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Predicting antibody affinity 
changes upon mutations 
by combining multiple predictors
Yoichi Kurumida1, Yutaka Saito1,2,3 & Tomoshi Kameda1*

Antibodies are proteins working in our immune system with high affinity and specificity for target 
antigens, making them excellent tools for both biotherapeutic and bioengineering applications. 
The prediction of antibody affinity changes upon mutations ( ��Gbinding ) is important for antibody 
engineering. Numerous computational methods have been proposed based on different approaches 
including molecular mechanics and machine learning. However, the accuracy by each individual 
predictor is not enough for efficient antibody development. In this study, we develop a new prediction 
method by combining multiple predictors based on machine learning. Our method was tested on 
the SiPMAB database, evaluating the Pearson’s correlation coefficient between predicted and 
experimental ��Gbinding . Our method achieved higher accuracy (R = 0.69) than previous molecular 
mechanics or machine-learning based methods (R = 0.59) and the previous method using the average 
of multiple predictors (R = 0.64). Feature importance analysis indicated that the improved accuracy 
was obtained by combining predictors with different importance, which have different protocols 
for calculating energies and for generating mutant and unbound state structures. This study 
demonstrates that machine learning is a powerful framework for combining different approaches to 
predict antibody affinity changes.

Antibodies are proteins working in our immune system that bind to target molecules named antigen such as 
proteins or chemical ligands with high affinity and specificity. Over the past two decades, antibodies have become 
popular as biotherapeutics1. Antibodies have important advantages over small-molecule drugs such as antibody 
dependent cellular cytotoxicity2 and complement dependent cytotoxicity activity3. In addition, antibody–drug 
conjugates can kill tumor cells with high efficiency4,5. Recently, a single chain fragment variable region of an 
antibody is used as a receptor for chimeric antigen receptor T-cell therapy6,7, highlighting the adaptability and 
efficacy of antibodies as biotherapeutics. Antibody engineering is used to improve the properties of antibodies 
such as affinity, specificity, solubility, and stability. In particular, improving affinity is important for increasing 
drug efficacy and decreasing the amount of antibody per dose, thereby reducing the drug price. The affinity of 
an antibody can be improved by introducing mutations in its amino acid sequence while in practice not many 
mutations increase affinity8. To date, improving affinity requires trial and error, making many mutants and 
measuring their affinities to identify mutants of interest.

The affinity of an antibody is evaluated by the binding free energy ( �Gbinding ). �Gbinding  is calculated by the 
free energy of the bound state minus that of the unbound state. �Gbinding  is experimentally measured with sur-
face plasmon resonance (SPR), isothermal titration calorimetry (ITC), or enzyme-linked immune-sorbent assay. 
Although SPR and ITC have high sensitivity, measuring many samples with SPR and ITC requires substantial 
time and cost. Therefore, it is important for antibody engineering to develop a method for predicting mutants 
with high affinity prior to experimental evaluation9,10.

A number of software tools have been developed for predicting binding affinity of complexes11,12, some of 
which are proposed for general protein complexes while others are dedicated specifically to antibody-antigen 
complexes13,14. These methods are largely divided into two approaches: molecular mechanics and machine 
learning. The molecular mechanics methods are based on the evaluation of energies calculated from protein 
structures15,16. Each method utilizes a different scoring function to calculate energies. The typical terms consid-
ered in a scoring function include hydrogen bonding, conformational energies, solvation energies, and entropic 
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terms in addition to Coulombic and van der Waals interaction energies17. Normally, the molecular mechan-
ics methods take as input the structure of a wild-type complex only, and mutant structures and structures in 
the unbound state are computationally generated (i.e. structure regeneration). Therefore, the performance of 
molecular mechanics methods depends on the choice of scoring functions and structure regeneration methods. 
Sulea et al.17 have presented a benchmark study to investigate the effect of scoring functions and structure regen-
eration methods on the prediction accuracy. As an approach different from molecular mechanics, the machine 
learning methods are proposed based on statistical models that predict affinity changes upon mutations using 
feature values calculated from protein complex structures13,18. The performance of machine learning methods 
is determined by the choice of statistical models and feature values.

