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Introduction

Low-grade gliomas (LGGs), encompassing World Health 
Organization (WHO) grade II and III gliomas such as 
anaplastic oligodendrogliomas, anaplastic astrocytomas, and 
anaplastic oligoastrocytomas, derive from precursor and 

glial cells (1). LGG is further classified into the following 
subtypes based on the isocitrate dehydrogenase (IDH) 
mutation and 1p19q status (2,3). The major treatment 
strategies include surgical resection, chemotherapy, and 
radiotherapy according to pathological characteristics. 
However, tumor invasiveness and drug resistance may lead 
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to tumor progression (4,5). Therefore, there is an urgent 
need for new therapeutic approaches. In recent years, 
immunotherapeutic strategies have achieved significant 
success across various types of cancer. However, the efficacy 
of immunotherapy including anti-programmed cell death 
ligand 1 (PD-L1) immune checkpoint blockade (ICB) 
and vaccine immunotherapy against glioma-associated 
antigens in treating gliomas has been constrained by 
several challenges, including tumor heterogeneity and the 
immunologically ‘cold’ tumor microenvironment (TME) 
(6). Therefore, regulating the LGG TME to enhance its 
sensitivity to immunotherapy is a critical issue that urgently 
needs to be addressed.

Transforming growth factor-beta (TGF-β )  is  a 
multifunctional cytokine that regulates various cellular 
processes such as proliferation, differentiation, angiogenesis, 
immune evasion, and epithelial-mesenchymal transition 
(EMT). It is secreted by different types of cells, including 
immune cells, tumor cells, and stromal cells (7). Earlier 
research has shown that cancers exhibit dysregulation in the 
TGF-β signature. As a result, the initiation and progress 
of glioma are facilitated by this abnormal pathway through 
its impact on the maintenance of the stemness of glioma 
stem cells (GSCs) and their cell proliferation, angiogenesis, 

tumor invasion, and immunosuppression (8-11). A glioma 
tissue-based study on humans indicated that TGF-β plays 
a role in glioma development since it is upregulated in 
tumors but not in normal brain tissues. Furthermore, 
elevated TGF-β/Smad signaling triggers the generation 
of platelet-derived growth factor-B (PDGF-B), thus 
promoting tumor cell proliferation (12). The promotion 
of matrix metalloproteinase (MMP) expression and the 
inhibition of tissue inhibitors of metalloproteinase (TIMP) 
are also induced by the TGF-β pathway. This ultimately 
leads to the invasion and migration of glioma cells (13). 
Furthermore, the TGF-β  pathway may inhibit the 
expression of human leukocyte antigen-DR isotype (HLA-
DR) antigen, Fas ligand, interferon (IFN)-γ, granzyme 
A, and perforin, rendering glioma an immunosuppressive 
TME (14). Currently, due to the development of gene 
detection technology and statistical algorithms, an 
increasing number of gene signals are being calculated to 
predict the clinical prognosis and TME characteristics of 
various tumors. However, few studies have systematically and 
comprehensively explored the clinical significance of TGF-
β-related genes in gliomas. Furthermore, several studies 
have demonstrated lackluster responses to TGF-β-based 
therapies in various cancers, including gliomas, underscoring 
a critical issue that demands attention (15-17). The current 
in-silico analysis might offer a foundation for improving 
our understanding of LGG subtypes and developing more 
focused therapeutic strategies.

In this study, we explored the classification of the 
expression of TGF-β-related genes in LGG. We found 
that LGG can be categorized into three different types of 
tumors based on genes related to TGF-β. TGF-β subtypes 
were analyzed for differences in TME, clinical relevance, 
drug sensitivity, and somatic mutation. An improved 
performance in prognostic prediction was achieved through 
the development of a risk model based on the three 
subtypes of LGG. These findings may provide information 
for accurate prognostic assessment as well as stratified and 
individualized treatment of patients with LGG. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-144/rc).

