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Abstract: The application of artificial intelligence approaches like machine learning (ML) to forecast
material properties is an effective strategy to reduce multiple trials during experimentation. This
study performed ML modeling on 481 mixes of geopolymer concrete with nine input variables,
including curing time, curing temperature, specimen age, alkali/fly ash ratio, Na2SiO3/NaOH ratio,
NaOH molarity, aggregate volume, superplasticizer, and water, with CS as the output variable. Four
types of ML models were employed to anticipate the compressive strength of geopolymer concrete,
and their performance was compared to find out the most accurate ML model. Two individual ML
techniques, support vector machine and multi-layer perceptron neural network, and two ensembled
ML methods, AdaBoost regressor and random forest, were employed to achieve the study’s aims. The
performance of all models was confirmed using statistical analysis, k-fold evaluation, and correlation
coefficient (R2). Moreover, the divergence of the estimated outcomes from those of the experimental
results was noted to check the accuracy of the models. It was discovered that ensembled ML models
estimated the compressive strength of the geopolymer concrete with higher precision than individual
ML models, with random forest having the highest accuracy. Using these computational strategies
will accelerate the application of construction materials by decreasing the experimental efforts.

Keywords: machine learning; geopolymer concrete; artificial intelligence; prediction models;
compressive strength

1. Introduction

Construction is a vital component of any economy [1]. The building sector generates
large amounts of waste and emits considerable amounts of greenhouse gases (GHGs) into the
environment [2,3]. Cement-based materials such as concrete are the primary building mate-
rials utilized in the construction industry worldwide [4–7]. It is now well accepted that the
manufacture of cement leads to the emission of significant amounts of GHGs that contribute to
global warming, as well as the use of significant amounts of raw materials [8–10]. It has been
calculated that around two tons of raw materials (shale and limestone) are consumed in the
manufacturing of one ton of cement, and approximately one ton of carbon dioxide (CO2) and
nitrogen oxide (NO) pollutants are released [11]. With over two billion tons of GHGs emitted
yearly as a result of cement manufacture, cement production accounts for approximately 6%
of global anthropogenic GHG emissions [12–14]. The extensive use of natural raw materials
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in the manufacture of cement has also resulted in the overexploitation of natural resource
reserves, resulting in a degradation of the aesthetics of the environment and the modification
of ecosystems [15,16]. Apart from the substantial GHG emissions associated with cement
manufacture, the process is extremely energy demanding [17,18]. Recent urbanization, partic-
ularly in developing nations, has exacerbated the negative environmental effect of cement
manufacturing [19]. As a result, it is critical that sustainable alternatives to cement be utilized
in building applications in order to preserve the environment’s sustainability [20,21]. Numer-
ous waste products created by various sectors can be utilized as sustainable substitutes for the
traditional resources used in the cement manufacturing process. As a result, the utilization
of such wastes in the manufacturing of a sustainable alternative to cement would result in a
considerable decrease in GHG emissions, the cost of raw materials, and the use of natural raw
resources connected with cement [22]. Materials that have been activated with alkali, such as
geopolymers, may be preferred to conventional cement concrete [23–25].

Davidovits was the first to propose geopolymers consisting of semi-crystalline three-
dimensional aluminosilicate materials in 1979 [26]. These geopolymers may be manufac-
tured using a variety of source materials, including fly ash, metakaolin, ground granu-
lated blast furnace slag, and rice husk bark ash [27–30]. Since then, scientists have paid
close attention to geopolymers due to their unique combination of superior mechanical
performance, chemical and fire resistance, low CO2 emissions, and low energy consump-
tion [31,32]. These features are intimately connected to the chemical interactions between
aluminosilicate and alkali-polysialate [33]. The use of geopolymer concrete (GeoPC) in
place of conventional cement concrete results in an embodied carbon reduction of up to
80%, depending on the precursor and activator utilized [34]. GeoPC is mostly composed of
waste materials from various industrial and agricultural activities. GeoPC may be consid-
ered more ecologically friendly and an efficient method of managing enormous amounts
of waste created by industries [35–37]. The utilization of locally accessible materials as
precursors, such as laterite soil, can help increase the sustainability of GeoPCs [11]. Thus, by
utilizing geopolymers as a sustainable alternative to cement, GHG emissions, raw material
consumption, and waste management costs would be significantly reduced [38–40].