Sulea et al.17 have also proposed a prediction method in their benchmark study. Their prediction method, 
termed consensus scoring, is defined as the average of predicted affinity changes calculated by multiple molecular 
mechanics methods (multiple predictors). In detail, the Z score is calculated for each of predictors for adjusting 
their difference in mean and standard deviation. Then, the consensus score is calculated as the average of the Z 
scores of predictors. The consensus scoring method has shown higher prediction accuracy than any of individual 
molecular mechanics methods (single predictors). However, the consensus scoring method does not consider 
the different importance of predictors since the method simply takes the average of the Z scores of predictors, 
assuming all features are equally important. In addition, the predictors used in the consensus scoring method 
have been selected empirically, thus the best combination of predictors for improving accuracy is unknown.

Here, we propose a new computational method for the prediction of antibody affinity changes upon muta-
tions. Our method combines multiple predictors using machine learning. In contrast to the consensus scoring 
method based on the average of multiple predictors, the use of machine learning enables us to combine multiple 
predictors with different importance adjusted in model training. The machine learning model takes predictions 
from multiple methods as feature values (Fig. 1). These predictors include a variety of molecular mechanics 
predictors with various scoring functions and structure regeneration methods as well as a previous machine-
learning-based predictor. In experiments on the SiPMAB database, our method achieves higher prediction accu-
racy than the best single predictor and the consensus scoring method. We present feature importance analysis 
to evaluate the contribution of each predictor in our method, showing that the improved accuracy is obtained 
by combining predictors using different scoring functions and structure regeneration methods. Moreover, we 
show that the number of combined predictors can be reduced according to the feature importance without 
compromising the accuracy.

Results
Prediction accuracy improved by combining multiple predictors.  We compared our method with 
the consensus scoring method based on the average of multiple predictors and the 12 kinds of single predictors 
used as feature values in our method (“Methods” section). As proposed in the previous study17, we used the 
consensus scoring method with 3 predictors (Cons3 with SIE-Scwrlmut, Rosmut and FoldX-S) and that with 4 pre-
dictors (Cons4 with SIE-Scwrlmut, Rosmut, FoldX-S and FoldX-B). Figure 2 shows the Pearson’s correlation coef-
ficient between predicted scores and experimental ��Gbinding on the SiPMAB dataset. Our method with GPR 
and RFR achieved R = 0.69 and R = 0.67, respectively, showing better accuracy than Cons3 (R = 0.63) and Cons4 
(R = 0.64). These results demonstrate the effectiveness of machine learning for combining multiple predictors to 
improve the prediction accuracy.

The best single predictor was Rosmut with R = 0.59. For each molecular mechanics software, R > 0.50 was 
achieved by using the best choice of scoring functions and structure regeneration methods: SIE-Scwrlmut, Rosmut, 
FoldX-B, and DS-B. The accuracy of FoldX-S and DS-S was lower than the other methods, which may be because 
these methods are based on the stability Eq. (3) rather than the binding free energy Eq. (1).

Figure 1.   Overview of the proposed method. Our method uses predictions from multiple methods as feature 
values for machine learning models, and outputs ��Gbinding as the final prediction.
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We compared the distribution of predicted scores for each method with experimental  ��Gbinding (Supple-
mentary Fig. S1). We found that there were outliers in the predictions of Rosiface-sc and RosCDR-loop. Notably, our 
method with GPR and RFR showed few outliers while it used these features. Such a robustness may be another 
merit of machine learning for combining multiple predictors.

Analysis of feature importance.  An advantage of machine learning is the ability to evaluate the impor-
tance of each feature in terms of its contribution to the prediction. We used the feature importance method 
based on Gini index19 implemented in scikit-learn package (Fig. 3). The most important feature was Rosmut, 
which also achieved the best accuracy among the single predictors (Fig. 2). Similarly, the feature with the sec-
ond-highest accuracy, SIE-Scwrlmut, showed the second-highest feature importance whereas the tendency for 
the rank of accuracy and the rank of feature importance to become equal did not apply to the other features. The 

Figure 2.   Comparison of different methods on the SiPMAB dataset. The bar graph shows the Pearson’s 
correlation coefficient between predicted scores and experimental ��Gbinding  in the SiPMAB dataset. Left: 
single predictors; Middle: Consensus scoring method; Right: the proposed method. The error bar represents the 
standard error of the mean (SEM) from 100 calculations using the different splits of subsets in cross validation. 
P-value was calculated using the Wilcoxon signed rank test.