Methods

Data preparation

The Cancer Genome Atlas (TCGA; http://cancergenome.
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(CGGA; http://www.cgga.org.cn, mRNAseq_693, and 
mRNAseq_325) datasets were used to download gene 
expression profile and corresponding clinical information 
for LGG (18,19). The CGGA RNA sequencing (RNA-
seq) datasets were merged and given the name CGGA. 
The University of California, Santa Cruz (UCSC) website 
was used to extract gene expression data of normal brain 
tissues from the Genotype-Tissue Expression (GTEx) 
dataset (http://xena.ucsc.edu/) (20). Moreover, the Gene 
Set Enrichment Analysis (GSEA) database (http://www.
gsea-msigdb.org/gsea/index.jsp) provided identification of 
223 genes associated with TGF-β. RNA-seq is a powerful 
method for analyzing transcriptomes quantitatively. Here 
are the key aspects to consider when quantifying RNA-seq 
data and the common methods of normalization. Library 
preparation: RNA samples are converted into a library of 
complementary DNA (cDNA) fragments with adapters 
attached to each end. The choice of library preparation 
method (e.g., poly-A selection, ribosomal RNA depletion) 
can affect which RNA species are sequenced. Sequencing: 
this step involves sequencing the cDNA fragments to 
generate raw sequence reads. Sequencing depth (i.e., the 
number of reads) is crucial for quantification, as it impacts 
the ability to detect and accurately quantify low-abundance 
transcripts. Mapping reads: the raw reads are aligned to a 
reference genome or transcriptome. The efficiency of this 
step depends on the quality of the reads and the reference 
sequence used. Counting: once reads are mapped, counts 
are generated for each gene or transcript, representing 
the number of reads or fragments aligned. This study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

There were several methods of normalization as follows. 
Transcripts per million (TPM): normalizes for total library 
size and gene length, making it useful for comparing 
transcript levels within samples (21). Reads/fragments per 
kilobase of transcript per million mapped reads (RPKM/
FPKM): similar to TPM but less suitable for comparing 
across samples because it does not account for differences in 
sequencing depth and library composition between samples. 
Trimmed mean of M-values (TMM): used in edgeR, it 
normalizes based on the assumption that most genes are not 
differentially expressed. It adjusts for differences in library 
composition. Quantile normalization: This method assumes 
the same distribution of gene expression across samples 
and adjusts the data accordingly. DESeq’s size factor 
normalization: used in DESeq, this method estimates size 

factors based on the median ratio of gene counts relative 
to a geometric mean per gene (thus stabilizing variance 
across samples). The data used in this article were extracted 
from public databases, so quantification of RNA seq is not 
involved. This study used packages such as DESeq2 and 
Limma to normalize expression levels between different 
samples, eliminating the impact of experimental conditions 
and instrument differences on the data, and correcting 
systematic errors between different experimental batches.

Identification of genes related to TGF-β that are 
differential and prognostic

The “Bioconductor Limma” R package was utilized to 
evaluate the expression of TGF-β genes in normal and 
glioma tissues, resulting in the identification of differentially 
expressed genes (DEGs).  Genes were considered 
differentially expressed if they met the criteria of having a 
false discovery rate (FDR) <0.05 and a fold change >1 (22). 
Next, the association between the differential genes and the 
overall survival of patients with LGG was assessed using the 
“survival” R package. A gene that had a P value less than 0.05 
was identified as being a prognostic gene.

Construction and validation of TGF-β subtypes

Consensus clustering was performed using the R 
package “consensusClusterplus” with the differentially 
expressed and prognostic TGF-β-related genes (23). 
ConsensusClusterPlus processes a numerical data matrix, 
organizing items in columns and features in rows. This 
function selectively subsamples the matrix based on 
pItem, pFeature, weightsItem, and weightsFeature, and 
partitions the data into clusters ranging from 2 to maxK 
using the specified clustering algorithm in clusterArg. It 
supports both agglomerative hierarchical clustering (hclust) 
and k-means clustering, with additional configurations 
available as described above (24). The consensus heatmap 
and cumulative distribution function were used to identify 
the optimal k. The TCGA database served as the training 
cohort, whereas the CGGA was designated as the validation 
cohort. One-sided analysis of variance (ANOVA) was used 
to evaluate the association between TGF-β subtypes and 
clinical characteristics. In the presented manuscript, we 
assessed the association between TGF-β and the TCGA 
subtype. TCGA Sub1 was defined as IDH1 mutation and 
1p19q codeletion, Sub2 was defined as IDH1 mutation and 
1p19q no codeletion, whereas Sub3 was defined as IDH1 
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wild type, no matter the status of 1p19q.

Estimation of immune cell infiltration

The R package “GSVA” was utilized to execute single-
sample GSEA (ssGSEA) for assessing the infiltration 
level of 23 immune cells (25). Gene set variation analysis 
(GSVA) is a non-parametric, unsupervised method used for 
estimating variations in gene set activity across samples in 
genomic datasets. When calculating metrics with GSVA, a 
collection of gene sets is first defined. GSVA then assesses 
the variation in expression levels of these gene sets within 
individual samples to calculate an enrichment score for 
each gene set. This approach is applicable to RNA-seq and 
microarray data, enabling researchers to globally understand 
changes in biological processes or signaling pathways under 
various conditions. The outcomes of GSVA can be utilized 
for further differential expression analysis or as candidates 
for biomarkers. The Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data 
(ESTIMATE) algorithm was utilized to estimate the tumor 
purity, stromal score, and immune score (26). Furthermore, 
we employed the R package “MCPcounter” to determine 
the absolute abundance of eight immune cells and two 
stromal cells (27). It is worth noting that transcriptome data 
must be normalized. TIMER2.0 (http://cistrome.org/) is an 
online tool to calculate tumor immune cell infiltration, and 
we used it to assess the immune cell infiltration of sample in 
TCGA and CGGA cohorts, respectively (28).