The practice of developing models for forecasting the strength of concrete is ongoing
in order to reduce unnecessary test repetitions and material waste. There are several
prominent models for modeling concrete properties, such as best fit curves (based on
regression analysis). However, due to the nonlinear behavior of concrete [41], regression
models generated using this technique may not accurately represent the underlying nature
of the material. Additionally, regression methods may understate the effect of constituent
materials in concrete [42]. Artificial intelligence techniques such as machine learning (ML)
are some of the more contemporary modeling techniques that have been used in the area
of civil engineering. These approaches use input parameters to model responses, and
the output models are validated by experimentation. For construction applications, ML
algorithms estimate concrete strength [43–47], bituminous mixture performance [48], and
concrete durability [49–51].

This study focuses on the application of ML techniques to forecast the compressive
strength (C-S) of GeoPC. Four distinct ML techniques were used, including support vector
machine (SVM), multi-layer perceptron neural network (MLPNN), AdaBoost regressor
(AR), and random forest (RF) to anticipate the C-S of GeoPC. The effectiveness of all
techniques was evaluated by applying statistical tests and correlation coefficients (R2).
Furthermore, k-fold analysis and error distributions were used to determine the validity of
each technique. SVM and MLPNN are individual ML techniques, while AR and RF are
ensemble ML methods [52]. This study is interesting in that it predicts the C-S of GeoPC
utilizing both individual and ensemble ML techniques. However, experimental studies
require considerable human effort, the cost for experimentation, and time for material
collection, sample casting, curing, and testing. The application of novel methods, such as
ML, in the construction field to anticipate material characteristics will decrease the aforesaid
issues by obviating the need for experimental work. ML methods need a data set, which
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may be collected from the past studies since a considerable amount of investigation has
been undertaken to determine material characteristics, and the data set might be utilized
for training the ML models and forecasting the material properties. The purpose of this
work is to ascertain the top appropriate ML method for the C-S estimation of GeoPC based
on the results estimation and the effect of input variables on ML model performance.

2. Data Description

ML methods need a diverse range of input parameters to acquire the desired out-
come [53]. The C-S of GeoPC was forecasted utilizing data obtained from past studies
(see Table S1, Supplementary Materials). The data set was arbitrarily selected from the
past studies to avoid biased images. This analysis obtained only a C-S-based data set to
run the models. The precursor material and activation solution were the same for all data
samples, i.e., fly ash and Na2SiO3–NaOH solution, respectively. Nine input parameters
were employed to run the models, including curing temperature, curing time, specimen
age, alkali/fly ash ratio, Na2SiO3/NaOH ratio, NaOH molarity, aggregate volume, super-
plasticizer, and water, with C-S as the output variable. In the present research, a data set
of 481 points was utilized for the outcome prediction using ML methods. The quantity of
input parameters and data sets have a considerable impact on the technique’s results [54].
According to prior research, a minimum of 300 data points and eight input variables can
result in increased precision for ML models [55,56]. As a result, the data set acquired for this
research is optimal for the ML model’s performance. Table 1 lists the descriptive statistical
analysis of all input variables. The mode, median, and mean values correspond to central
propensity, while the standard deviation, minimum, and maximum values correspond to
irregularity. Figure 1 depicts the dispersion of input parameters utilized in the research in
terms of their relative incidence. It illustrates the overall number of observations linked to
each value or sequence of values.

Table 1. Results of the descriptive statistical analysis of input parameters.

