatial organization of

DORs, Kir3.2 and the Gαβγ subunits within a signaling complex

containing all signaling partners. The complex was constructed from
diagrams based on the published crystal structures of the Kir3.2 tetramer in
association with corresponding Gβ1γ2 subunits (PDB: 4KFM) (A) and that of
the nucleotide-free Gαsβ1γ2 trimer in association with the active β2
adrenergic receptor (PDB: 3sn6) where the latter was replaced by the
topography corresponding to the DOR crystal (PDB: 4EJ4). Note that in the
active receptor-G protein complex only the Ras-GTPase domain of Gα is fully
visible (B). To construct the multimeric array, the DOR-Gαβγ complex shown
in B was associated to the Kir3.2 channel shown in (A) by superimposing
both Gβγ dimers and then removing the one corresponding to the channel.
DOR and Kir3.2 subunits were both aligned with respect to the plain of the

membrane. By completing this operation transmembrane domains 5 and 6 of
the receptor came in close proximity of the outer helix of the channel
subunit. The complex is shown in its inactive state where the helical and
GTPase domains of Gα are visible and in contact with Gβγ. The inset shows
topography of a single channel subunit with its corresponding Gαβγ

heterotrimer and DOR seen from above (C). In the active complex the
agonist (violet) is bound to the receptor, the third intracellular loop is
displaced toward the channel, the C-terminal end of Gα insinuates between
intracellular loops 2 and 3. For the proposed multimeric organization to be
functional the complex must allow the displacement of the helical domain of
Gα upon nucleotide exchange; this is indeed the case since its helical domain
moves laterally, from its initial position in the lower part of the inactive
complex. Inset shows topography from above (D).
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assays and co-immunoprecipitation in overexpression systems.
Moreover, BRET changes that were observed among different
interaction partners revealed that the conformational informa-
tion that is codified by agonist binding to the receptor is relayed
to the channel via the G protein (Richard-Lalonde et al., 2013).
Figure 1 shows a schematic representation of how DORs, Kir3.2
and Gαβγ subunits could organize within a multimeric array with
the receptor in its inactive (Figure 1C) or its active (Figure 1D)
states. The proposed complex is based on published structures
for the Gβγ-bound semi-open Kir3.2 channel (1A) (Whorton
and MacKinnon, 2013) and an activated receptor-G protein com-
plex (1B) (Rasmussen et al., 2011). In this putative array receptor
and channel were allowed to maintain their positioning with
respect to the plain of the membrane while receptor and G protein
maintained their relative orientation with respect to one another,
as described for the crystallized receptor-G protein complex
(Rasmussen et al., 2011). Interestingly, if the diagram had been
produced maintaining Gβγ’s inclination with respect to the chan-
nel (Whorton and MacKinnon, 2013), the latter would have col-
lided with the receptor. This suggest that, in order to organize into
a complex, the different signaling partners most likely influence
their mutual positions. If each of the four Gβγ subunits, that asso-
ciate to Kir3.2 subunits in the crystal, interacts with one Gαi/o,
and these in turn couple to a corresponding GPCR, it is conceiv-
able that one receptor-G protein complex could occupy one of
the grooves that correspond to the site of interaction between two
adjacent Kir3 subunits (Figures 1C,D). A supramolecular orga-
nization which involves simultaneous association of all signaling

partners is compatible with the notion that ligand-specific con-
formational changes undergone by the receptor can translate
into ligand-specific patterns of channel activation. Moreover,
allosteric interactions within the array could allow a precou-
pling model to explain additional observations that are usually
attributed to a collision model. For example, the fact that it is
possible to attain maximal Kir3 channel currents at concentra-
tions that produce submaximal conformational rearrangement of
receptor-G protein interface (Hein et al., 2005) can be explained
by positive cooperativity among channel subunits and with the
activated Gβγ dimers, even if not all receptors have been occu-
pied and undergone conformational changes associated with
activation.