Analysis of T-cell dysfunction and exclusion

The Tumor Immune Dysfunction and Exclusion (TIDE) 
online algorithm (http://tide.dfci.harvard.edu/) was utilized 
to predict the response of ICB therapy by assessment of 
T-cell dysfunction, exclusion, and TIDE. The response of 
each TGF-β subtype to ICB therapy was evaluated.

Calculation of gene signatures associated with metabolism

From previous studies, a set of 115 signatures related to 
metabolism were detected (29). The R package “GSVA” 
was used to calculate the scores for the 115 metabolism-
associated signatures in each sample (25).

Construction and validation of the risk model

First, we applied the R packages “samr” and “Veen” to 

identify DEGs among TGF-β subtypes. Second, the 
R package “glmnet” was employed to construct a Cox 
proportional hazards model based on the intersection of 
DEGs and prognostic genes. The risk score of each sample 
was estimated using the regression coefficients (30,31). 
The risk score is equal to the SHD × (−0.24) + AC062021.1 
× (−0.21) + SNCG × (−0.13). The training cohort was the 
TCGA cohort and the validation cohort was the CGGA 
cohort.

Potential compound prediction

The R package “pRRophetic” was used to evaluate the drug 
sensitivity of every TGF-β subtype. Data on drug sensitivity 
were downloaded from the Profiling Relative Inhibition 
Simultaneously in Mixtures (PRISM) platform. By utilizing 
the Genomics of Drug Sensitivity in Cancer (GDSC) 
database, the half-maximal inhibitory concentration (IC50) 
and prediction accuracy were achieved through ridge 
regression and 10-fold cross-validation (32,33).

Single-cell RNA analysis

We downloaded two single-cell datasets including 
GSE70630 and GSE89567 from the Gene Expression 
Omnibus (GEO) database (34,35). The former contains 
4,347 single cells from six LGG samples, whereas the latter 
contains a total of 6,341 single cells from eight LGG and 
two GBM samples. Single-cell data analysis was performed 
using the Seurat R package. Initially, 2,000 highly DEGs 
were identified through the “findvariablefeatures” 
function. Following normalization of the genes, a principal 
component analysis (PCA) dimensionality reduction was 
performed, and the cells were clustered using the first 20 
dimensions through the “findneighbors” and “findclusters” 
functions. The resolution parameter was set to 0.65, and 
map visualization was then performed. The classic marker 
genes collected from the literature were used to define the 
cell subpopulations (36,37).

Somatic mutation and copy number alteration (CNA) 
analysis

Mutation data and copy number variation (CNV) data 
were obtained from cBioPortal (https://www.cbioportal.
org/). The Genomic Identification of Significant Targets in 
Cancer (GISTIC) algorithm was used to assess the CNV. 
We defined −1 and −2 as copy number loss, 1 and 2 were 
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defined as copy number amplifications, and 0 was used 
to define the absence of a CNV event. The information 
from the 1p19q codeletion was extracted directly from the 
clinical information provided by the cBioPortal website 
The onco-print tool of the “complexheatmap package” 
was employed to visualize the somatic mutation and CNA 
among TGF clusters. The calculation method for tumor 
mutation burden (TMB) was based on the number of non-
silent mutations (26,38-40).

Statistical analysis

R software (version 4.1.0; R Foundation for Statistical 
Computing, Vienna, Austria) was used for all analyses in 
this study. The evaluation of the survival difference between 
the TGF cluster and risk score was conducted through a 
log-rank test, using Kaplan-Meier analysis. The chi-square 
test was used to investigate the distinctions in molecular 
and clinical aspects among the subtypes or risk groups. 
The three groups were compared using one-way ANOVA. 
Univariate and multivariate Cox regression analyses were 
utilized to assess whether the TGF cluster and risk score 
were predictive factors.