Parameter
Curing

Temperature
(◦C)

Curing
Time (h)

Age of
Specimen

(days)

Alkali/Fly
Ash Ratio

Na2SiO3/NaOH
Ratio

NaOH
Molarity

(M)

Aggregate
Volume (%)

Superplasticizer
(%) Water (%)

Mean 68.94 27.46 21.53 0.43 2.25 11.89 59.98 1.93 53.56
Median 70.00 24.00 7.00 0.40 2.50 12.00 70.00 1.55 55.90
Mode 60.00 24.00 7.00 0.35 2.50 10.00 70.00 2.00 55.90

Standard
Deviation 25.19 13.24 45.33 0.11 0.53 2.73 28.97 2.41 3.82

Range 100.00 92.00 539.00 0.70 3.60 12.00 80.00 11.30 18.90
Minimum 20.00 4.00 1.00 0.30 0.40 8.00 0.00 0.00 45.10
Maximum 120.00 96.00 540.00 1.00 4.00 20.00 80.00 11.30 64.00

3. Machine Learning Methods Employed

Individual ML approaches (SVM and MLPNN), as well as ensemble ML methods
(AR and RF), were employed to ascertain the goals of this research with Python codes
through the Anaconda Navigator software. Spyder (version 4.3.5) was selected to run
the SVM, MLPNN, AR, and RF techniques. These ML methods are typically employed
to forecast the required results on the basis of input factors. These methods, amongst
other aspects, are able to estimate the temperature influence, the strength characteristics,
and the material’s durability [57,58]. The R2 value for the expected outcome indicates
the performance/validity of ML methods. The R2 is a statistic that is used to estimate
the degree of variation in a response variable specified by a model. In other words, it
quantifies the model’s fit to the data. A value close to zero suggests that fitting the mean is
similar to fitting the model, whereas a value near one indicates that the date and model are
virtually perfectly suited [59]. The data are split: 20% for testing and 80% for training the
ML models. The sub-segments underneath describe the ML approaches used in this study.
Furthermore, k-fold evaluation, statistical checks, and error measurements (root mean
square error (RMSE) and mean absolute error (MAE)) is performed on all ML methods to
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validate them. In addition, sensitivity analysis (SA) is carried out to find out the influence
of every input variable on the results anticipation. The flow diagram in Figure 2 describes
the research technique followed in the present study.
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3.1. Support Vector Machine

SVM is an individual ML technique that is used to evaluate data for classification and
regression. An SVM technique is a way of describing the samples as points in space that
have been plotted in such a way that the patterns of the unique classifications are separated
by a distinct vector (line/plane) with the greatest possible separation. Additional cases
are then superimposed on that same space and categorized according to which side of
the vector they lie on, as illustrated in Figure 3. Figure 4 illustrates the procedure for the
SVM model. This model is employed to assess the material’s strength, since it takes into
account the combined influence of various components. The optimization approach is used
to ascertain the parameters of the SVM model.
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3.2. Multi-Layer Perceptron Neural Network

An artificial neural network (ANN) is a collection of connected nodes that are em-
ployed to represent and solve issues that involve complicated interactions among causal
events and reactions. MLPNN is one of the highly efficient ANN methods for estima-
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tion and modeling. MLPNN has been chosen as the standard method in numerous
studies [61,62]. Due to MLPNN’s excellent universal approximation capabilities, it has
been commonly utilized to describe nonlinear and complicated phenomena in the actual
world [63–65]. The MLPNN is a feed-forward technique that comprises a single input layer,
one or more hidden layers, and a single output layer [66], as shown in Figure 5. Usually,
the number of nodes in the input layer is determined by the data source’s specified factor,
while the number of hidden neurons is measured using a particular training data set. The
hidden layers are utilized for computing, whereas the output layer is used for modeling.
Every node in the hidden layer should be linked to all nodes in the input layer and then to
all nodes in the output layer. The MLPNN training operation might split into two steps via
these connections: ahead and back, utilizing the back-propagation technique [63].