Figure 3.   Feature importance analysis. The bar graph shows the feature importance of 12 predictors used in our 
method.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19533  | https://doi.org/10.1038/s41598-020-76369-8

www.nature.com/scientificreports/

importance was above 0.1 for 4 features: Rosmut, SIE-Scwrlmut, mCSM-AB, and DS-B. Interestingly, those predic-
tors were based on different prediction approaches (molecular mechanics or machine learning), and different 
scoring functions and structure regeneration methods for molecular mechanics. These results suggest that the 
improved accuracy of our method was obtained by combining predictors based on different principles.

Correlation between predictors.  We also evaluated the Pearson’s correlation coefficient between differ-
ent predictors (Fig. 4). Among the 4 predictors with high feature importance, the molecular mechanics predic-
tors (Rosmut, SIE-Scwrlmut, and DS-B) were similar to each other (R > 0.66) with Rosmut and DS-B showing the 
highest correlation. On the other hand, mCSM-AB based on machine learning was distinct from the other pre-
dictors (e.g. R = 0.50 between mCSM-AB and Rosmut). These results further support that combining predictors 
based on different principles may contribute to improving prediction accuracy.

Reduced features.  Although our method uses 12 predictors as input, the number of predictors may be 
reduced, which is desirable for reducing the computational cost. Thus, we developed a prediction method com-
bining only four predictors: Rosmut, SIE-Scwrlmut, mCSM-AB, and DS-B whose feature importance was higher 
than the others (Fig. 3). Our method using the reduced feature set achieved the accuracy comparable to that 
using the full feature set (Fig. 5). Using GPR as a machine learning model, the Pearson’s correlation coefficient 
by our method was still higher than that of Cons4 (R = 0.67 compared with R = 0.64, P < 10–15; Wilcoxon signed-
rank test). These results indicate that the number of features used for our method can be reduced without com-
promising prediction accuracy.

Figure 4.   Correlation between the predictors. The heatmap shows the Pearson’s correlation coefficient between 
Rosmut, SIE-Scwrlmut, mCSM-AB and DS-B.

Figure 5.   Comparison of accuracy using different feature sets. The bar graph shows the Pearson’s correlation 
coefficient between predicted scores and experimental ��Gbinding in the SiPMAB dataset. Error bar represents 
the SEM from 100 calculations using different splits of subsets in cross validation.
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Evaluation on independent data.  In addition to the cross-validation-based evaluation on SiPMAB data-
base, we performed a benchmark study on independent data not included in SiPMAB database (Methods). We 
compared our method using the reduced feature set with the 4 kinds of single predictors used as feature values 
in our method. Figure 6a shows the Pearson’s correlation coefficient between predicted scores and experimental 
��Gbinding  on 34 mutants of an antibody targeting vascular endothelial growth factor (VEGF), called bH1, 
from AB-Bind database20,21. Our method with GPR and RFR achieved R = 0.54 and R = 0.60, respectively, show-
ing better accuracy than the best single predictor mCSM-AB with R = 0.47. We increased the data size by com-
bining the bH1 data with additional independent data of 12 mutants of an antibody targeting monocyte chemo-
attractant protein-1(MCP-1), called 11K2, from Kiyoshi et al.22, and also confirmed that our method achieved 
better accuracy than the single predictors (Fig. 6b). These results demonstrate the effectiveness of machine learn-
ing for combining multiple predictors to improve prediction accuracy, not only for SiPMAB database but also 
for independent data.

Discussion
Numerous ��Gbinding prediction methods have been developed with a variety of scoring functions and struc-
ture regeneration methods. However, due to the characteristics of each method, ��Gbinding  prediction with 
high accuracy has been difficult. In this study, we demonstrated that the prediction accuracy can be improved 
by combining multiple predictors using machine learning. Our method with GPR achieved R = 0.69 on the 
SiPMAB database (Fig. 2), which was more accurate than the best single predictor (Rosmut, R = 0.59) and the 
consensus scoring method based on the average of multiple predictors (Cons4, R = 0.64). The feature impor-
tance analysis suggested that Rosmut, SIE-Scwrlmut, mCSM-AB, and DS-B were particularly important for the 
improved accuracy (Fig. 3). Our method using these 4 features kept the prediction accuracy comparable to that 
using the full feature set (Fig. 5). Moreover, our method using these 4 features achieved higher accuracy than 
single predictors in the benchmark study on the independent data not included in SiPMAB database (Fig. 6). In 
addition, the feature importance analysis suggested that ��Gfolding  (DS-S and FoldX-S) was not so important 
for the improved accuracy (Fig. 3).