Results

Screening of differential and prognostic TGF-β-related 
genes

TCGA and GTEx datasets  were used to identi fy 
differentially expressed TGF-β-related genes. A total of 
20 differentially expressed TGF-β-related genes (BMP2, 
CCNK, CDKN2B, COL3A1, INHBB, LEFTY1, MSTN, 
MYC, NOG, NRROS, PRKCZ, RBL1, SERPINE1, SMAD9, 
TGFBR3L, TGIF2, THBS2, TNF, TP53, and USP9Y) were 
identified between 531 LGGs and 1,151 normal brain 
tissue samples (Figure 1A,1B). Among the 223 TGF-β-
related genes, 131 were associated with LGG prognosis, 
whereas 12 (BMP2, COL3A1, INHBB, MYC, NOG, PRKCZ, 
SERPINE1, SMAD9, TGIF2, THBS2, TNF, and TP53) 
were differentially expressed and prognostic TGF-β-related 
genes (Figure 1C and Figure S1). DNA mutations in these 
12 genes occurred in approximately 46.05% of patients with 
LGG (Figure 1D-1G). Consensus clusters were performed 
using these 12 genes. We then assessed the correlation of 
these genes with immune checkpoints (ICPs) including 
programmed cell death protein 1 (PD-1), PD-L1, and 
TIGIT. Our results revealed that SERPINE1 is positively 

correlated with the expression of PD-L1 and PD-1, whereas 
NOG and BMP2 are negatively correlated with PD-L1. The 
remaining correlations were not significant (Figure S2).

Consensus cluster was performed to obtain three TGF-β 
subtypes

An unsupervised cluster analysis was performed, which 
obtained three TGF-β subtypes (A, B, and C) based on the 
12 DEGs and prognostic TGF-β-related genes located from 
the TCGA dataset (Figure S3A-S3L). PCA was employed to 
assess the resilient disparity in expression properties among 
the three TGF-β subtypes. In the training cohort, subtype 
B was linked with the least favorable prognosis, whereas 
subtype A was linked with the most favorable prognosis 
(Figure 2A-2C). These results were similarly obtained from 
the CGGA database (Figure 2D-2F).

Clinical features of the TGF-β subtypes

The determination of the relationship between molecular 
and pathological features was necessary to assess the clinical 
relevance of the identified TGF-β subtypes. Subtype B was 
found to be enriched with anaplastic astrocytoma, IDH 
wild type, 1p19q no codeletion, MGMTp unmethylation, 
and WHO grade III. Meanwhile, subtype A was associated 
with WHO grade II, IDH mutation, and 1p19q codeletion 
(Figure 2A-2C). Similar clinical correlations, indicating that 
different TGF-β subtypes have different malignant clinical 
characteristics, were also obtained from the CGGA database 
(Figure 2D-2F).

Immune landscape and potential therapeutic value of 
TGF-β subtypes

TGF-β signaling influences immunity and is related to the 
immunosuppressive microenvironment. Therefore, we 
evaluated the immune infiltration of each TGF-β subtype 
through ssGSEA, MCPcounter, and TIMER, and identified 
that subtype B was highly enriched with most immune cells 
(Figure 3A). The immune, stromal, and ESTIMATE scores 
demonstrated a higher level for subtype B in comparison 
to subtypes A and C. Additionally, there was an increase in 
the immune and stromal scores for subtype B. However, 
the tumor purity was lower in subtype B than in both 
subtypes A and C (Figure 3B-3E). In comparison to subtype 
C, subtype A exhibited elevated immune, stomal, and 
ESTIMATE scores, but had lower tumor purity. These data 

https://cdn.amegroups.cn/static/public/TCR-24-144-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-144-Supplementary.pdf
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Figure 1 Screening of differential and prognostic TGF-β-related genes. (A) Differential analysis obtained 20 differential TGF-β-related 
genes between LGG and normal brain tissues; (B) volcano plots showed that 15 genes were upregulated whereas 5 were downregulated; 
(C) survival analysis identified 12 differential TGF-β-related genes associated with prognosis of patients with LGG; (D) the corrgram 
revealed the relationships between the 12 differential and prognostic TGF-β-related genes; (E) DNA mutations in these 12 genes;  
(F) CNV frequency of those 12 genes; (G) the location of CNVs of 12 differential and prognostic TGF-β-related genes on 23 chromosomes. 
N, normal tissues; T, tumors; FDR, false discovery rate; FC, fold change; CI, confidence interval; CNV, copy number variation; TGF-β, 
transforming growth factor-beta; LGG, low-grade glioma.

were further verified using the CGGA database, which also 
showed similar results (Figure S4). Furthermore, GSVA 
indicated that primary immunodeficiency, the intestinal 
immune network for LGG production, and leukocyte 
transendothelial migration were enriched in subtype B 
when compared with subtypes A or C (Figure S5). In the 
present study, the TIDE online algorithm was employed 
to predict the response of ICP therapy of LGG patients 

of each TGF-β subtype. We observed that subtype B may 
benefit from immunotherapy (Figure 4).