Polymers 2022, 14, x 7 of 24 
 

 

 
Figure 4. Sequence of support vector machine modeling process. 

3.2. Multi-Layer Perceptron Neural Network 
An artificial neural network (ANN) is a collection of connected nodes that are 

employed to represent and solve issues that involve complicated interactions among 
causal events and reactions. MLPNN is one of the highly efficient ANN methods for 
estimation and modeling. MLPNN has been chosen as the standard method in numerous 
studies [61,62]. Due to MLPNN’s excellent universal approximation capabilities, it has 
been commonly utilized to describe nonlinear and complicated phenomena in the actual 
world [63–65]. The MLPNN is a feed-forward technique that comprises a single input 
layer, one or more hidden layers, and a single output layer [66], as shown in Figure 5. 
Usually, the number of nodes in the input layer is determined by the data source’s 
specified factor, while the number of hidden neurons is measured using a particular 
training data set. The hidden layers are utilized for computing, whereas the output layer 
is used for modeling. Every node in the hidden layer should be linked to all nodes in the 
input layer and then to all nodes in the output layer. The MLPNN training operation 
might split into two steps via these connections: ahead and back, utilizing the back-
propagation technique [63]. 

 

Data collection

Testing data

SVM Save mode 
parameters

Crossover

Results 
comparison

Training data

Final SVM 
model

Poor Good

80% 20%

Figure 5. Sequence of a multi-layer perceptron neural network modeling process. Reprinted/adapted
with permission from [67].

3.3. AdaBoost Regressor

The AR method is the most common ensemble ML technique in the boosting class.
The AR algorithm is unique in that it uses the primary training data to develop a weak
learner, and then alters its dispersion of training data based on the projection performance
of the weak learner in the subsequent turn of weak learner training. It is important to
mention that in the subsequent phase, the training models with lower estimation accuracy
from the former phase will receive greater consideration. Following that, the weak learners
are combined with a strong learner using a range of weights to create the final pattern [68].
The AR running process is divided into four stages, including data collecting, developing a
strong learner, analyzing or confirming the learner, and applying the learner to engineering
problems. The second phase is critical to the AR method. As stated before, it is composed
of two elements, i.e., a structure for incorporating weak learners into a stronger one and
a regression learning algorithm for generating the weak learner from the training data.
The SVM technique is employed to construct the weak learner, and the weak learners are
combined using the average of the weighted weak learners. The flow diagram for this
approach is depicted in Figure 6.
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3.4. Random Forest

The random split selection technique is used to deploy RF on bagging DTs [70]. Figure 7
schematically depicts the modeling method of the RF technique. Each tree in the forest is
produced from an aimlessly selected training set, and every split within a tree is constructed
from an erratically chosen subgroup of input parameters, developing a forest [71]. This
element of uncertainty increases the tree’s variety. The entire forest is made up of completely
mature binary trees. The RF approach has proven to be an extremely powerful tool for general-
purpose classification and regression. When the number of variables surpasses the number of
observations, the approach, which aggregates the predictions of numerous randomized DTs,
demonstrates increased precision. Furthermore, it is adjustable to both large-scale and ad hoc
learning tasks, returning measures with varying degrees of significance [72].
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4. Results and Discussions
4.1. Support Vector Machine Model

The outcomes of the SVM model for the C-S of GeoPC are displayed in Figures 8 and 9.
The correlation among the experimental and forecasted results is shown in Figure 8. The
SVM method generated results with a lower degree of accuracy and a marginal difference
amongst the experimental and forecasted results. The R2 of 0.78 confirms that the SVM model
has a lower degree of accuracy in anticipating the C-S of GeoPC. Figure 9 demonstrates the
dispersion of experimental, anticipated, and error values for the SVM model for testing data
alone, which is 20% of the overall data set. The analysis of the experimental and estimated
values discovered that the divergence of outcomes (error) was in the limit of 0.00 to 47.0 MPa,
with an average of 7.72 MPa. Moreover, for 8 mixes, the divergence from the experimental
results was lower than 1 MPa; for 17 mixes, the divergence was between 1 and 3 MPa; for
21 mixes, the divergence was between 3 and 6 MPa; and for 45 mixes, the variance was greater
than 6 MPa. This indicated a higher deviation from the projected findings for the SVM model
compared to the experimental results. Thus, the SVM technique is less accurate in anticipating
the C-S of GeoPC.
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Figure 8. Relationship between experimental and estimated results for the support vector machine model.
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4.2. Multi-Layer Perceptron Neural Network Model