The Pearson’s correlation coefficient between predictors ranged from 0.5 to 0.8 (Fig. 4). This result indicates 
that each predictor has unique information derived from different prediction approaches (molecular mechan-
ics or machine learning), and different scoring functions and structure regeneration methods for molecular 
mechanics. In particular, the Pearson’s correlation coefficient between mCSM-AB and the other predictors based 
on molecular mechanics was lower than the other pairs. This result suggests that combining predictors based on 
molecular mechanics and machine learning is important for accuracy.

We note that our method has the limitations summarized below. First, although our method achieved higher 
accuracy than single predictors and the previous method using the average of multiple predictors, our meth-
ods requires a relatively high computational cost. Second, although our method achieved higher accuracy, it 
requires training data. On the other hand, the consensus scoring method and single predictors do not require 
training data. Third, our method, like other existing methods, requires the three-dimensional structure of the 

Figure 6.   Comparison of different methods on independent data not included in SiPMAB database. The bar 
graph shows the Pearson’s correlation coefficient between predicted scores and experimental ��Gbinding . (a) 
bH1 data (n = 34). (b) bH1 data combined with 11K2 data (n = 46). *P < 0.05, **P < 0.01, ***P < 0.005.
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antigen–antibody complex. However, antibody-antigen complexes are easier to crystalize than monomers 
because the complexes are normally stable23. In addition, complex structures can be predicted using homology 
modeling24,25 and docking simulation26. In this study, we focused on affinity changes upon single point mutations 
as in previous studies. Nonetheless, our method can be easily extended to multiple point mutations by using 
scores of multiple point mutants as feature values.

In conclusion, our method performs the best for predicting affinity changes upon mutations of antibody-
antigen complexes ( ��Gbinding ). The method is more accurate than the single predictors and the consensus 
scoring method using the average of multiple predictors. The improved accuracy is obtained by combining 
multiple predictors with different importance using machine learning. Our method can contribute to the design 
of antibodies for therapeutics and diagnostics by improving speed and reducing the associated costs.

Methods
Overview of the proposed method.  The idea of our method is to combine multiple predictors for anti-
body affinity changes using machine learning (Fig. 1). The machine learning model takes as input predictions 
from multiple methods as feature values, and outputs the ��Gbinding as the final prediction. These predictors 
(feature values) included those based on molecular mechanics with different scoring functions and structure 
regeneration methods (Table S1). In addition, we also employed a previous machine-learning-based predictor 
as a feature value in our method (Table S1). We used two different machine learning models and compared their 
performance: gaussian process regression (GPR)27 and random forest regressor (RFR)28. GPR and RFR are one 
of the most popular machine learning models, which have been used for study such as antibody engineering 
field29,30. As an advantage of the use of machine learning, our method can evaluate the importance of each fea-
ture in terms of its contribution to the prediction. Specifically, we evaluated the feature importance based on the 
Gini index in RFR19. Our method was implemented in Python using scikit-learn package31.

Predictors based on molecular mechanics.  �Gbinding of an antigen–antibody complex is calculated 
with Eq. (1). GAg+Ab is the Gibbs free energy of the antigen–antibody complex. GAg and GAb are the Gibbs free 
energies of the unbound state of the antigen and the antibody, respectively.

The change in the binding energy after mutagenesis ( ��Gbinding ) is calculated with Eq. (2). �Gmutant
binding and 

�G
wild−type
binding  are the �Gbinding of the mutant and the wild-type complexes, respectively.

The stability of an antigen–antibody complex is also calculated because it is related to binding free energy17. 
The stability ( �Gfolding ) of an antigen–antibody complex is calculated with Eq. (3).

Gfold and Gunfold are the Gibbs free energies of the folded state and the unfolded state, respectively. The change 
in the structure stability after mutagenesis ( ��Gfolding ) is calculated with Eq. (4) �Gmutant

folding and �G
wild−type
folding  are 

the �Gfolding of the mutant and the wild-type complexes, respectively.