We invest igated the correlat ion between drug 
sensitivity and the TGF-β subtype in order to determine 
its potential as a therapeutic option. We observed that 
AZD6244, bexarotene, bryostatin 1, and rapamycin had a 
high sensitivity for subtype A. However, the highest drug 
sensitivity of BIRB.0796, BMS.708163, BMS.754807, and 
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Figure 2 Performance of a consensus cluster to obtain three TGF-β subtypes. (A,D) The distribution of the 12 differential and prognostic 
TGF-β-related genes, clinical characteristics among the TGF-β subtypes in TCGA and CGGA datasets, respectively; (B,E) survival 
difference between TGF-β subtypes in TCGA [the median OS for A, B, and C was 6.2, 2.1, and 8.2 years, respectively; HR (95% CI) for B 
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Figure 3 Characteristics of infiltration of immune cells among TGF-β subtypes. (A) Infiltration of immune cells associated with TGF-β 
subtypes in TCGA dataset; (B-E) ESTIMATE, immune, stromal scores, and tumor purity in TGF-β subtypes. *, P<0.05; **, P<0.01; ***, 
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vorinostat was identified in subtype B. Finally, cisplatin, 
bleomycin, BAY.61.3606, and AZ628 showed the highest 
sensitivity in subtype C (Figure S6).

Metabolic characteristics of TGF-β subtypes

Metabolic alterations are linked to the TGF-β pathway 
and the progression of tumors. A calculation of the 115 
metabolic characteristics for each sample was conducive 
to exploring each TGF-β subtype-related metabolic 
characteristic. The results of differential analyses showed 
that subtype B was linked with a higher number of 
metabolic processes, particularly related to carbohydrate, 
vitamin, and nitrogen metabolism as compared to 
subtypes A and C. However, subtype C was associated 
with more metabolic processes related to lipid and amino 
acid metabolism but was less associated with nucleotide 
metabolism, whereas subtype A was associated with 
relatively low tumor metabolism (Figure S7). Similar results 
were obtained after calculating the metabolic scores in the 
CGGA cohort.

TGF-β subtypes are associated with diverse somatic 
variations

The potential somatic variations in TGF-β subtypes were 
examined, and the highest gene frequency of mutation or 
in critical pathways and CNAs were determined. Subtype A 
was characterized by a high frequency of 1p19q codeletion 
and IDH1, CIC, ATRX, TP53, and FUBP1 mutations. 
Conversely, subtype B was enriched in CIC, MET, and 
EGFR amplifications, CDKN2A, CDKN2B, RB1, and PTEN 
codeletion, and PTEN mutations. Finally, subtype C was 
enriched in IDH1, ATRX, and TP53 mutations (Figure 5A). 
Moreover, subtype B showed a high number of segments, 
high aneuploidy score, and high copy number burden and 
an increased TMB (Figure 5B-5F).

Identification of the DEGs and prognostic genes among 
TGF-β subtypes

Analysis was performed on the DEGs in the TGF-β 
subtypes (A vs. B, A vs. C, and B vs. C) present in both 
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TCGA and CGGA datasets. In the TCGA dataset, 
differential expression analysis revealed 995, 890, and 
954 distinct genes in the A vs. B, A vs. C, and B vs. C 
comparisons, respectively. In the CGGA dataset, the 
numbers of DEGs were 164, 1,705, and 820 in the A vs. B, 
A vs. C, and B vs. C comparisons, respectively. Following 
that, the TCGA and CGGA cohorts led to the identification 
of three genes that intersected: SHA, AC062021.1, and 
SNCG (Figure S8A). Both SHA and AC062021.1 were 
upregulated in LGG, whereas SNCG was downregulated 
(Figure S8B). Each gene exhibited differential expression 
among the TGF-β subtypes as well as among the IDH1 
and 1p19q status subtypes (Figure S8C,S8D). The 
survival analysis indicated that all three intersecting genes 
were associated with prognosis in patients with LGG  
(Figure S8E-S8J).

Single-cell RNA analysis of DEGs and prognostic genes in 
tumor or stromal cells

Using human gliomas tissue single-cell datasets, we 

observed the expression of the abovementioned genes 
among different cell types. Tumor cells showed high 
expression levels of SHD, BMP2, and TP53, whereas those 
of SMAD9 and TNF were enriched in astrocytes and 
macrophages, respectively. Moreover, PRKCZ and TGIF2 
were highly expressed in oligodendrocytes. These results 
suggest that the abovementioned genes are not population-
specific but are derived from the whole tumor and stromal 
cells (Figure S9).