Figures 10 and 11 illustrate a contrast of the MLPNN model’s experimental and antici-
pated results. Figure 10 exemplifies the relationship among experimental and projected
outcomes, with an R2 of 0.81 suggesting that the MLPNN model is more specific than
the SVM model in estimating the GeoPC C-S. Figure 11 illustrates the distribution of ex-
perimental, estimated, and error values for the MLPNN model. The variation between
experimental and estimated values was found to be between 0.06 and 22.77 MPa, with an
average of 5.86 MPa. Additionally, the variation from the experimental results was lower
than 1 MPa for 10 mixes, between 1 and 3 MPa for 25 mixes, between 3 and 6 MPa for
23 mixes, and greater than 6 MPa for 39 mixes. This also indicates a greater divergence
of the MLPNN model’s predicted outcomes when compared to the experimental results.
Therefore, the MLPNN technique is also less accurate at predicting GeoPC’s C-S, but
slightly more accurate than the SVM model.
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Figure 10. Relationship between experimental and estimated results for the multi-layer perceptron
neural network model.
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4.3. AdaBoost Regressor Model

A comparable illustration of the AR model results is depicted in Figures 12 and 13.
Figure 12 indicates the relationship among the experimental and anticipated results. The
AR method produced outcomes with a higher degree of exactness and a minimal divergence
amongst the experimental and projected results. The R2 of 0.89 indicates that the AR model
is reasonably precise at predicting the C-S of GeoPC. The dispersal of the experimental,
anticipated, and error readings for the BR model are shown in Figure 13. The difference
(error) between the experimental and estimated values ranged from 0.00 to 22.80 MPa,
with a mean of 4.03 MPa. Furthermore, for 18 mixes, the variation from the experimental
outcomes was lower than 1 MPa; for 26 mixes, it was between 1 and 3 MPa; for 32 mixes, it
was between 3 and 6 MPa; and for only 21 mixes it was larger than 6 MPa. When compared
to the experimental data, the AR model’s outcomes showed minimal divergence and higher
precision, because this technique uses the training data to build a weak learner and then
trains it by altering the dispersal of the training data until it forms a strong learner.
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Figure 12. Relationship between experimental and estimated results for the AdaBoost regressor model.
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Figure 13. Distribution of experimental, estimated, and error values for the AdaBoost regressor model.
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4.4. Random Forest Model

Figures 14 and 15 present a similar representation of the RF model’s results. In
Figure 14, an R2 value of 0.95 specifies that the RF model performs with the highest
precision compared to the other models employed in this study. Figure 15 exemplifies the
scattering of experimental, projected, and error values for the RF model. The variation
(error) between the experimental and estimated values was found to be between 0.05 and
14.99 MPa, with an average of 2.34 MPa. In addition, the variation from the experimental
outcomes was lower than 1 MPa for 38 mixes, between 1 and 3 MPa for 29 mixes, between
3 and 6 MPa for 24 mixes, and greater than 6 MPa for only 6 mixes. This indicates a smaller
variation between the experimental and predicted outcomes. Therefore, the RF technique
is more suitable, demonstrating the highest precision in estimating the C-S of GeoPC.
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5. Model’s Validation