IS IT POSSIBLE TO BIAS PHARMACOLOGICAL STIMULI
TOWARD Kir3 CHANNEL ACTIVATION?
Although DORs agonists effectively alleviate chronic pain and
have milder side effects than ligands acting at other opioid
receptors (Gallantine and Meert, 2005; Feng et al., 2006; Codd
et al., 2009), their potential for tolerance (Pradhan et al., 2010;
Audet et al., 2012) limits their possible application as therapeu-
tic agents. Given the contribution of cyclase pathway adaptations
to the development of this side effect (Javed et al., 2004; He
and Whistler, 2007; Bobeck et al., 2014), biasing pharmacolog-
ical stimulus toward Kir3 channel activation and/or away from
cyclase modulation was proposed as a rational means of reducing
tolerance. Importantly, together with voltage-gated K+ channels
(Wimpey and Chavkin, 1991; Moore et al., 1994) and βarrs, Kir3

FIGURE 2 | Functional selectivity due to biased signaling of orthosteric

receptor agonists. Within the context of a precoupling model, an agonist that
preferentially recognizes the receptor conformation stabilized by signaling
partners in the channel complex over the receptor state stabilized within the
cyclase complex would display bias toward channel signaling (A). In a restricted

collision model G proteins and effectors coexist as a preformed complex that
is activated through collision with the agonist-bound receptor. In this context
bias toward Kir3 signaling can take place if the agonist-bound receptor
displays higher affinity for Gαβγ-Kir3 than Gαβγ-cyclase complexes (B). To aid
visualization, Kir3 channel is shown in blue and adenylyl cyclase in red.
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channels may also participate in hippocampal hyperexcitability
(Luscher et al., 1997) induced by certain DOR ligands (Broom
et al., 2002; Jutkiewicz et al., 2005). Depending on the degree of
Kir3 involvement in this side effect, the incidence of seizures could
increase for DOR ligands with Kir3 signaling bias. If this were
the case, the alternative strategy based on obliteration of cyclase
modulation would be of choice.

Biased agonism refers to the ability of orthosteric receptor
ligands to selectively engage the activity of a distinct set of sig-
naling partners over another (Urban et al., 2007), a type of
selectivity that ensues from the stabilization of receptor confor-
mations which activate a specific effector(s) while sparing the rest
(Kenakin and Miller, 2010). Functional selectivity may also be
indirect, driven by allosteric ligands (Leach et al., 2007; Kenakin,
2008). Sodium is an allosteric modulator of DORs and manip-
ulation of its binding site provides an example of how allosteric
influences may direct pharmacological stimuli toward different
effectors (Fenalti et al., 2014). In particular, mutation of one
of the residues (Asn131) in the first coordination shell of the
Na+ ion produced an “efficacy switch” that changed DOR signal-
ing from the canonical Gαi/o pathway toward βarr recruitment.
Furthermore, this effect was ligand sensitive since agonists lost
Gαi signaling while the antagonist naltrindole gained the ability
to recruit βarr (Fenalti et al., 2014). Hence, by stabilizing receptor
conformations that differentially favor one orthosteric response
over another, allosteric modulation of receptor conformations offer

a great potential for directing pharmacological stimuli toward a
desired response.

Let us first consider signaling bias within the context of the
traditional shuttling-collision model. According to this paradigm
the agonist interacts with a receptor which then travels within the
membrane to interact and activate a G protein whose Gα and
Gβγ subunits subsequently dissociate from the ligand-receptor
complex to find and activate an effector (Orly and Schramm,
1976; Tolkovsky and Levitzki, 1978; Gilman, 1987; Bourne, 1997).
Because in this model receptor and effector do not simultane-
ously interact with the G protein, the paradigm does not provide
for a “memory” that would allow transferring conformational
information codified by the agonist-bound receptor beyond the
transducer stage. However, more recent spectroscopic studies of
receptor-G protein-effector interaction point to greater restric-
tion in mobility where G protein and effectors would be spon-
taneously coupled (Lohse et al., 2012). Moreover, independent of
whether receptors form part of this constitutive complex or not,
evidence analyzed in the previous section indicated that all three
species may persistently associate during signaling. This associa-
tion provides the basis for a “conformational memory” and the
possibility of exploring novel bias strategies to specifically direct
the pharmacological stimulus of a given receptor (in this case
DORs) to a desired G protein coupled effector (Kir3 channels).