Calculation of a risk score based on SHD, SNCG, and 
AC062021.1

A three-gene signature was calculated using regression 
coefficients (Figure S10). Patients with a high-risk score 
had shorter overall survival, as indicated by survival analysis 
(Figure S10). The developed signature was an independent 
prognostic factor for patients with LGG, as determined by 
multivariate Cox regression analysis (Figure S11). Upon 
further investigation, it was found that a high-risk score 
was more common in anaplastic gliomas, WHO III grade, 
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Figure 5 TGF-β subtypes are associated with diverse somatic variations. (A) Oncoprint of mutation status and CNVs within TGF-β 
subtypes; (B-F) violin diagram describing DNA damage measurement in TGF-β subtype of TCGA cohort. ***, P<0.001; ns, not significant. 
TGF-β, transforming growth factor-beta; CNV, copy number variations; TCGA, The Cancer Genome Atlas.

1p19q no codeletion, IDH wild type, subtype B TGF-β, 
Sub2, and Sub3. Moreover, the patients with Sub3, subtype 
B TGF-β, and WHO grade III had high-risk scores 
(Figure 6, Figure S12, Tables S1,S2). A nomogram, which 
is a clinically relevant quantitative method that enables 
clinicians to predict mortality, was developed for patients 
with LGG. The nomogram assigns a total score to each 
patient by adding the scores of each prognostic parameter. 
The developed signature had a higher area under the curve 
(AUC) than the factors of age, IDH mutation status, 1p19q 
codeletion status, and tumor grade. Further validation of 
this developed signature in the CGGA dataset correlated 
with a greater consistency of results (Figures 7,8). These 
data suggest that a risk score based on SHD, SNCG, 
and AC062021.1 had superior performance in prognosis 
prediction (Figure 7 and Figure S13).

Discussion

The TGF-β signaling pathway has a dual effect on cancer 
progression, initially impeding tumor growth, but later 
facilitating it. TGF-β signaling is accountable for regulating 
the immunosuppressive TME once cancer cells are 
produced. The presence of inflammatory cells, cytokines, 
and signal pathways in a microenvironment of inflammation 
could potentially facilitate the progression of tumors, 
ultimately resulting in a worse prognosis (19-21). Therefore, 
exploration of the heterogeneity of TGF-β-related genes 
in the LGG microenvironment provides important clinical 
significance, which may yield clues for potential molecular 
targeting research. In this study, three TGF-β subtypes 
of LGGs were identified through unsupervised clustering 
based on TGF-β-related gene expression profiles. Each 
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Figure 6 The characteristics of risk model in TCGA dataset. (A) Heatmap showing the clinical features between low- and high-risk group in 
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TGF-β subtype had varying clinical characteristics, immune 
infiltration, somatic variation, and drug responses. Our 
research deepens the understanding of TGF-β and its 
heterogeneity and extends knowledge of the molecular 

subtypes of LGG.
We systematically examined the differential expression 

and prognostic roles of TGF-β signaling-related genes in 
LGG. Most TGF-β-related genes were found to play a 
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Figure 7 The prognostic and predictive role of risk score. (A,B) The prognostic effect of risk score in patients with LGG of TCGA (the 
median OS for patients high-risk score is 2 years, but 8 years for low-risk score, HR: 1.494; 95% CI: 1.349–1.654) and CGGA cohorts (the 
median OS for patients high-risk score is 3 years, but 10 years for low-risk score, HR: 1.232; 95% CI: 1.168–1.300), respectively; (C,D) 
ROC curve shows the prediction of risk score on survival in patients with LGG of TCGA and CGGA cohorts, respectively; (E,F) the 
corrgram describing the correlationship between risk score and SNCG, SHD, and AC062021.1 in TCGA and CGGA datasets. AUC, area 
under the curve; LGG, low-grade glioma; TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval; CGGA, Chinese 
Glioma Genome Atlas; OS, overall survival; ROC, receiver operating characteristic.

crucial role in the advancement of LGG and 131 genes were 
linked to the prognosis of patients with LGG and 20 genes 
demonstrated differential expression. There were 12 genes 
related to TGF-β that presented differential expression 
and had prognostic significance (BMP2, COL3A1, INHBB, 
MYC, NOG, PRKCZ, SERPINE1, SMAD9, TGIF2, THBS2, 
TNF, and TP53). A total of five of the 12 genes were 
positive factors associated with prognosis (BMP2, MYC, 
NOG, PRKCZ, and SMAD9), whereas the remaining seven 