In this study, we used 11 molecular mechanics predictors as feature values in our method. Among them, 9 
predictors have been evaluated in the previous benchmark study17, while 2 predictors were newly employed in 
this study. Each predictor was different in the choice of a scoring function and a structure regeneration method, 
in addition to whether it used the binding energy Eq. (1) or the stability Eq. (3). The scoring functions included 
SIE32, Talaris201315, Talaris-interface33, CHARMm Polar H16 and FOLDEF34. For regenerating mutant struc-
tures from the wild-type complex structure, only the side chain at the mutated site was repacked with the other 
residues fixed, or the side chains around the mutated site were also repacked (see the details below). Structures 
in unbound state were refined by separating the antibody and the antigen as rigid bodies, or by refining their 
structures after the separation. Below, for clarity, we divide the 11 predictors into 4 groups: Discovery Studio (2 
predictors), FoldX (2 predictors), Rosetta (6 predictors), SIE-Scwrlmut (1 predictor).

Parent structure preparation.  Predictors based on molecular mechanics require a parent structure that is 
prepared from an experimental structure for computational analyses. In this study, we used the parent structures 
provided by SiPMAB database for antibodies included in SiPMAB database. For other antibodies not included in 
SiPMAB database, we prepared the parent structures using the same procedure as SiPMAB database according 
to Sulea et al.17 Briefly, the starting structure was retrieved from the protein data bank (PDB ID: 3BDY for the 
anti-VEGF antibody; 2BDN for the anti-MCP-1-antibody), and we removed non-protein compounds including 
waters and ions, and deleted non-variable domains in the antibody. Protons were added with neutral pH condi-
tion. The structure was energy-minimized using Amber force field35,36.

Discovery studio.  Discovery Studio37 is biomolecular simulation software where CHARMm Polar H force 
field16 is used as a scoring function. Two types of protocols were used by Discovery Studio 2018: DS-B and DS-S. 
��Gbinding (DS-B) was calculated by the “Calculate Mutation Energy (Binding)” protocol, and ��Gfolding

(1)�Gbinding = GAg+Ab − (GAg + GAb)

(2)��Gbinding = �Gmutant
binding −�G

wild−type
binding

(3)�Gfolding = Gfold − Gunfold

(4)��Gfolding = �Gmutant
folding −�G

wild−type
folding
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(DS-S) was calculated by the “Calculate Mutation Energy (Stability)” protocol. The structure of the mutant was 
refined with repacking and energy minimization of the side chain at the mutated site. The structures in unbound 
state were refined by rigid separation. All runs were performed with default parameters.

FoldX, SIE‑Scwrlmut, and Rosetta.  Predictions for SiPMAB by FoldX34 (FoldX-B and FoldX-S), SIE-
Scwrlmut

17, and Rosetta38 (SIE-Rosmut, SIE-Rosiface-sc, SIE-RosCDR-loop , Rosmut, Rosiface-sc, and RosCDR-loop) were 
obtained from the previous benchmark study17. Predictions for the complex of anti-VEGF antibody and VEGF 
were calculated according to the previous benchmark study17. The descriptions of these methods were shown 
in Table S1. Briefly, FoldX is protein free energy calculation software using FOLDEF as a scoring function. Two 
types of protocols were used by FoldX: FoldX-B and FoldX-S using ��Gbinding and ��Gfolding , respectively. 
SIE-Scwrlmut uses 2 software and a scoring function: SCWRL is software for regenerating protein structures 
based on empirical side chain rotamers. Amber is software for molecular dynamics simulation and SIE is a scor-
ing function32,39. In this protocol, mutant structures after refined by SCWRL with repacking and energy mini-
mization of mutated side chains were further energy-minimized around mutated sites using Amber, and then 
��Gbinding was calculated using SIE. Rosetta suite40 is a protein design and structure prediction tool based on 
Monte Carlo simulation. It is capable of predicting scores and generating a mutant structure with backrub sam-
pling of the backbone and repacking of side chains. Six types of protocols were used by Rosetta: SIE-Rosmut, SIE-
Rosiface-sc, SIE-RosCDR-loop, Rosmut, Rosiface-sc, and RosCDR-loop. Rosetta employed 3 scoring functions: Talaris201315 
(Rosiface-sc and RosCDR-loop), Talaris-interface33 (Rosmut), and SIE32 (SIE-Rosmut, SIE-Rosiface-sc, and SIE-RosCDR-loop).

Machine‑learning‑based predictor (mCSM‑AB).  In addition to molecular mechanics predictors 
described above, we also used a previous machine-learning-based predictor, mCSM-AB13, as a feature value in 
our method. mCSM-AB is a machine learning model that predicts antibody affinity changes using the graph-
based signatures of protein structures. In the previous study, the model has been trained using experimental 
��Gbinding from the AB-Bind database20. To use mCSM-AB in our method, we took care to prevent the leakage 
of training data into the performance evaluation (see the “Performance evaluation” section for details).