Being allosteric proteins (Kenakin and Miller, 2010), the con-
formation adopted by the receptor will not be solely determined

FIGURE 3 | Mechanisms of indirect bias involving allosteric modulators

that specifically recognize a complex of desired composition. In a
precoupling model or in a restricted collision model receptors, G proteins and
effectors may all persistently associate during signaling. Within this context
(only precoupling model represented in figure), small positive allosteric
modulators (PAM ) that specifically recognize the interface between DORs

and Kir3 channels (in blue) may specifically bias signaling of DOR orthosteric
agonists toward this effector by stabilizing the complex and/or favoring
channel opening (A). A negative allosteric modulator (NAM) that recognizes
the DOR-adenylyl cyclase (in red) interface could distinctively block cAMP
inhibition by the activated DOR, also allowing for bias in favor of channel
effectors (B).
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by orthosteric agonist binding, but also by its interaction with its
cytosolic (G protein subunits) and membrane (Kir3 or cyclase)
signaling partners, which therefore function as natural allosteric
modulators. In cases where signaling complexes exist before acti-
vation, selectivity favoring Kir3 vs. cyclase signaling could be
achieved by designing orthosteric ligands that display higher
affinity for the conformation adopted by the receptor when con-
tained within a Kir3 signaling complex than the one induced
by its inclusion into cyclase multimers (Figure 2A). The idea
that orthosteric agonists can indeed be tailored to specifically
recognize receptors in association with distinct signaling part-
ners is supported by studies indicating that the pharmacological
properties of receptors contained in homodimers are different
from those displayed by the same receptor when it is part of
an heterodimer (Jordan and Devi, 1999; Waldhoer et al., 2005).
Alternatively, if the complex is formed during signaling, bias
toward Kir3 channel effectors would depend on the agonist’s abil-
ity to stabilize a receptor conformation whose affinity for the G
protein/Kir3 complex is higher than the one displayed for the G
protein/cyclase complex (Figure 2B).

In addition, if at rest and/or during signaling receptors, G
proteins and effectors associate through a distinct network of
conformational influences, it is also conceivable that the phar-
macological stimulus that is produced by an orthosteric ligand
could be influenced by small allosteric modulators that specifi-
cally recognize the complex with the desired combination of DORs,

Gαβγ subunits and Kir3 channels. For example, small molecules
that could bind the interface of DORs and Kir3 subunits to
stabilize the complex and/or favor channel opening (positive
allosteric modulators), would be of particular interest since they
could selectively enhance Kir3 signaling by DORs and no other
receptors that modulate this effector (Figure 3A). Alternatively,
a negative allosteric modulator that recognizes the DOR/adenylyl
cyclase interface could distinctively block cAMP inhibition by this
receptor, resulting in another desired type of bias (Figure 3B).
Finally, a variation of this strategy would be to design complex-
selective allosteric agonists which are able to initiate signaling,
independent of whether the orthosteric ligand is present or not
(Figure 4A), or only when it is present for the case of restricted
collision (Figure 4B). Such type of ligand could putatively recog-
nize and stabilize the interface formed between the C-terminus
of the activated Gαi/o subunit, the channel N-terminus and the
third intracellular loop of the receptor. Admittedly, the structural
information required for designing these compounds is not yet
available but should become available once receptor/G proteins
complexes are co-crystallized with their effectors.

In summary, we have analyzed evidence indicating that Kir3
channels are mediators of opioid analgesia. While they play a
considerable role in undesired effects of MOR agonists, their
contribution to those of DOR ligands is limited. Biasing DOR
responses in favor of Kir3 channels and away from cyclase inhi-
bition was suggested as a means of controlling analgesic tolerance

FIGURE 4 | Mechanisms of indirect bias involving allosteric agonists that

specifically recognize a complex of desired composition. A
complex-specific allosteric agonist (AA) may distinctively recognize an
interface that is unique to the complex of interest. In the context of the

precoupling model AA may initiate signaling independent of whether the
orthosteric agonist is present or not (A). In the restricted collision model the
presence of the orthosteric agonist is necessary for the complex to be
formed and provide the binding site for AA (B).
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of DOR agonists, a side effect that limits their potential therapeu-
tic application. Different modalities of GPCR association with G
proteins and effectors were discussed, and putative bias strategies
to ensure specific activation of a desired combination of receptors
(DORs) and effectors (Kir3 channels) were provided.
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