genes were risk factors (COL3A1, INHBB, SERPINE1, 
TGIF2, THBS2, TNF, and TP53). Indeed, the majority are 
known to be associated with cancer progression. A previous 
study has identified BMP2 as an oncogene; however, many 
conflicting results have been reported depending on the 
type of cancer, such as lung, breast, and prostate cancers (41). 
However, few studies have explored the role of BMP2 in 
glioma; therefore, further experiments should be performed 
in this area. Moreover, the fibrillar collagen, COL3A1, 
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exists in extensile connective tissues and has previously been 
reported to possess a malignant phenotype in esophageal 
squamous cell carcinoma via regulating activation of the 
NF-κB signaling pathway (42). Indeed, COL3A1 has also 
been reported to be regulated by GATA-binding protein 
6, which promotes propanoate metabolism and a type II 
IFN response in the recurrence of LGG (43). Furthermore, 
Myc, a bHLHZip transcription factor, has been implicated 
in regulating various cancer cellular processes, such as 
programmed cell death, growth, proliferation, and cell 
differentiation (44). In addition, the protein-coding gene, 
INHBB, participates in the synthesis of TGF-β family 
members and is considered a novel oncogene in various 
cancer types (45). PRKCZ is a non-typical variant of the 
serine-threonine protein kinase C, which has a function in 
controlling cell motility in metastatic clones of pancreatic 
cancer (46). SERPINE1, an inhibitor of fibrinolysis, plays 
a role in various malignancies in humans and is part of the 

signaling cascade involving circular RNA circZNF652/miR-
486-5p/SERPINE1 that regulates the aggressiveness of 
gliomas (47). TGIF2 has been shown to be overexpressed in 
ovarian cancer and is involved in various other malignancies. 
In addition, the signal axis composed of TGIF2 and miR-
129-5p can regulate the malignant progression of glioma (48).  
THBS2 represents a disulfide-linked homotrimeric 
glycoprotein, which mediates the interaction between cells 
and the cell matrix. Previous reports have indicated that 
THBS2 is a prognostic biomarker for a variety of human 
cancers and acts as both a protective and risk factor (49). 
Finally, p53, which is a primarily studied tumor suppressor 
gene, has been shown to regulate a series of cell events 
through transcriptional regulation of a wide range of genes 
and pathways that form the basis of development and 
cancer, including DNA damage repair, cell cycle arrest, 
aging, apoptosis, iron death, autophagy, and metabolic 
remodeling (50). In this study, LGG was categorized into 
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three separate subtypes utilizing 12 genes that are expressed 
differentially and have prognostic significance. These 
genes are BMP2, COL3A1, INHBB, MYC, NOG, PRKCZ, 
SERPINE1, SMAD9, TGIF2, THBS2, TNF, and TP53. 
Our study noted that subtype B was linked with shorter 
overall survival compared to subtypes A or C. Additionally, 
there were variations in clinical characteristics, TME, 
metabolism, somatic mutations, and drug sensitivity among 
each subtype. The discovery expanded the molecular 
subtyping of diffuse gliomas and enhanced our knowledge 
of the diversity of TGF-β signaling in this type of tumor.

In the context of tumor immune resistance, local 
immunosuppressive cytokines are a crucial element, 
with TGF-β having been identified as an example of an 
immunosuppressive factor within the TME (51). High 
infiltration of immune cells was identified as a characteristic 
of subtype B TGF-β in our study. The infiltration of 
immune cells was comparably greater in subtype C as 
compared to subtype A. Subtype C demonstrated elevated 
immune, stromal, and ESTIMATE scores, whereas subtype 
A displayed lower scores, accompanied by reduced tumor 
purity. Although there was an increase in antitumor immune 
cells including natural killer cells, B cells, and CD8+ T cells 
in subtype C, these cells were highly susceptible to proto-
oncoinflammation. The aforementioned outcome arises 
due to the expression of different immune mediators and 
regulators, as well as the diverse activation status of cell 
types present in the TME (52,53). Indeed, a study on the 
mechanisms involved in the reversal of this balance through 
the regulation of TME transformation is important. Such 
research will allow us to analyze methods to improve the 
effect of immunotherapy. Furthermore, TGF-β genes exert 
their effects through M1 to M2 macrophage polarization. 
Based on our analysis of cellular communication, we found 
that TGF-related genes primarily regulate the TME, 
including M1 and M2 macrophages, through the JAM, 
APP, GRN, PSAP, and MIF signaling pathways. However, 
the specific mechanisms and the particular genes’ actions on 
these pathways require further validation through cellular 
experiments. This may provide evidence for modulating the 
immune microenvironment in LGG. In the present study, 
we observed that SERPINE1, a TGF-β gene, is positively 
correlated with the expression of PD-L1 and PD-1, which 
suggested that SERPINE1 may be a potential target for 
enhancing immunotherapy. Future research should further 
evaluate how SERPINE1 regulates immunotherapy in 
gliomas.