Datasets.  To assess prediction accuracy, a dataset from the SiPMAB database17 was used. This dataset is 
comprised of 212 single point mutant antibodies in their CDRs, across 7 different antibody-antigen complexes. 
The wild-type structures of the antibody-antigen complexes are available, which are solved by high resolution 
X-ray crystallography. The majority of experimental binding free energies are measured by SPR and ITC. The 
��Gbinding values range between − 0.65 and 7.32 kcal/mol. When the multiple ��Gbinding measurements are 
recorded for the same mutant, which originates from different publications, we selected one ��Gbinding value 
as previously described17. Briefly, the ��Gbinding value was selected considering the reliability of assay methods, 
and the scale of the assay in the original publication. Although AB-Bind20 and SKEMPI41 are another data-
base for affinity changes upon mutations, we used the SiPMAB database since it collects mutants on antibodies 
excluding mutants on antigens, and thus is more suitable for the purpose of our study.

For evaluation on independent data, 34 mutants of the complex of anti-VEGF antibody, called bH1, and 
VEGF were collected from the AB-Bind. These mutants are not included in SiPMAB database, and have muta-
tions in the antibody side. We also used the data of 12 mutants of the complex of anti-MCP-1 antibody, called 
11K2, and MCP-1 from Kiyoshi et al.22.

Performance evaluation.  We evaluated the Pearson’s correlation coefficient between predicted and exper-
imental ��Gbinding as a measure of prediction accuracy. To compare the performance of our method with previ-
ous methods, we conducted the following procedures to ensure a fair comparison avoiding potential overfitting.

For RFR, we used fourfold nested cross-validation for optimizing a hyperparameter in our method (the 
number of trees). In the outer loop of the nested cross-validation procedure, the dataset was split into 4 subsets 
where each subset was used as an independent test dataset named Test and the remaining data were used for the 
inner loop. In the inner loop of the nested cross-validation procedure, the dataset was split into 4 subsets where 
each subset was used as a validation dataset named Validation, and the remaining data were named Training. A 
model was trained using Training dataset with various hyperparameter values, and the performance was meas-
ured using Validation dataset. The performance of our method with the best hyperparameter value was evaluated 
using the Test dataset. The Pearson’s correlation coefficient between predicted and experimental ��Gbinding 
was calculated for each Test dataset, and the average value was used as a final evaluation measure. For GPR, we 
used the radial basis function (RBF) kernel with a constant kernel and a white kernel. The hyperparameters of 
GPR can be optimized during model training without looking at validation or test datasets by maximizing log-
marginal-likelihood as implemented in scikit-learn package. Thus, we conducted a fourfold cross-validation 
rather than a fourfold nested cross-validation.

One of the predictors used in our method, mCSM-AB, was itself based on machine learning. Therefore, we 
took care to ensure that the data used for training mCSM-AB were always separated from the training data of 
our method. The mCSM-AB implemented in the public web server (https​://biosi​g.unime​lb.edu.au/mcsm_ab/
predi​ction​) has been trained using the AB-Bind database. Thus, we checked the overlap of data between the 
AB-Bind and SiPMAB databases. For each mutant in the SiPMAB database, when the mutant did not exist in 
the AB-Bind, we simply used the mCSM-AB web server for calculating the feature value in our method. When 
the mutant existed in the AB-Bind, we used the mCSM-AB predictions in the "Predictions on cross validation" 
provided by the developers of mCSM-AB (https​://biosi​g.unime​lb.edu.au/mcsm_ab/data) rather than the web 
server. These mCSM-AB predictions were obtained from the tenfold cross-validation where the mutant was 
separated from the training data.

https://biosig.unimelb.edu.au/mcsm_ab/prediction
https://biosig.unimelb.edu.au/mcsm_ab/prediction
https://biosig.unimelb.edu.au/mcsm_ab/data
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In addition to cross-validation-based evaluation above, we performed a benchmark study where our method 
was trained on SiPMAB database, and evaluated on independent data not included in SiPMAB database. For this 
purpose, we used the bH1 data of the anti-VEGF antibody and the 11K2 data from Kiyoshi et al.22.

Data availability
Our method was implemented in Python using scikit-learn package. The codes and datasets for reproducing the 
results in this study are available at the authors’ GitHub website: https​://githu​b.com/ykuru​mida/ab-predi​ctor.
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