K-fold and statistical approaches were employed to validate the performance of
all models. Typically, the k-fold analysis method is carried out to find out the model’s
validity [73], during which related data are arbitrarily dispersed and split into 10 groups.
Nine groups will be utilized for training the models and one will be used for validation. The
lower error values (MAE and RMSE) and the higher R2 values suggest the higher precision
of a model [69]. Moreover, the process must be repeated 10 times to obtain a suitable
decision. This broad endeavor provides the notable precision of a model. Moreover, as
displayed in Table 2, each ML method was statistically assessed based on errors (MAE and
RMSE). These evaluations also supported the ensemble ML model’s greater precision in
comparison to the individual techniques, owing to its lower error readings. The projecting
accuracy of the models was ascertained statistically through Equations (1) and (2), taken
from previous work [55,74,75].

MAE =
1
n

n

∑
i=1
|Pi − Ti| (1)

RMSE =

√
∑

(Pi − Ti)
2

n
(2)

where n = number of data points, Ti = experimental values, and Pi = predicted values.

Table 2. Statistical checks of the ML methods used in the present study.

Model MAE RMSE

Support vector machine 6.720 8.145
Multi-layer perceptron neural network 5.864 7.492

AdaBoost regressor 4.027 5.543
Random forest 2.338 3.394

To evaluate the k-fold analysis results, the R2, MAE, and RMSE were calculated, and
the resulting values for the SVM, MLPNN, AR, and RF techniques are summarized in
Table 3. To compare the MAE values for all of the models from the k-fold analysis, Figure 16
was generated. The MAE values for the SVM model were in the range of 6.72 to 14.26 MPa,
with an average of 10.53 MPa. The same values for the MLPNN model were between 5.86
and 13.79 MPa, with an average of 9.39 MPa. Additionally, for the AR method, these values
were between 4.03 and 11.94 MPa, with an average of 8.20 MPa. The MAE values for the RF
model were in the range of 2.34 to 11.10 MPa, with an average of 6.90 MPa. This analysis
validated the higher accuracy of ensemble ML models, with the RF model having the
lowest error/deviation from the experimental results. This was further confirmed by the
results of RMSE, as depicted in Figure 17. The average RMSE value for the SVM, MLPNN,
AR, and RF models was 13.29, 11.08, 9.91, and 7.97, respectively. The results of R2 from
the k-fold analysis were compared and are presented in Figure 18. It was determined that
the RF model has higher R2 values with an average of 0.71, compared to the other models,
which yielded an average R2 of 0.42, 0.49, and 0.62 for the SVM, MLPNN, and AR models,
respectively. The RF model with smaller deviations from the experimental results and
higher R2 values outperformed the other models in estimating the C-S of GeoPC. Hence,
this analysis suggests the use of an RF model for this purpose.
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Table 3. Results of the k-fold process.

K-Fold
SVM MLPNN AR RF

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 14.26 18.02 0.67 9.10 12.19 0.25 7.56 11.05 0.22 8.10 9.34 0.91
2 9.09 11.53 0.57 8.81 11.62 0.81 6.23 6.04 0.79 7.48 9.36 0.32
3 13.15 15.48 0.58 6.46 9.53 0.34 11.09 14.76 0.21 2.34 13.46 0.84
4 10.96 17.65 0.78 13.79 19.49 0.26 10.21 10.06 0.89 11.10 3.39 0.39
5 7.56 11.24 0.26 5.86 9.43 0.72 7.46 8.46 0.58 7.49 9.13 0.76
6 6.72 9.16 0.13 7.67 8.40 0.21 4.74 5.54 0.81 4.26 4.81 0.80
7 11.94 13.45 0.60 11.21 7.49 0.63 8.08 8.87 0.50 7.81 10.31 0.60
8 9.94 13.45 0.18 12.60 8.92 0.40 11.94 12.23 0.64 8.65 4.11 0.84
9 14.23 15.82 0.32 10.05 15.75 0.58 10.62 15.35 0.85 9.38 12.10 0.95

10 7.43 8.15 0.14 8.34 8.03 0.69 4.03 6.69 0.71 2.44 3.72 0.66
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Figure 17. Comparison of root mean square error for all models from the k-fold analysis.