Certainly, the heterogeneity of the TME in LGGs 
presents a challenge to current immunotherapy strategies (6).  
This variability may account for the wide range of 
treatment responses among patients and could help explain 
why the results of clinical trials have not met expectations. 
Current immunotherapies, such as inhibitors of the 
PD-1/PD-L1 and CTLA-4 pathways, tumor vaccines, 
immunomodulators, and cell therapies, have shown success 
in certain types of cancers, but their efficacy in LGGs has 
been limited (6). This may be partly due to the unique 
immunosuppressive microenvironment characteristic of 
LGGs. This environment is typically characterized by a 
low infiltration of immune cells, which may also exhibit an 
immunosuppressive phenotype. To enhance therapeutic 
outcomes, a future research direction may involve a 
detailed characterization of the cellular components 
within the LGG TME, including immunosuppressive 
cells such as regulatory T cells (Tregs), tumor-associated 
macrophages (TAMs), and myeloid-derived suppressor 
cells (MDSCs) (54). Another research avenue is to define 
the molecular pathways within the TME, such as cytokines 
and chemokines that may regulate immune cell infiltration 
and function (55). With a better understanding of these 
cellular and molecular changes, we may identify new 
therapeutic targets that could be key in modulating the 
TME and improving response rates in LGG patients. For 
example, SERPINE1, as a regulator of immune responses 
and extracellular matrix remodeling, could be a potential 
target. By targeting SERPINE1 or its related pathways, 
we might be able to modulate the TME and enhance the 
efficacy of immunotherapies. More broadly speaking, efforts 
to improve treatment strategies for LGG will require 
the use of high-throughput tissue analysis techniques, 
integrating data from immuno-histochemistry, genomics, 
transcriptomics, proteomics, and single-cell analyses to 
build a more comprehensive model of the disease. Through 
such multidimensional analysis, we can gain a deeper 
understanding of the biological characteristics of LGG and 
the potential mechanisms underlying treatment failure, 
offering more personalized and effective treatment options 
for patients.

Metabolic reprogramming is a hallmark of cancer (56). 
Recently, an increasing number of studies have begun to 
research the role of TGF-β signaling in tumor metabolism, 
with data indicating that TGF-β acts as a host and cancer 
metabolic reprogramming cytokine (57,58). This study 
identified that each TGF-β subtype possesses a different 
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metabolic microenvironment; for example, carbohydrates 
(particularly glucose), vitamins, nucleotides, and metabolites 
were enriched in subtype B. However, subtype C displayed 
a low level of nucleotide metabolism but a high level 
of metabolic processes associated with lipid and amino 
acid metabolism. In contrast, subtype A demonstrated 
relatively low metabolism of the abovementioned metabolic 
scores. Previous research has indicated that the increase 
of glycogen synthesis and uncontrolled glycogenolysis are 
factors in glycogen buildup in cancer cells. This function 
helps to protect cancer cells from death in low oxygen 
situations and provides energy in situations where nutrients 
are limited. This further explains why subtype B TGF-β B 
produced the worst prognosis. During cancer progression, 
lipid metabolism reprogramming plays a crucial role in 
supplying energy, as well as providing biomolecules for 
membrane synthesis and lipid signals (58,59). TGF-β 
signaling is mainly connected with cholesterol metabolism, 
FASN-mediated fatty acid synthesis, and lipid droplets 
in cancer cells (60,61). Lipid metabolism was enriched in 
subtype C, which could explain the poor clinical outcome 
of patients with LGG. Consequently, therapeutic strategies 
targeting tumor metabolism based on the TGF-β subtype 
should be the primary focus of future research.

Following identification of an association between 
the TGF-β subtype with clinical characteristics in the 
TCGA cohort, we demonstrated that malignant features 
such as IDH wild type (87.5%) and high-grade glioma 
(61.5%) were enriched in subtype B. Moreover, we further 
evaluated the association between the TGF-β subtypes 
and TCGA subtypes based on IDH mutation status and 
1p19q codeletion. A total of 116 (27.0%), 6 (1.4%), and 
21 (4.9%) patients classified as Sub1 were assigned to 
subtypes A, B, and C, respectively. Likewise, 119 (27.7%), 
22 (5.1%), and 81 (18.9%) patients classified as Sub2 were 
assigned to subtypes A, B, and C, respectively. No patients 
classified as Sub3 were assigned to the A subtype, whereas 
56 (13.1%) and 8 (1.9%) were classified into subtypes B 
and C, respectively. A risk score was constructed from 
the intersection genes between TGF-β subtypes, and it 
was found that a high score was significantly linked with 
malignant characteristics and unfavorable clinical outcomes. 
Our study has the potential to broaden the understanding 
of molecular subtyping in LGG.

Conclusions

We divided LGG into three subtypes characterized by 

varied immune infiltration, metabolism, somatic variations, 
and prognosis, based on TGF-β signaling-related genes. 
Further research is required to investigate the immune 
infiltration and metabolism mechanism related to these 
TGF-β subtypes.
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