Polymers 2022, 14, 2128 15 of 21Polymers 2022, 14, x 18 of 24 
 

 

 
Figure 18. Comparison of the correlation coefficient for all models from the k-fold analysis. 

6. Sensitivity Analysis 
The intent of this evaluation is to find out the impact of input variables on GeoPC’s 

C-S prediction. The anticipated result is considerably influenced by the input factors [76]. 
Figure 19 illuminates the impact of each input variable on the C-S forecast of GeoPC. The 
analysis revealed that curing time, curing temperature, and age of specimen were the most 
important constituents that influence the ML model’s performance in estimating the C-S 
of GeoPC, accounting for 22.5%, 20.1%, and 18.5%, respectively. The remaining input 
variables, including superplasticizer, NaOH molarity, water, alkali/fly ash ratio, 
Na2SiO3/NaOH ratio, and aggregate volume, had a contribution of 12.5%, 9.4%, 4.8%, 
4.2%, 4.1%, and 3.9%, respectively. SA revealed relationships between the quantity of 
input factors and the data points used to build the ML models. The impact of input 
parameters on the ML model’s results was ascertained using Equations (3) and (4). 𝑁 =  𝑓 𝑥 − 𝑓 𝑥  (3)𝑆 = 𝑁∑ 𝑁  (4)

where 𝑓 𝑥  and 𝑓 𝑥  are the highest and lowest of the projected outcome over 
the 𝑖  output, respectively. The Si is the attained impact percentage for the specific input 
parameter. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 (R

2 )

Fold

SVM MLPNN AdaBoost RF
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6. Sensitivity Analysis

The intent of this evaluation is to find out the impact of input variables on GeoPC’s
C-S prediction. The anticipated result is considerably influenced by the input factors [76].
Figure 19 illuminates the impact of each input variable on the C-S forecast of GeoPC. The
analysis revealed that curing time, curing temperature, and age of specimen were the
most important constituents that influence the ML model’s performance in estimating
the C-S of GeoPC, accounting for 22.5%, 20.1%, and 18.5%, respectively. The remaining
input variables, including superplasticizer, NaOH molarity, water, alkali/fly ash ratio,
Na2SiO3/NaOH ratio, and aggregate volume, had a contribution of 12.5%, 9.4%, 4.8%,
4.2%, 4.1%, and 3.9%, respectively. SA revealed relationships between the quantity of input
factors and the data points used to build the ML models. The impact of input parameters
on the ML model’s results was ascertained using Equations (3) and (4).

Ni = fmax(xi)− fmin(xi) (3)

Si =
Ni

∑n
j−i Nj

(4)

where fmax(xi) and fmin(xi) are the highest and lowest of the projected outcome over
the ith output, respectively. The Si is the attained impact percentage for the specific
input parameter.

7. Discussions

The objective of this study was to add to the body of knowledge concerning the appli-
cation of contemporary methods for evaluating the C-S of GeoPC. This kind of exploration
will benefit the building industry by facilitating the progress of rapid and cost-efficient
material property prediction tools. By encouraging eco-responsive construction through
these measures, the adoption and usage of GeoPC in the building sector will be hastened.
Since GeoPC might be manufactured from waste constituents, including aluminosilicates,
its usage in the building sector has a variety of benefits, including reduced energy con-
sumption, waste reduction, natural resources protection, reduced CO2 emissions, better
material properties, and green construction materials [27].
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Figure 19. Impact of input factors on the model’s prediction.

This research validates how ML techniques can be utilized to foresee the C-S of
GeoPC. Four ML methods were employed: two individual (SVM and MLPNN) and two
ensembled (AR and RF). All ML methods were assessed for precision to determine which
is the most effective model. The RF model generated a more accurate result with an R2

of 0.95, compared to the AR, MLPNN, and SVM models, which yielded R2 of 0.89, 0.81,
and 0.78, respectively. Furthermore, all models’ performance was confirmed by k-fold
and statistical analysis techniques. The fewer errors in the model, the more precise it is.
However, establishing and suggesting the ideal ML method for forecasting outcomes across
a number of areas is challenging, since any model’s performance is highly dependent on the
input parameters and data set utilized to execute the algorithm. Ensembled ML methods
frequently make use of the weak learner by building sub-models that may be trained on
data and tweaked to maximize the R2 value.

The dispersal of R2 values for the AR and RF sub-models is represented in Figure 20.
The lowest, average, and maximum R2 values for AR sub-models were 0.811, 0.864, and 0.892,
respectively. The lowest, average, and maximum R2 values for RF sub-models were 0.938,
0.947, and 0.952, respectively. These figures indicate the superior exactness of the RF method in
comparison to the AR in estimating the C-S of GeoPC. Other researchers have also observed
that the AR and RF models are more accurate in predicting outcomes [68,77,78]. Feng et al. [68]
observed that the AR model outperformed individual models, including ANN and SVM, in
terms of R2 and error values. Likewise, Farooq et al. [78] assessed the accuracy of RF with that
of the decision tree, gene expression programming, and artificial neural network methods and
found that the RF model had a greater precision than the others, with an R2 of 0.96.

In addition, an SA was carried out to identify the effect of each input variable on
GPC’s anticipated C-S. The model’s effectiveness may be influenced by the input variables
and the size of the data set. The SA established the degree to which each of the nine inputs
influenced the projected outcome. Curing time, curing temperature, and age of specimen
were found to be the three most highly crucial input factors. However, there are several
other parameters involved in the manufacture of GeoPC that affect the C-S, such as the
chemical composition of the precursors and the superplasticizer, which may be used as
input parameters in future ML-based modeling to study their impact.
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8. Conclusions

The purpose of this study was to apply both ensemble and individual machine learning
(ML) methods to estimate the compressive strength (C-S) of geopolymer concrete (GeoPC).
Two individual approaches—support vector machine (SCM) and multi-layer perceptron
neural network (MLPNN)—were employed to forecast outcomes, and two ensemble ML
approaches were used, namely, AdaBoost regressor (AR) and random forest (RF). This
study reached the following findings:

1. Ensemble ML methods (AR and RF) outperformed individual ML techniques (SVM
and MLPNN) in forecasting the C-S of GeoPC, with the RF model performing with
the highest accuracy. The correlation coefficients (R2) were 0.95, 0.89, 0.81, and 0.78
for RF, AR, MLPNN, and SVM models, respectively.

2. The comparison of experimental and anticipated results verified the AR and RF
models’ superior accuracy, as the projected values deviated less from the experimental
values. On the other hand, the MLPNN and SVM model results deviated more from
the experimental results, making them less suitable for predicting the C-S of GeoPC.

3. Statistical analysis and k-fold evaluation were used to validate the model performance.
These evaluations validated the RF model’s superior accuracy. The ensembled models’
decreased deviation (MAE and RMSE) and higher R2 values supported their increased
accuracy over individual models.

4. Sensitivity analysis discovered that curing time, curing temperature, and specimen
age were the most significant elements influencing the ML model’s performance in
predicting GeoPC’s C-S, accounting for 22.5%, 20.1%, and 18.5%, respectively. The
other input variables, including superplasticizer, NaOH molarity, water, alkali/fly ash
ratio, Na2SiO3/NaOH ratio, and aggregate volume, contributed 12.5%, 9.4%, 4.8%,
4.2%, 4.1%, and 3.9%, respectively.

5. This kind of study will benefit the construction industry by allowing for the progress
of rapid and cost-efficient strategies for estimating the strength of materials. Moreover,
by applying these methods to encourage eco-responsive construction, the acceptance
and usage of GeoPC in the building sector will be enhanced.
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